Supporting Information

of

Highly diastereoselective synthesis of

3-hydroxy-2,2,3-trisubstituted indolines via intramolecular

trapping of ammonium ylides with ketones

Changcheng Jing, Dong Xing and Wenhao Hu*

Shanghai Engineering Research Centre of Molecular Therapeutics and New Drug Development East China Normal University, Shanghai, 200062, China

whu@chem.ecnu.edu.cn

Table of Contents

Page

1. General Information	S1
2. Typical procedure for the Reaction	S2
3. Table S1 and S2 for detailed condition optimizations	
4. X-ray diffraction parameters and data for <i>cis</i> -3a and <i>cis</i> -8h	S4-S6
5. Notes and References	S7
6. Analytical Data for the Products	S8-S17
7. NMR spectra for the Products	S18-S46

1. General Information:

All solvents were purified and dried using standard procedures. Diazo compounds 1, ¹ 2'-Aminochalcones 2,² and 2-(*N*-alkylamino)phenyl ketones 7^3 were prepared according to literature procedures. All NMR spectra were recorded on a Bruker spectrometer at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR). Chemical shifts (δ value) were reported in ppm down field from internal tetramethylsilane (TMS). HRMS (ESI) Mass Spectra were recorded on IonSpec FT-ICR mass spectrometer.

2. Experimental Procedures

2.1 General procedure for Rh₂(OAc)₄-catalyzed reaction of diazo compounds and 2'-aminochalcones:

Diazo compound **1** (0.48 mmol) in 1.5 mL of CH_2Cl_2 was added to the mixture of **2** (0.30 mmol), $Rh_2(OAc)_4$ (1.0 mmol%) and 4 Å MS (300 mg) in 1.5 mL of CH_2Cl_2 *via* syringe pump over 1 h at 40 °C. The reaction mixture was purified by flash chromatography on silica gel to give pure *cis*-**3**.

2.2 General procedure for Rh₂(OAc)₄-catalyzed reaction of diazo compounds and 2-(*N*-alkylamino)phenyl ketones:

Diazo compound **1** (0.36 mmol) in 1.5 mL of toluene was added to the mixture of **7** (0.30 mmol), $Rh_2(OAc)_4$ (1.0 mmol%), 4 Å MS (300 mg) in 1.5 mL of toluene *via* syringe pump over 1 h at 25 °C. The reaction mixture was purified by flash chromatography on silica gel to give pure *cis*-**8**.

2.3 Procedure for the reaction between aryldiazoacetate 1a and 2'-aminoacetophenone 4a:

1a (0.24 mmol) in CH₂Cl₂ (1.0 mL) was added to a mixture of 4a (0.20 mmol) and Rh₂(OAc)₄ (1 mol%) in CH₂Cl₂ (1.0 mL) over a period of 1 h *via* syringe pump at 25 °C. The reaction mixture was purified by flash chromatography to give pure 5a (48.2mg, 85% yield).

2.4 Procedure for preparation of compound 9 from cis-8a:

A mixture of compound *cis*-**8a** (29.7 mg, 0.10 mmol), *p*-toluenesulfonic acid monohydrate (3.8 mg, 0.02 mmol) and cyclohexane (1.0 mL) was refluxed for 2 h under azeotropic distillation. TLC indicated the reaction was complete. The reaction mixture was cooled to room temperature. The solvent was removed under vacuum to give the crude product. The resulted crude product was purified by column chromatography on silica gel to give the product **9** (25.0 mg, 90% yield).

3. Table S1 and S2 for detailed condition optimizations.

Table S1 Condition optimization for Rh₂(OAc)₄-catalyzed reaction of 1a and 2a.^a

N₂ Ph⊥⊥CC 1a	oome ⁺	O Pr NH ₂ 2a	$\frac{\text{Rh}_{2}(\text{OAC})_{4}}{4 \text{ Å MS, solvent,}}$	$ \begin{array}{c} \text{HO} \\ \text{HO} \\ \text{T} \\ \text{H} \\ \text{3a} \end{array} $	Ph COOMe ′Ph
Entry	Solvent	<i>T</i> (°C)	Eq.(1a:2a)	Yield (%) ^b	Dr ^c
1 ^d	CH_2Cl_2	40	1.4:1.0	72	>95:5
2	CH_2Cl_2	40	1.4:1.0	87	>95:5
3	DCE	40	1.4:1.0	81	>95:5
4	toluene	40	1.4:1.0	75	>95:5
5	CH_2Cl_2	25	1.4:1.0	79	>95:5
6	CH_2Cl_2	40	1.6:1.0	94	>95:5

^a Unless otherwise noted, the reaction was carried out on a 0.10 mmol scale. Methyl phenyldiazoacetate **1a** in 0.5 mL of solvent was added to the mixture of **2a**, $Rh_2(OAc)_4$ (1.0 mmol%) and 4 Å MS (100 mg) within 1 h *via* syringe pump. ^b Isolated yield. ^c Determined by ¹H NMR spectroscopy of the crude reaction mixture. ^d Without the addition of 4 Å MS.

Table S2 Condition	optimization for Rl	$_{12}(OAc)_4$ -cataly	zed reaction	of 1a and 7a. ^a
--------------------	---------------------	------------------------	--------------	----------------------------

N ₂ Ph C 1a	COOMe +	O Rh ₂₍ OAc _{)4 (} 1) NH 4 Å MS, sol	$\frac{10 \text{ mol}\%)}{\text{vent, } T} \qquad $	H COOMe Ph
Entry	Solvent	<i>T</i> (°C)	Yield (%) ^b	Dr ^c
1	CH_2Cl_2	25	89	>95:5
2	toluene	25	97	>95:5
3	DCE	25	90	>95:5
4	toluene	40	96	>95:5
5	toluene	0	93	>95:5

^a Unless otherwise noted, the reaction was carried out on a 0.10 mmol scale, 1a:7a = 1.2:1.0. Aryldiazoacetate 1a (0.12 mmol) in 0.5 mL of solvent was added to the mixture of 7a (0.10 mmol), Rh₂(OAc)₄ (1.0 mmol%), 4 Å MS (100 mg) in 0.5 mL of solvent *via* syringe pump over 1 h. ^b Isolated yield of **8a**. ^c Determined by ¹H NMR of the crude reaction mixture.

4. X-ray diffraction parameters and data

4.1. X-ray diffraction parameters and data for *cis*-3a (CCDC 957672)

Identification code	Z
Empirical formula	C24 H21 N O3
Formula weight	371.42
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions	a = 10.7586(6) A alpha = 90 deg.
	b = 16.5601(10) A beta = 90 deg.
	c = 21.4710(13) A gamma = 90 deg.
Volume	3825.3(4) A^3
Z, Calculated density	8, 1.290 Mg/m^3
Absorption coefficient	0.085 mm^-1
F(000)	1568
Crystal size	0.55 x 0.45 x 0.24 mm
Theta range for data collection	1.90 to 25.01 deg.
Limiting indices	-12<=h<=12, -19<=k<=19, -25<=l<=25
Reflections collected / unique	41206 / 3370 [R(int) = 0.0502]
Completeness to theta = 25.01	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9799 and 0.9548
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3370 / 0 / 253
	S4

Goodness-of-fit on F^2	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0460, wR2 = 0.1189
R indices (all data)	R1 = 0.0550, wR2 = 0.1283
Largest diff. peak and hole	0.563 and -0.621 e.A^-3

4.2. X-ray diffraction parameters and data for *cis*-8h (CCDC 957673)

Identification code	Ζ
Empirical formula	C25 H25 N O3
Formula weight	387.46
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 10.0938(5) A alpha = 90 deg.
	b = 19.9876(10)A beta = 115.150(2) deg.
	c = 11.2239(6) A gamma = 90 deg.
Volume	2049.76(18) A^3
Z, Calculated density	4, 1.256 Mg/m^3
Absorption coefficient	0.082 mm^-1
F(000)	824
Crystal size	0.24 x 0.19 x 0.12 mm
Theta range for data collection	2.23 to 25.01 deg.
Limiting indices	-12<=h<=12, -23<=k<=23, -13<=l<=13
Reflections collected / unique	23363 / 3577 [R(int) = 0.0477]
Completeness to theta = 25.01	99.0 %

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9902 and 0.9806
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3577 / 0 / 262
Goodness-of-fit on F^2	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0639, wR2 = 0.1741
R indices (all data)	R1 = 0.0930, wR2 = 0.2001
Largest diff. peak and hole	1.183 and -0.272 e.A^-3

5. Notes and References

- 1. Doyle, M. P., Mckervey, M. A. and Ye, T. *Modern Catalytic Methods for Organic Synthesis with Diazo Compounds*; Wiley: New York, (1998).
- Y. Xia, Z-Y Yang, P Xia, K. F. Bastow, Y. Tachibana, S.-C. Kuo, E. Hamel, T. Hackl, and K.-H. Lee, J. Med. Chem., 1998, 41, 1155.
- M. Martjuga, S. Belyakov, E. Liepinsh, E. Suna, J. Org. Chem., 2011, 76, 2635; A.
 F. Bella, A. M. Z. Slawin, and J. C. Walton, J. Org. Chem., 2004, 69, 5926.

6. Analytical Data for the Products

6.1 Analytical Data for 3

(2S*,3R*)-methyl 3-hydroxy-2-phenyl-3-((E)-styryl)indoline-2-carboxylate (3a)

¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H), 7.32-7.29 (m, 3H), 7.21-7.12 (m, 5H), 7.03-7.01 (m, 2H), 6.86-6.82 (m, 2H), 6.43 (d, *J* = 15.9 Hz, 1H), 5.73 (d, *J* = 15.9 Hz, 1H), 5.11 (s, 1H), 4.76 (s, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.61, 147.49, 136.98, 136.69, 131.92, 129.93, 129.59, 128.97, 128.38, 128.28, 128.25, 127.24, 126.55, 126.21, 124.34, 120.61, 110.29, 85.88, 79.56, 53.01; HRMS (ESI): Exact mass calcd for C₂₄H₂₁NNaO₃ [M+Na]⁺: 394.1414, Found 394.1408.

(2*S**,3*R**)-methyl

2-(4-bromophenyl)-3-hydroxy-3-((E)-styryl)indoline-2-carboxylate (3b)

¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 2H), 7.45-7.42 (m, 2H), 7.20-7.15 (m, 5H), 7.07-7.05 (m, 2H), 6.87-6.82 (m, 2H), 6.45 (d, *J* = 15.9 Hz, 1H), 5.71 (d, *J* = 15.9 Hz, 1H), 5.06 (s, 1H), 4.77 (s, 1H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.27, 147.13, 136.71, 135.81, 131.91, 131.49, 129.72, 129.37, 129.29, 128.40, 128.15, 127.48, 126.59, 124.27, 122.42, 120.93, 110.58, 85.89, 79.11, 53.24; HRMS (ESI): Exact mass calcd for C₂₄H₂₀BrNNaO₃ [M+Na]⁺: 394.1414, Found 394.1406.

(2S*,3R*)-methyl 3-hydroxy-3-((E)-styryl)-2-(p-tolyl)indoline-2-carboxylate (3c)

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.2 Hz, 2H), 7.20-7.11 (m, 7H), 7.07-7.05

(m, 2H), 6.86-6.81 (m, 2H), 6.47 (d, J = 15.9 Hz, 1H), 5.78 (d, J = 15.9 Hz, 1H), 5.12 (s, 1H), 4.76 (s, 1H), 3.69 (s, 3H) , 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.77, 147.53, 138.03, 137.03, 133.59, 131.97, 129.90, 129.59, 129.15, 128.85, 128.28, 127.24, 126.62, 126.12, 124.33, 120.55, 110.27, 85.74, 79.39, 53.05, 21.15; HRMS (ESI): Exact mass calcd for C₂₅H₂₃NNaO₃ [M+Na]⁺: 408.1570, Found 408.1569.

(2*S**,3*R**)-methyl

3-hydroxy-2-(3-methoxyphenyl)-3-((E)-styryl)indoline-2-carboxylate (3d)

¹H NMR (400 MHz, CDCl₃) δ 7.26-7.11 (m, 8H), 7.07-7.05 (m, 2H), 6.88-6.81 (m, 3H), 6.43 (d, *J* = 15.9 Hz, 1H), 5.77 (dd, *J* = 15.9, 0.5 Hz, 1H), 5.22 (d, *J* = 0.6 Hz, 1H), 4.76 (s, 1H), 3.72 (s, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.67, 159.61, 147.37, 138.18, 136.96, 131.89, 129.84, 129.61, 129.47, 128.89, 128.30, 127.29, 126.59, 124.33, 120.65, 118.55, 113.86, 111.96, 110.32, 85.81, 79.38, 55.26, 53.13; HRMS (ESI): Exact mass calcd for C₂₅H₂₃NNaO₄ [M+Na]⁺: 424.1519, Found 424.1515.

(2*S**,3*R**)-methyl

3-hydroxy-2-(2-methoxyphenyl)-3-((*E*)-styryl)indoline-2-carboxylate (3e)

¹H NMR (400 MHz, CDCl₃) δ 7.72-7.70 (m, 1H), 7.26-7.21 (m, 2H), 7.18-7.09 (m, 4H), 6.99-6.97 (m, 3H), 6.89-6.87 (m, 2H), 6.74 (d, *J* = 7.8 Hz, 1H), 6.30 (d, *J* = 15.9 Hz, 1H), 5.87 (s, 1H), 5.76 (d, *J* = 15.9 Hz, 1H), 4.32 (s, 1H), 3.78 (s, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.80, 157.34, 146.73, 137.12, 132.33, 131.14, 129.40, 129.10, 128.22, 127.90, 127.80, 127.13, 126.87, 126.53, 124.33, 120.69,

120.54, 111.69, 109.80, 86.18, 56.08, 52.56; HRMS (ESI): Exact mass calcd for $C_{25}H_{23}NNaO_4 [M+Na]^+$: 424.1519, Found 424.1518.

(2*S**,3*R**)-methyl

3-((E)-4-chlorostyryl)-3-hydroxy-2-phenylindoline-2-carboxylate (3f)

¹H NMR (400 MHz, CDCl₃) δ 7.59-7.57 (m, 2H), 7.34-7.27 (m, 3H), 7.21-7.17 (m, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 6.88-6.82 (m, 2H), 6.35 (d, J = 15.9 Hz, 1H), 5.70 (d, J = 15.9 Hz, 1H), 5.26 (s, 1H), 4.76 (s, 1H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.76, 147.35, 136.49, 135.45, 132.85, 131.80, 130.68, 129.63, 128.41, 128.36, 127.72, 127.63, 126.09, 124.23, 120.71, 110.39, 85.79, 79.39, 53.10; HRMS (ESI): Exact mass calcd for C₂₄H₂₀ClNNaO₃ [M+Na]⁺: 428.1024, Found 428.1017.

(2*S**,3*R**)-methyl

3-hydroxy-2-phenyl-3-((*E*)-4-(trifluoromethyl)styryl)indoline-2-carboxylate (3g)

¹H NMR (400 MHz, CDCl₃) δ 7.61-7.59 (m, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.35-7.30 (m, 3H), 7.24-7.20 (m, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 6.89-6.83 (m, 2H), 6.45 (d, *J* = 15.9 Hz, 1H), 5.83 (d, *J* = 15.9 Hz, 1H), 5.36 (d, *J* = 0.7 Hz, 1H), 4.78 (s, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.80, 147.28, 140.47, 140.46, 136.38, 132.68, 131.67, 129.70, 129.00 (q, *J* = 257.1 Hz), 128.47, 128.43, 127.36, 126.63, 126.04, 125.22 (q, *J* = 30.2 Hz), 124.16, 120.79, 110.46, 85.74, 79.32, 53.14; HRMS (ESI):

Exact mass calcd for C₂₅H₂₀F₃NNaO₃ [M+Na]⁺: 462.1287, Found 462.1283.

(2*S**,3*R**)-methyl

3-hydroxy-3-((E)-4-methylstyryl)-2-phenylindoline-2-carboxylate (3h)

¹H NMR (400 MHz, CDCl₃) δ 7.59-7.57 (m, 2H), 7.32-7.27 (m, 3H), 7.22-7.16 (m, 2H), 6.97-6.91 (m, 4H), 6.86-6.81 (m, 2H), 6.39 (d, J = 15.9 Hz, 1H), 5.68 (d, J = 15.9 Hz, 1H), 5.09 (s, 1H), 4.77 (s, 1H), 3.68 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.65, 147.55, 137.06, 136.75, 134.16, 131.99, 129.60, 129.00, 128.90, 128.89, 128.38, 128.27, 126.49, 126.26, 124.40, 120.58, 110.29, 85.94, 79.60, 53.04, 21.15; HRMS (ESI): Exact mass calcd for C₂₅H₂₃NNaO₃ [M+Na]⁺: 408.1570, Found 408.1567.

(2*S**,3*R**)-methyl

3-hydroxy-3-((*E*)-4-methoxystyryl)-2-phenylindoline-2-carboxylate (3i)

¹H NMR (400 MHz, CDCl₃) δ 7.59-7.57 (m, 2H), 7.34-7.28 (m, 3H), 7.21-7.17 (m, 2H), 6.96 (d, J = 8.7 Hz, 2H), 6.87-6.82 (m, 2H), 6.69 (d, J = 8.7 Hz, 2H), 6.34 (d, J = 15.9 Hz, 1H), 5.58 (d, J = 15.9 Hz, 1H), 5.08 (s, 1H), 4.76 (s, 1H), 3.72 (s, 3H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.64, 158.99, 147.53, 136.77, 132.01, 129.74, 129.56, 128.52, 128.35, 128.24, 127.79, 127.71, 126.24, 124.40, 120.56, 113.70, 110.26, 85.95, 79.59, 55.21, 53.02; HRMS (ESI): Exact mass calcd for C₂₅H₂₃NNaO₄ [M+Na]⁺: 424.1519, Found 424.1516.

3-((E)-3-chlorostyryl)-3-hydroxy-2-phenylindoline-2-carboxylate (3j)

¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H), 7.34-7.28 (m, 3H), 7.20-7.17 (m, 2H), 7.06-7.05 (m, 2H), 6.98 (s, 1H), 6.88-6.82 (m, 3H), 6.37 (d, *J* = 15.9 Hz, 1H), 5.74 (d, *J* = 15.9 Hz, 1H), 5.30 (s, 1H), 4.78 (s, 1H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.79, 147.31, 138.90, 136.43, 134.17, 131.78, 131.55, 129.66, 129.48, 128.46, 128.41, 127.47, 127.17, 126.49, 126.09, 124.70, 124.18, 120.74, 110.43, 85.75, 79.37, 53.12; HRMS (ESI): Exact mass calcd for C₂₄H₂₀ClNNaO₃ [M+Na]⁺: 428.1024, Found 428.1024.

(2S*,3R*)-ethyl 3-hydroxy-2-methyl-3-((E)-styryl)indoline-2-carboxylate (3k)

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.3 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.23-7.18 (m, 2H), 6.88 (d, *J* = 16.1 Hz, 1H), 6.84-6.78 (m, 2H), 6.48 (d, *J* = 16.0 Hz, 1H), 4.41 (s, 1H), 4.34-4.21 (m, 2H), 2.65 (s, 1H), 1.45 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.14, 148.74, 136.78, 131.66, 130.81, 130.42, 128.62, 127.78, 127.57, 126.71, 125.04, 120.02, 111.57, 84.64, 75.20, 61.51, 23.25, 14.23; HRMS (ESI): Exact mass calcd for C₂₀H₂₁NNaO₃ [M+Na]⁺: 346.1419, Found 346.1418.

(2S*,3R*)-methyl 3-hydroxy-2,3-diphenylindoline-2-carboxylate (3l)

¹H NMR (400 MHz, CDCl₃) δ 7.27-7.23 (m, 1H), 7.21-7.19 (m, 2H), 7.14-7.12 (m, 1H), 7.10-7.03 (m, 3H), 6.99-6.92 (m, 3H), 6.90-6.90 (m, 1H), 6.88-6.85 (m, 3H), 5.57 (s, 1H), 4.70 (s, 1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.16, 148.23, 140.13, 136.45, 133.93, 129.63, 127.73, 127.41, 126.89, 126.82, 126.03, 124.73, 120.90, 110.20, 88.18, 80.45, 53.02; HRMS (ESI): Exact mass calcd for C₂₂H₁₉NNaO₃ [M+Na]⁺: 368.1257, Found 368.1261.

6.2 Analytical Data for 8 and 9

(2S*,3R*)-methyl 3-hydroxy-1,3-dimethyl-2-phenylindoline-2-carboxylate (8a)

¹H NMR (400 MHz, CDCl₃) δ 7.37-7.32 (m, 5H), 7.25-7.20 (m, 2H), 6.82 (t, *J* = 7.4 Hz, 1H), 6.56 (d, *J* = 7.7 Hz, 1H), 3.83 (s, 1H), 3.74 (s, 3H), 2.77 (s, 3H), 1.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.88, 149.47, 135.83, 134.29, 129.43, 128.10, 127.99, 127.22, 121.90, 119.13, 107.25, 86.05, 83.44, 51.78, 32.45, 25.41; HRMS (ESI): Exact mass calcd for C₁₈H₁₉NNaO₃ [M+Na]⁺: 320.1257, Found 320.1286.

(2*S**,3*R**)-methyl 1-benzyl-3-hydroxy-3-methyl-2-phenylindoline-2-carboxylate (8b)

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.7 Hz, 2H), 7.37-7.24 (m, 9H), 7.05-7.01 (m, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.19 (d, J = 7.8 Hz, 1H), 4.40 (d, J = 16.7 Hz, 1H), 4.16 (d, J = 16.7 Hz, 1H), 3.94 (s, 1H), 3.74 (s, 3H), 1.21 (s, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 172.30, 148.84, 138.41, 136.04, 134.61, 129.25, 128.62, 128.37, 128.16, 126.80, 126.77, 126.45, 121.86, 119.49, 109.07, 86.51, 83.29, 52.01, 51.16, 24.65; HRMS (ESI): Exact mass calcd for C₂₄H₂₃NNaO₃ [M+Na]⁺: 396.1570, Found 396.1563.

(2*S**,3*R**)-methyl 1-allyl-3-hydroxy-3-methyl-2-phenylindoline-2-carboxylate

(8c)

¹H NMR (400 MHz, CDCl₃) δ 7.37-7.32 (m, 5H), 7.24-7.22 (m, 1H), 7.17-7.13 (m, 1H), 6.84-6.80 (m, 1H), 6.61 (d, J = 7.8 Hz, 1H), 6.06-5.97 (m, 1H), 5.36-5.24 (m, 2H), 3.96 (s, 1H), 3.86-3.80 (m, 1H), 3.72 (s, 3H), 3.58-3.52 (m, 1H), 1.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.34, 148.74, 136.09, 134.77, 134.61, 129.14, 128.22, 128.09, 127.02, 121.78, 119.27, 116.19, 108.56, 86.30, 83.31, 51.97, 49.86, 25.09; HRMS (ESI): Exact mass calcd for C₂₀H₂₁NNaO₃ [M+Na]⁺: 346.1414, Found 346.1410.

(2*S**,3*R**)-methyl

1-benzyl-5-chloro-3-hydroxy-3-methyl-2-phenylindoline-2-carboxylate (8d)

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.26 (m, 10H), 7.22 (d, J = 2.2 Hz, 1H), 6.96 (dd, J = 8.3, 2.2 Hz, 1H), 6.08 (d, J = 8.4 Hz, 1H), 4.44 (d, J = 16.8 Hz, 1H), 4.12 (d, J = 16.8 Hz, 1H), 4.12 (s, 1H), 3.74 (s, 3H), 1.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.22, 147.19, 137.83, 136.71, 135.44, 128.90, 128.77, 128.49, 128.37, 126.99,

126.71, 126.33, 124.45, 122.35, 110.07, 86.52, 83.03, 52.17, 51.09, 24.90; HRMS (ESI): Exact mass calcd for $C_{24}H_{22}CINNaO_3 [M+Na]^+$: 430.1180, Found 430.1180.

(2*S**,3*R**)-methyl

1-benzyl-5-chloro-3-ethyl-3-hydroxy-2-phenylindoline-2-carboxylate (8e)

¹H NMR (400 MHz, CDCl₃) δ 7.42-7.38 (m, 6H), 7.33-7.29 (m, 4H), 7.22 (d, J = 2.2 Hz, 1H), 6.94 (dd, J = 8.3, 2.2 Hz, 1H), 6.07 (d, J = 8.3 Hz, 1H), 4.68 (d, J = 17.0 Hz, 1H), 4.65 (d, J = 2.2 Hz, 1H), 3.99 (d, J = 17.0 Hz, 1H), 3.71 (s, 3H), 1.53-1.47 (m, 1H), 1.05-0.96 (m, 1H), 0.81 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.05, 146.67, 137.72, 135.82, 134.80, 128.91, 128.39, 128.29, 128.27, 127.04, 126.90, 126.12, 124.58, 123.65, 110.59, 86.95, 85.02, 52.14, 51.07, 29.63, 7.11; HRMS (ESI): Exact mass calcd for C₂₅H₂₄ClNNaO₃ [M+Na]⁺: 444.1337, Found 444.1329.

(2*S**,3*R**)-methyl

1-benzyl-2-(4-bromophenyl)-3-hydroxy-3-methylindoline-2-carboxylate (8f)

¹H NMR (400 MHz, CDCl₃) δ 7.44-7.33 (m, 6H), 7.29-7.23 (m, 4H), 7.06-7.02 (m, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.20 (d, J = 7.8 Hz, 1H), 4.35 (d, J = 16.7 Hz, 1H), 4.13 (d, J = 16.8 Hz, 1H), 3.83 (s, 1H), 3.73 (s, 3H), 1.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.76, 148.68, 138.08, 135.21, 134.38, 131.52, 129.38, 128.70, 128.63, 126.91, 126.38, 122.25, 121.89, 119.75, 109.19, 86.29, 83.29, 52.15, 51.15, 24.86; HRMS (ESI): Exact mass calcd for C₂₄H₂₂BrNNaO₃ [M+Na]⁺: 474.0675, Found 474.0668.

(2*S**,3*R**)-methyl

1-benzyl-2-(3-bromophenyl)-3-hydroxy-3-methylindoline-2-carboxylate (8g)

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 1.5 Hz, 1H), 7.46-7.34 (m, 5H), 7.27-7.24 (m, 3H), 7.16 (t, J = 7.9 Hz, 1H), 7.06-7.02 (m, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.21 (d, J = 7.8 Hz, 1H), 4.37 (d, J = 16.7 Hz, 1H), 4.14 (d, J = 16.8 Hz, 1H), 3.82 (s, 1H), 3.74 (s, 3H), 1.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.59, 148.67, 138.52, 138.06, 134.29, 131.32, 130.11, 129.89, 129.41, 128.69, 126.93, 126.42, 125.47, 122.48, 121.92, 119.77, 109.18, 86.24, 83.44, 52.21, 51.21, 24.97; HRMS (ESI): Exact mass calcd for C₂₄H₂₂BrNNaO₃ [M+Na]⁺: 474.0675, Found 474.0674.

(2*S**,3*R**)-methyl 1-benzyl-3-hydroxy-3-methyl-2-(p-tolyl)indoline-2-carboxylate (8h)

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.26 (d, J = 7.2 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 7.05-7.01 (m, 1H), 6.82-6.78 (m, 1H), 6.18 (d, J = 7.8 Hz, 1H), 4.36 (d, J = 16.7 Hz, 1H), 4.16 (d, J = 16.7 Hz, 1H), 3.89 (s, 1H), 3.73 (s, 3H), 2.32 (s, 3H), 1.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.41, 149.00, 138.53, 137.95, 134.55, 133.02, 129.26, 129.09, 128.60, 126.73, 126.48, 121.88, 119.37, 108.95, 86.42, 83.23, 51.98, 51.15, 24.51, 21.08; HRMS (ESI): Exact mass calcd for C₂₅H₂₅NNaO₃ [M+Na]⁺: 410.1727, Found 410.1713.

 $(2S^*, 3R^*)$ -methyl

1-benzyl-3-hydroxy-2-(3-methoxyphenyl)-3-methylindoline-2-carboxylate (8i)

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.28-7.20 (m, 3H), 7.04-7.02 (m, 1H), 6.93-6.91 (m, 2H), 6.86-6.80 (m, 2H), 6.22 (d, J = 7.8 Hz, 1H), 4.45 (d, J = 16.8 Hz, 1H), 4.18 (d, J = 16.9 Hz, 1H), 4.03 (s, 1H), 3.74 (s, 3H), 3.54 (s, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.30, 159.46, 148.71, 138.49, 137.51, 134.71, 129.39, 129.21, 128.63, 126.77, 126.41, 121.82, 119.57, 119.30, 113.90, 112.31, 108.92, 86.46, 83.33, 54.97, 52.05, 51.09, 24.80; HRMS (ESI): Exact mass calcd for C₂₅H₂₅NNaO₄ [M+Na]⁺: 426.1676, Found 426.1670.

Methyl 1-methyl-3-methylene-2-phenylindoline-2-carboxylate (9)

¹H NMR (400 MHz, CDCl₃) δ 7.29-7.21 (m, 6H), 7.14-7.10 (m, 1H), 6.62-6.58 (m, 1H), 6.39 (d, *J* = 8.0 Hz, 1H), 5.56 (s, 1H), 5.03 (s, 1H), 3.72 (s, 3H), 2.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.87, 150.85, 147.74, 139.03, 129.72, 127.28, 126.88, 126.81, 123.23, 119.43, 116.00, 104.79, 104.67, 78.99, 51.65, 28.60; HRMS (ESI): Exact mass calcd for C₁₈H₁₇NNaO₂ [M+Na]⁺: 302.1151, Found 302.1189.

7. NMR spectra for the Products

7.1 NMR spectra for 3

(2S*,3R*)-methyl 3-hydroxy-2-phenyl-3-((E)-styryl)indoline-2-carboxylate (3a)

2-(4-bromophenyl)-3-hydroxy-3-((*E*)-styryl)indoline-2-carboxylate (3b)

(2S*,3R*)-methyl 3-hydroxy-3-((E)-styryl)-2-(p-tolyl)indoline-2-carboxylate (3c)

(2*S**,3*R**)-methyl

3-hydroxy-2-(3-methoxyphenyl)-3-((*E*)-styryl)indoline-2-carboxylate (3d)

(2*S**,3*R**)-methyl 3-((*E*)-4-chlorostyryl)-3-hydroxy-2-phenylindoline-2-carboxylate (3f)

(2*S**,3*R**)-methyl

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

S27

3-hydroxy-3-((*E*)-4-methylstyryl)-2-phenylindoline-2-carboxylate (3h)

S31

7.2 Analytical Data for 8 and 9

(2S*,3R*)-methyl 3-hydroxy-1,3-dimethyl-2-phenylindoline-2-carboxylate (8a)

(2*S**,3*R**)-methyl 1-benzyl-3-hydroxy-3-methyl-2-phenylindoline-2-carboxylate (8b)

1-benzyl-5-chloro-3-hydroxy-3-methyl-2-phenylindoline-2-carboxylate (8d)

1-benzyl-5-chloro-3-ethyl-3-hydroxy-2-phenylindoline-2-carboxylate (8e)

1-benzyl-2-(4-bromophenyl)-3-hydroxy-3-methylindoline-2-carboxylate (8f)

(2*S**,3*R**)-methyl

1-benzyl-2-(3-bromophenyl)-3-hydroxy-3-methylindoline-2-carboxylate (8g)

(2*S**,3*R**)-methyl

1-benzyl-3-hydroxy-2-(3-methoxyphenyl)-3-methylindoline-2-carboxylate (8i)

Methyl 1-methyl-3-methylene-2-phenylindoline-2-carboxylate (9)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

