Supporting Information

Novel Palladium-Catalyzed Cascade Carboxylative Annulation to Construct

Functionalized *γ*-Lactones in Ionic Liquids

Jianxiao Li, Shaorong Yang*, Wanqing Wu and Huanfeng Jiang*

School of Chemistry and Chemical Engineering, South China University of

Technology, Guangzhou 510640, P. R. China

jianghf@scut.edu.cn; lisryang@scut.edu.cn

List of Contents

I. General method	S2
II. General procedure for the synthesis of 3 and 6	S3
III. General procedure for the synthesis of 7 and 8	S4
IV. Analytical data for compounds 3 and 6-8	S5
V. ¹ H and ¹³ C NMR spectra of compounds 3 and 6-8	S16
VI. Studies on stereochemistry of 3a	S41

I. General method

Melting points were measured with a BÜCHI B-545 melting point instrument and were uncorrected. ¹H and ¹³C NMR spectra were recorded using a Bruker Avance 400 MHz NMR spectrometer. The chemical shifts are referenced to signals at 7.24 and 77.0 ppm, respectively, and chloroform is solvent with TMS as the internal standard. IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker Vector 22 spectrometer. GC–MS was obtained using electron ionization. HRMS (EI) was carried out on a MAT 95XP (Thermo). TLC was performed by using commercially prepared 100–400 mesh silica gel plates (GF254) and visualization was effected at 254 nm. The ionic liquids ([Bmim]Cl,¹ [C₂OHmim]Cl,² [C₂O₂mim]Cl³) were synthesized using reported procedures. The alkynoates⁴ were prepared according to the literature. Other reagents were purchased as reagent grade and used without further purification.

Fig. 1 Ionic liquids applied in this work.

II. General procedure for the synthesis of 3 and 6

Palladium chloride (1.3 mg, 3 mol%) and CuCl₂·2H₂O (79.0 mg, 2 equiv) were combined in an Schlenk tube equipped with a stir-bar. A balloon filled with CO and O₂ (the ratio is 3:1) was connected to the Schlenk tube via the side tube and purged 3 times. Then ionic liquid (1.0 mL), alkynoates **1** (0.25 mmol) and **2** (0.3 mmol) were then added to the tube and stirred at room temperature. After the reaction was completed, the balloon gas was released carefully and the reaction was quenched by water and extracted with CH_2Cl_2 three times. The combined organic layers were dried over anhydrous Na_2SO_4 and evaporated under vacuum. The desired products were obtained in the corresponding yields after purification by flash chromatography on silica gel with hexane/ethyl acetate.

III. General procedure for the synthesis of 7 and 8

According to the reported procedure,⁵ to a mixture of (4-ethylphenyl)boronic acid (112.5 mg, 0.75 mmol), $Pd(OAc)_2$ (2.8 mg, 0.0125 mmol), K_3PO_4 (0.75 mmol), and Xphos (11.9 mg, 0.025 mmol) in 1 mL of toluene was added a solution of (Z)-**3a** (73.5 mg, 0.25 mmol) in 1.0 mL of toluene under nitrogen. After stirring at 110 °C for 10 h, the reaction mixture was quenched with water, extracted with ethyl acetate, washed with brine, dried over MgSO₄, and concentrated. Column chromatography on silica (petroleum ether/ethyl acetate = 5/1) gave 63.7 mg (yield: 70%) of **7** as a yellow oil.

According to the reported procedure,⁵ under nitrogen, ZnCl₂ (0.5 M solution in THF; 0.78 mL, 0.4 mmol) was added by syringe to a Schlenk tube. *o*-Tolylmagnesium chloride (1.0 M solution in THF; 1.0 mL, 1.0 mmol) was then added dropwise, and the resulting mixture was stirred at room temperature for 20 min. Next, NMP (1.0 mL) was added by syringe, followed after 5 min by Pd(P(*t*-Bu)₃)₂ (2.6 mg, 0.005 mmol) and (*Z*)-**3a** (73.5 mg, 0.25 mmol). The Schlenk tube was closed at the Teflon stopcock, and the reaction mixture was stirred in a 100 °C oil bath for 2 h. It was then allowed to cool to room temperature, and aqueous HCl was added (1.0 M; 5 mL). The resulting mixture was extracted with Et₂O (2 × 10 mL), and the organic extracts were combined, washed with water (2 × 10 mL), dried (MgSO₄), and concentrated, affording a yellow oil. Column chromatography on silica (petroleum ether/ethyl acetate = 5/1) furnished 52.9 mg (63%) of the title compound **8** as a yellow oil.

References

[1] J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser and R. D. Rogers, Chem.

Commun., 1998, 1765.

[2] L. C. Branco, J. N. Rosa, J. J. Moura Ramos and C. A. M. Afonso, *Chem. Eur. J.*, 2002, **8**, 3671.

- [3] C.-X. Miao, L.-N. He, J.-Q. Wang and J.-L. Wang, Adv. Synth. Catal., 2009, 351, 2209.
- [4] C. Pan, F. Luo, W. Wang, Z. Ye, J. Cheng, Tetrahedron Lett., 2009, 50, 5044.
- [5] A. F. Littke and G. C. Fu, Angew. Chem. Int. Ed., 2002, 41, 4176.

IV. Analytical data for compounds 3 and 6

4.15-4.08 (m, 1H), 3.88 (s, 3H), 2.91 (dd, J = 14.4, 4.4 Hz, 1H), 2.66 (tdd, J = 10.8, 8.8, 4.4 Hz, 1H), 2.47 (dd, J = 14.4, 10.0 Hz, 1H), 2.40-2.33 (m, 1H), 1.78 (dtd, J = 12.4, 10.4, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 167.6, 136.6, 134.6, 129.9, 129.5, 128.8, 128.4, 66.4, 52.5, 38.5, 31.8, 28.1 ppm; v_{max} (KBr)/cm⁻¹ 3040, 2965, 1716, 1635, 1541, 1507, 1104; MS (EI) m/z 115, 129, 149, 177, 208, 227, 259, 294; HRMS(EI) calcd for C₁₅H₁₅NaClO₄ 317.0551, found 317.0547.

10.8, 4.4 Hz, 1H), 2.46 (dd, J = 14.4, 10.0 Hz, 1H), 2.42-2.34 (m, 1H), 1.78 (dt, J = 12.4, 10.4 Hz,

1H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 167.2, 136.6, 134.1, 130.1, 129.5, 128.8, 128.5, 66.4, 61.7, 38.4, 31.8, 28.2, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3056, 2945, 1771, 1716, 1635, 1543, 1508, 1105; MS (EI) m/z 91, 115, 128, 141, 177, 199, 208, 227, 263, 308; HRMS(EI) calcd for C₁₆H₁₇NaClO₄ 331.0708, found 331.0709.

(Z)-benzyl 3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-phenylacrylate (3d) Yield: 76% (70.3 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.45 (m, 2H), 7.43-7.36 (m, 6H), 7.33-7.31 (m, 2H), 5.31 (q, J = 12.0

Hz, 2H), 4.15 (td, J = 8.8, 2.0 Hz, 1H), 4.04-3.96 (m, 1H), 2.92 (dd, J = 14.4, 4.0 Hz, 1H), 2.54 (tdd, J = 10.4, 8.4, 4.0 Hz, 1H), 2.44 (dd, J = 14.4, 10.4 Hz, 1H), 2.29-2.21 (m, 1H), 1.69 (dtd, J = 12.4, 10.4, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 167.0, 136.6, 135.2, 134.6, 129.8, 129.5, 128.8, 128.7, 128.6, 128.4, 67.5, 66.3, 38.3, 31.9, 28.2 ppm; v_{max} (KBr)/cm⁻¹ 3063, 3026, 2938, 1772, 1718, 1636, 1542, 1508, 1457, 1117; MS (EI) m/z 115, 128, 177, 191, 207, 263,

281, 335, 370; HRMS(EI) calcd for C₂₁H₁₉NaClO₄ 393.0864, found 393.0865.

(Z)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-(o-tolyl)acrylic acid (3e)

Yield: 78% (57.3 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.43-7.36 (m, 3H), 4.55 (td, J = 12.4, 7.2 Hz, 1H), 4.25-4.20 (m,

1H), 3.16 (dd, J = 16.4, 7.2 Hz, 1H), 2.76 (dd, J = 16.4, 6.8Hz, 1H), 2.03 (s, 3H), 2.01-1.93 (m, 2H), 1.46-1.37 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 166.6, 139.3, 138.4, 134.7, 130.4, 129.9, 128.2, 126.2, 123.3, 73.1, 60.2, 36.9, 34.9, 20.8 ppm; v_{max} (KBr)/cm⁻¹ 3028, 2946, 1700, 1608, 1501, 1458, 1108; MS (EI) m/z 114, 149, 177, 189, 233, 268, 294; HRMS(EI) calcd for C₁₅H₁₄ClO₄[M-H] 293.0586, found 293.0583.

(Z)-3-chloro-3-(4-methoxyphenyl)-2-((2-oxotetrahydrofuran-3-yl)m ethyl)acrylic acid (3f)

Yield: 71% (55.0 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.46 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.79-4.72 (m, 1H),

4.91-4.86 (m, 2H), 3.84(s, 3H), 3.38 (dd, J = 17.6, 7.6 Hz, 1H), 2.89 (dd, J = 17.6, 6.4 Hz, 1H), 2.01-1.96 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 161.2, 146.3, 131.0, 130.0, 127.3, 122.3, 113.2, 73.7, 59.0, 55.3, 39.0, 37.4 ppm; v_{max} (KBr)/cm⁻¹ 3030, 2948, 1758, 1713, 1615, 1524, 1500, 1108; MS (EI) m/z 113, 145, 177, 191, 207, 237, 267, 281, 310; HRMS(EI) calcd for C₁₅H₁₄ClO₅[M-H] 309.0535, found 309.0528.

> (Z)-ethyl 3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-(m-tolyl)acrylate

S6

(3g)

Yield: 76% (61.2 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.14-7.16 (m, 2H), 4.38-4.30 (m, 2H), 4.23 (td, J = 8.8, 2.0 Hz, 1H), 4.16-4.09 (m, 1H), 2.92 (dd, J = 14.4, 4.4 Hz, 1H), 2.66 (ddt, J = 14.8, 12.8, 4.4 Hz, 1H), 2.46 (dd, J = 14.4, 10.4 Hz, 1H), 2.40-2.35 (m, 4H), 1.79 (dtd, J = 12.4, 10.4, 8.8 Hz, 1H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 167.3, 138.7, 136.6, 134.2, 130.2, 129.9, 129.0, 128.7, 125.5, 66.4, 61.7, 38.5, 31.8, 28.1, 21.4, 14.2 ppm; v_{max} (KBr)/cm⁻¹ 3056, 2981, 1771, 1723, 1635, 1456, 1400, 1384, 1120; MS (EI) m/z 115, 129, 141, 163, 195, 220, 241, 277, 287, 322; HRMS(EI) calcd for C₁₇H₁₉NaClO₄ 345.0864, found 345.0864.

7.24-7.22 (m, 4H), 4.38-4.30 (m, 2H), 4.23 (td, J = 8.8, 2.0 Hz, 1H), 4.15-4.08 (m, 1H), 2.93 (dd, J = 14.4, 4.4 Hz, 1H), 2.70-2.65 (m, 3H), 2.50-2.43 (m, 1H), 2.38 (dd, J = 14.4, 10.0 Hz, 1H), 1.79 (dtd, J = 12.4, 10.4, 8.8 Hz, 1H), 1.38 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 167.4, 145.8, 134.4, 133.9, 129.7, 128.5, 128.2, 66.4, 61.7, 38.5, 31.8, 28.7, 28.1, 15.2, 14.1 ppm; ν_{max} (KBr)/cm⁻¹ 3057, 2967, 1772, 1719, 1637, 1450, 1021; MS (EI) m/z 115, 133, 153, 177, 236, 254, 301, 336; HRMS(EI) calcd for C₁₈H₂₁NaClO₄ 359.1021, found 359.1028.

262, 282, 303, 329, 349, 364; HRMS(EI) calcd for $C_{20}H_{25}NaClO_4$ 387.1334, found 387.1332.

(Z)-ethyl 3-([1,1'-biphenyl]-4-yl)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)meth yl)acrylate (3k)

Yield: 74% (71.0 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.64-7.60 (m, 4H), 7.48-7.37 (m, 5H), 4.40-4.32 (m, 2H), 4.25 (td, J = 8.8, 2.0 Hz, 1H), 4.17-4.09 (m, 1H), 2.98 (dd, J = 14.4, 4.4 Hz, 1H), 2.75-2.66 (m, 1H), 2.53 (dd, J = 14.4, 10.4 Hz, 1H), 2.46-2.36 (m, 1H), 1.79 (dtd, J = 12.4, 10.4, 8.8 Hz, 1H), 1.40 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 167.3, 142.4, 140.0, 135.4, 133.9, 130.2, 129.0, 128.9, 127.9, 127.4, 127.2, 66.4, 61.7, 38.5, 31.9, 28.2, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3060, 2927, 1753, 1637, 1500, 1450, 1104, 620; MS (EI) m/z 105, 133, 177, 191, 207, 253, 281, 302, 327, 361, 384; HRMS(EI) calcd for C₂₂H₂₁NaClO₄ 407.1021, found 407.1017.

10.8 Hz, 1H), 5.81 (d, J = 17.6 Hz, 1H), 5.34 (d, J = 10.8 Hz, 1H), 4.39-4.30 (m, 2H), 4.23 (td, J = 8.8, 2.0 Hz, 1H), 4.15-4.08 (m, 1H), 2.94 (dd, J = 14.4, 4.4 Hz, 1H), 2.72-2.62 (m, 1H), 2.48 (dd, J = 14.4, 10.0 Hz, 1H), 2.42-2.34 (m, 1H), 1.81 (dtd, J = 12.4, 10.4, 8.8 Hz, 1H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 167.3, 138.7, 1338, 135.8, 133.9, 130.1, 128.8, 126.5, 115.6, 66.4, 61.7, 38.5, 31.9, 28.2, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3055, 2930, 1771, 1724, 1635, 1507, 1456, 1032; MS (EI) m/z 115, 131, 165, 207, 232, 252, 262, 289, 334; HRMS(EI) calcd for C₁₈H₁₉NaClO₄ 357.0864, found 357.0870.

(Z)-ethyl 3-chloro-3-(3,5-dimethylphenyl)-2-((2-oxotetrahydrofuran-3-yl)met hyl)acrylate (3m)

Yield: 70% (58.8 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.01 (s, 1H), 6.94 (s, 1H), 4.37-4.30 (m, 2H), 4.23 (td, J = 8.8, 2.0 Hz, 1H), 4.13 (td, J = 9.6, 6.4 Hz, 1H), 2.91 (dd, J = 14.4, 4.4 Hz, 1H), 2.71-2.63 (m, 1H), 2.46 (dd, J = 14.4, 10.4 Hz, 1H), 2.40-2.30 (m, 8H), 1.80 (dt, J = 21.2, 10.4Hz, 1H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 167.3, 138.5, 136.5, 134.5, 131.1, 129.7, 126.1, 66.4, 61.6, 38.5, 31.9, 28.1, 21.3, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3054, 2949, 1774, 1711, 1637, 1543, 1500, 1438; MS (EI) m/z 115, 128, 142, 153, 177, 209, 234, 255, 291, 336; HRMS(EI) calcd for C₁₈H₂₁NaClO₄ 359.1021, found 359.1029.

(Z)-ethyl 3-chloro-3-(4-fluorophenyl)-2-((2-oxotetrahydrofuran-3-yl)methyl)acr vlate (3n)

Yield: 77% (62.7 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.36-7.32 (m, 2H), 7.13-7.09 (m, 2H), 4.38-4.31 (m, 2H), 4.25 (td, *J* = 8.8,

2.0 Hz, 1H), 4.16-4.10 (m, 1H), 2.90 (dd, J = 14.4, 4.4 Hz, 1H), 2.71-2.62 (m, 1H), 2.49-2.35 (m, 2H), 1.78 (dt, J = 19.6, 10.8Hz, 1H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 167.1, 163.0 (J = 248.2 Hz), 133.0, 132.7 (J = 3.6 Hz), 130.6 (J = 8.4 Hz), 130.5, 116.0 (J = 21.8 Hz), 66.3, 61.8, 38.4, 31.9, 28.3, 14.1 ppm; v_{max} (KBr)/cm 3054, 2941, 1772, 1717, 1636, 1541, 1507, 1104; MS (EI) m/z 105,148, 162, 186, 204, 216, 253, 281, 308, 326; HRMS(EI) calcd for C₁₆H₁₆ClFNaO₄ 349.0613, found 349.0614.

(Z)-ethyl 3-chloro-3-(4-chlorophenyl)-2-((2-oxotetrahydrofuran-3-yl)methyl)ac rylate (30)

Yield: 75% (64.1 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40

(d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 4.39-4.31 (m, 2H), 4.25 (td, J = 8.8, 2.0 Hz, 1H), 4.16-4.10 (m, 1H), 2.90 (dd, J = 14.4, 4.4 Hz, 1H), 2.71-2.62 (m, 1H), 2.47-2.34 (m, 2H), 1.78 (dt, J = 19.6, 10.8Hz, 1H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 167.0, 135.6, 135.0, 132.8, 130.8, 129.9, 129.1, 66.3, 61.8, 38.4, 31.9, 28.3, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3060, 2925, 1772, 1718, 1636, 1541, 1508, 1103; MS (EI) m/z 115,125, 139, 151, 177, 205, 215, 240,242, 270, 299, 342; HRMS(EI) calcd for C₁₆H₁₆Cl₂NaO₄ 365.0318, found 365.0314.

(Z)-ethyl 3-(3-bromophenyl)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)acrylate (3p)

Yield: 64% (61.8 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.30 (m, 2H), 7.13-7.09 (m, 2H), 4.39-4.30 (m, 2H), 4.25 (td, J = 8.8, 2.0 Hz, 1H), 4.16-4.09 (m, 1H), 2.90 (dd, J = 14.4, 4.4 Hz, 1H), 2.71-2.62 (n, 1H), 2.48-2.42 (m, 1H), 2.41-2.35 (m, 1H), 1.78 (dt, J = 19.6, 10.8Hz, 1H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C 1 MR (100 MHz, CDCl₃) δ 177.7, 167.3, 138.6, 136.5, 134.2, 130.2, 129.8, 128.9, 128.6, 125.5, 66.4, 61.5, 38.4, 31.8, 28.1, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3060, 2983, 1771, 1725, 1634, 1600, 1508, 1455, 1157; MS (EI) m/z 109,123, 146, 159, 195, 224, 244, 263, 291, 327, 357, 386; HRMS(EI) calcd for C₁₆H₁₆BrClNaO₄

408.9813, found 408.9808.

(Z)-ethyl 3-(4-bromophenyl)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)ac rylate (3q) Yield: 71% (68.5 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 4.39-4.30 (m, 2H), 4.26 (td, J = 8.8, 2.0 Hz, 1H), 4.16-4.10 (m, 1H), 2.90 (dd, J = 14.4, 4.4 Hz, 1H), 2.71-2.62 (m, 1H), 2.47-2.34 (m, 2H), 1.78 (dt, J = 21.2, 10.8Hz, 1H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 167.0, 135.5, 132.8, 132.1, 130.7, 130.2, 123.8, 66.3, 61.8, 38.4, 31.9, 28.3, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3058, 2923, 1772, 1719, 1637, 1542, 1508, 1457, 1122; MS (EI) m/z 115,149, 183, 222, 257, 284, 288, 314, 351, 375, 386; HRMS(EI) calcd for C₁₆H₁₆BrClNaO₄ 408.9813, found 408.9805.

Yield: 81% (74.1 mg) as a yellow oil; ¹H NMR (400 MHz, $CDCl_3$)

H3COOC

 δ 8.09 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 4.40-4.31 (m,

2H), 4.23 (td, J = 8.8, 2.0 Hz, 1H), 4.15-4.09 (m, 1H), 3.94 (s, 3H), 2.90 (dd, J = 14.4, 4.4 Hz, 1H), 2.71-2.62 (m, 1H), 2.46-2.36 (m, 2H), 1.75 (dt, J = 21.2, 10.8Hz, 1H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 166.9, 166.2, 140.9, 132.8, 131.0, 131.0, 130.1, 128.6, 66.3, 62.0, 52.4, 38.4, 32.0, 28.2, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3061, 2956, 1770, 1723, 1638, 1434, 1104, 619; MS (EI) m/z 115, 128, 149, 163, 177, 207, 264, 285, 335, 337, 366; HRMS(EI) calcd for C₁₈H₁₉ClNaO₆ 389.0762, found 389.0768.

(Z)-ethyl 3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-(4-(trifluoromethy l)phenyl)acrylate (3s) Yield: 84% (78.9 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.69 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 4.40-4.32 (m, 2H),

4.26 (td, J = 8.8, 2.0 Hz, 1H), 4.17-4.10 (m, 1H), 2.90 (dd, J = 14.4, 4.8 Hz, 1H), 2.72-2.63 (m, 1H), 2.46-2.36 (m, 2H), 1.78 (dt, J = 21.2, 10.8Hz, 1H), 1.40 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 166.8, 140.1 (q, J = 1.4 Hz), 132.2, 131.4, 129.3 (q, J = 32.0 Hz), 129.1, 125.9 (q, J = 3.7), 124.4 (q, J = 268.8 Hz), 66.3, 62.0, 38.3, 32.0, 28.3, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3055, 2924, 1773, 1637, 1504, 1445, 1068; MS (EI) m/z 115, 133, 152, 173, 207, 245, 274, 341, 376; HRMS(EI) calcd for C₁₇H₁₆ClF₃NaO₄ 399.0581, found 399.0580.

4.27 (td, J = 8.8, 2.0 Hz, 1H), 4.17-4.11 (m, 1H), 2.88 (dd, J = 14.4, 4.8 Hz, 1H), 2.71-2.62 (m, 1H), 2.45-2.35 (m, 2H), 1.78 (dt, J = 21.2, 10.8Hz, 1H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 166.6, 140.9, 132.6, 131.8, 131.6, 129.4, 117.9, 113.4, 66.3, 62.0, 38.3, 32.0, 28.4, 14.1 ppm; v_{max} (KBr)/cm⁻¹ 3058, 2923, 2027, 1771, 1725, 1634, 1445, 1123; MS (EI) m/z 113,130, 153, 180, 202, 231, 252, 287, 298, 333; HRMS(EI) calcd for C₁₇H₁₆ClNNaO₄ 356.0660, found 356.0653.

(Z)-ethyl 3-chloro-3-(naphthalen-2-yl)-2-((2-oxotetrahydrofuran-3-yl)methy l)acrylate (3u) Yield: 71% (63.6 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.92-7.84 (m, 4H), 7.59-7.55 (m, 2H), 7.46 (dd, *J* = 8.4, 1.6 Hz, 1H),

4.43-4.35 (m, 2H), 4.21 (td, J = 8.8, 2.0 Hz, 1H), 4.15-4.09 (m, 1H), 3.01 (dd, J = 14.4, 4.4 Hz, 1H), 2.76-2.68 (m, 1H), 2.56 (dd, J = 14.4, 10.0 Hz, 1H), 2.45-2.38 (m, 1H), 1.80 (dtd, J = 12.4, 10.4, 8.8 Hz, 1H), 1.43 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 167.3, 134.2, 133.8, 133.3, 132.7, 130.4, 128.8, 128.4, 128.2, 127.8, 127.4, 126.9, 125.6, 66.4, 61.8, 38.4, 31.9, 28.2, 14.2 ppm; v_{max} (KBr)/cm⁻¹ 3058, 2966, 1772, 1716, 1635, 1545, 1505, 1102; MS (EI) m/z 125, 139, 152, 179, 215, 231, 249, 265, 298, 341, 358; HRMS(EI) calcd for C₂₀H₁₉NaClO₄ 381.0864, found 381.0868.

3H), 2.91 (dd, J = 14.4, 4.4 Hz, 1H), 2.71-2.61 (m, 1H), 2.47 (dd, J = 14.4, 10.0 Hz, 1H), 2.40-2.32 (m, 1H), 1.78 (dtd, J = 12.4, 10.4, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 167.7, 136.6, 134.5, 129.8, 129.5, 128.7, 128.4, 66.3, 52.4, 38.4, 3 8, 28.1 ppm; v_{max} (KBr)/cm⁻¹ 3054, 2981, 1772, 1718, 1636, 1445, 1103; MS (EI) m/z 115, 133, 179, 207, 258, 281, 338; HRMS(EI) calcd for C₁₅H₁₅BrNaO₄ 361.0046, found 361.0038.

(Z)-methyl 3-(4-ethylphenyl)-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-phenyla crylate (7)

Yield: 70% (63.7 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.37-7.30 (m, 3H), 7.16-7.14 (m, 2H), 7.09 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 4.21 (td, J = 8.8, 2.8 Hz, 1H), 4.13 (td, J = 9.6, 6.4 Hz, 1H), 3.50 (s, 3H), 2.93 (dd, J = 13.6, 4.8 Hz, 1H), 2.89-2.83 (m, 1H), 2.62 (q, J = 7.6 Hz, 2H), 2.54 (dd, J = 13.6, 10.0 Hz, 1H), 2.38 (tdd, J = 11.2, 6.4, 3.3 Hz, 1H), 1.93-1.83 (m, 1H), 1.21 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 170.9, 149.0, 144.0, 140.3, 139.0, 129.0, 128.7, 128.5, 128.3, 127.9, 127.5, 66.4, 51.7, 39.0, 32.1, 28.5, 28.4, 15.2 ppm; v_{max} (KBr)/cm⁻¹ 3040, 2965, 1716, 1635, 1541, 1507, 1104; MS (EI) m/z 115, 128, 152, 165, 191, 219, 247, 276, 286, 304, 332, 364; HRMS(EI) calcd for C₂₃H₂₄NaO₄ 387.1567, found 387.1579.

methyl 2-((2-oxotetrahydrofuran-3-yl)methyl)-3,3-diphenylacrylate (8) Yield: 63% (52.9 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.21 (m, 6H), 7.09-7.05 (m, 4H), 4.15 (td, J = 8.8, 2.8 Hz, 1H), 4.08 (dd, J = 9.6, 2.4 Hz, 1H), 3.40 (s, 3H), 2.87 (dd, J = 13.6, 4.8 Hz, 1H),

2.82-2.76 (m, 1H), 2.50 (dd, J = 13.6, 10.0 Hz, 1H), 2.32 (dd, J = 14.8, 8.8 Hz, 1H), 1.80 (dd, J = 21.6, 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 169.7, 148.0, 140.8, 139.1, 128.3, 127.9, 127.6, 127.3, 127.1, 127.0, 126.8, 65.4, 50.7, 37.9, 31.0, 27.4 ppm; v_{max} (KBr)/cm⁻¹ 3043, 2966, 1716, 1630, 1542, 1500, 1110; MS (EI) m/z 115, 129, 152, 165, 191, 219, 248, 276, 286, 304, 336; HRMS(EI) calcd for C₂₁H₂₀NaO₄ 359.1254, found 359.1271.

V. ¹H and ¹³C NMR spectra of compounds 3 and 6

¹H NMR and ¹³C NMR of (Z)-methyl 3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-phenylacrylate (3a)

¹H NMR and ¹³C NMR of (Z)-allyl 3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-phenylacrylate (3c)

¹H NMR and ¹³C NMR of (Z)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-(o-tolyl)acrylic acid (3e)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-(m-tolyl)acrylate (3g)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-chloro-3-(4-ethylphenyl)-2-((2-oxotetrahydrofuran-3-yl)methyl) -acrylate (3i)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-(4-(tert-butyl)phenyl)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl) -acrylate (3j)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-([1,1'-biphenyl]-4-yl)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)acrylate (3k)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-(4-vinylphenyl)acrylate (3l)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-chloro-3-(3,5-dimethylphenyl)-2-((2-oxotetrahydrofuran-3-yl)methyl)acrylate (3m)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-chloro-3-(4-fluorophenyl)-2-((2-oxotetrahydrofuran-3-yl)methyl)acrylate (3n)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-chloro-3-(4-chlorophenyl)-2-((2-oxotetrahydrofuran-3-yl)methyl)acrylate (30)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-(3-bromophenyl)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)-

¹H NMR and ¹³C NMR of (Z)-ethyl 3-(4-bromophenyl)-3-chloro-2-((2-oxotetrahydrofuran-3-yl)methyl)acrylate (3q)

¹H NMR and ¹³C NMR of (Z)-ethyl 3-chloro-3-(naphthalen-2-yl)-2-((2-oxotetrahydrofuran-3-yl)methyl)acrylate (3u)

¹H NMR and ¹³C NMR of (Z)-methyl 3-bromo-2-((2-oxotetrahydrofuran-3-yl)methyl)-3-phenylacrylate (6a)

¹H NMR and ¹³C NMR of (Z)-methyl 3-(4-ethylphenyl)-2-((2-oxotetrahydrofuran-3-yl)methyl)-3phenylacrylate (7)

¹H NMR and ¹³C NMR of methyl 2-((2-oxotetrahydrofuran-3-yl)methyl)-3,3-diphenylacrylate (8)

VI. Studies on stereochemistry of 3a The noesy spectrum of 3a