One-pot Synthesis of D-Glucosamine and Chitobiosyl Building Blocks Catalyzed by Triflic Acid on Molecular Sieves

Guillaume Despras,^a Dominique Urban,^a Boris Vauzeilles^{ab} and Jean-Marie Beau^{*ab}

^{*a*}Université Paris-Sud and CNRS, Laboratoire de Synthèse de Biomolécules, Institut de Chimie Moléculaire et des Matériaux d'Orsay, F-91405 Orsay.

^bCentre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.

E-mail: jean-marie.beau@u-psud.fr

Supporting Information

Table of contents

General information:

Experimental procedures and characterization data for new compounds 1a to 12a, 1b to 12b, 5d to 12d, 13 and 14 S-2 to S-17

S-2

Experimental procedures for ¹H and ¹⁹F experiments and copies of the corresponding NMR spectra: S-17 to S-20

Copies of NMR spectra of synthesized compounds 1a to 12a, 1b to 12b, 5d to 12d, 13 and 14 S-21 to S-53

General information

Unless otherwise stated, all reactions were carried out under argon. Dry dichloromethane and acetonitrile were dried from a safe purification system containing activated Al_2O_3 (Glass Technology GT S100). Reactions were monitored with analytical thin-layer chromatography (TLC) on silica gel 60 F_{254} plates and visualized under UV (254 nm) and/or by staining with 5% sulfuric acid or orcinol. Silica gel SDS 60 ACC 35-70 mm was used for column chromatography. NMR spectra were recorded on Bruker DPX 250, AV300 and AV360 NMR spectrometers at 20°C. Chemical shifts (in ppm) were determined relative to residual non-deuterated solvent as an internal reference. Coupling constant(s) in hertz (Hz) were measured from one-dimensional spectra and multiplicities were abbreviated as following: br (broad), s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet). Mass spectra (Positive mode ESI) on a MicrOTOFq Mass Spectrometer were obtained by the analytical services of our Institute. Optical rotations were measured on a Perkin Elmer 341 Polarimeter (*c* in g / 100 mL).

General procedure for persilylation¹

To a suspension of substrate in dry CH_2Cl_2 (c = 0.2 M) were successively added hexamethyldisilazane (2 equiv) and trimethylsilyl trifluoromethanesulfonate (10 mol%). The mixture was stirred at room temperature until completion and then diluted in hexanes. The organic phase was washed with water. The aqueous phase was extracted twice with ethyl acetate. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The persilylated compounds were used without further purification.

Phenyl 2-deoxy-2-trifluoroacetamido-3,4,6-tri-O-trimethylsilyl-1-thio-β-

D-glucopyranoside 1a: From **1** (0.140 g, 0.381 mmol); reaction time: 1h30. **1a** (0.199 g, 89%) as a white amorphous solid; $[\alpha]^{22}_{D}$ -6.0 (*c* 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 7.55-7.52 (m, 2H, 2H-Ar), 7.32-7.29 (m, 3H, 3H-Ar), 7.07 (d, *J* = 7.9 Hz, 1H, NH), 5.03 (d, $J_{1,2} = 7.3$ Hz, 1H, H-1), 4.07 (dd, $J_{6a,6b} = 10.8$ Hz, $J_{6a,5} = 5.1$ Hz, 1H, H-6a), 3.98-3.75 (m, 4H, H-2, H-3, H-4 and H-6b), 3.61-3.54 (m, 1H, H-5), 0.20 (s, 9H, Si(CH₃)₃), 0.18 (s, 9H, Si(CH₃)₃); ¹³C NMR (63 MHz, CDCl₃) δ 134.8, 131.8, 128.9, 127.6

¹ A. A. Joseph, V. P. Verma, X. Y. Lui, C. H. Wu, V. M. Dhurandhare, C. C. Wang, *Eur. J. Org. Chem.*, 2012, 744.

(6C, 6C-Ar), 84.7 (C-1), 81.1 (C-5), 73.7 (C-3), 70.2 (C-4), 62.3 (C-6), 55.1 (C-2), 0.3 $(Si(\underline{CH}_3)_3)$, 0.2 $(Si(\underline{CH}_3)_3)$, -0.4 $(Si(\underline{CH}_3)_3)$; ESI HRMS for $C_{23}H_{40}F_3NNaO_5Si_3$ [M+Na]⁺: calcd 606.1779, found 606.1791.

Phenyl 2-deoxy-2-trichloroacetamido-3,4,6-tri-O-trimethylsilyl-1-thio-β-

D-glucopyranoside 2a: From **2** (0.187 g, 0.449 mmol); reaction time: 2h. **2a** (0.252 g, 89%) as a white amorphous solid; $[\alpha]^{22}{}_{D}$ +51.6 (*c* 0.31, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 7.58-7.55 (m, 2H, 2H-Ar), 7.43 (d, *J* = 8.2 Hz, 1H, NH), 7.35-7.29 (m, 3H, 3H-Ar), 5.09 (d, *J*_{1,2} = 7.2 Hz, 1H, H-1), 4.08 (dd, *J*_{6a,6b} = 10.4 Hz, *J*_{6a,5} = 5.7 Hz, 1H, H-6a), 3.95-3.78 (m, 4H, H-2, H-3, H-4 and H-6b), 3.62-3.56 (m, 1H, H-5), 0.20 (s, 18H, 2Si(CH₃)₃), 0.17 (s, 9H, Si(CH₃)₃); ¹³C NMR (63 MHz, CDCl₃) δ 161.3 (NH<u>C</u>=O), 134.9, 132.1, 129.0, 127.7 (6C, 6C-Ar), 84.7 (C-1), 81.2 (C-5), 73.5 (C-4), 70.2 (C-3), 62.5 (C-6), 56.3 (C-2), 0.4 (2C, 2Si(<u>CH₃)₃</u>), -0.4 (Si(<u>CH₃)₃</u>); ESI HRMS for C₂₃H₄₀Cl₃NNaO₅SSi₃ [M+Na]⁺: calcd 654.0893, found 654.0897.

Phenyl 2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-3,4,6-tri-*O*-trimethylsilyl-1-thioβ-D-glucopyranoside 3a: From 3 (0.109 g, 0.245 mmol); reaction time: 1h. 3a (0.150 g, 93%) as a white foam; $[\alpha]^{22}_{D}$ -4.4 (*c* 0.5, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ 7.57-7.53 (m, 2H, 2H-Ar), 7.36-7.26 (m, 3H, 3H-Ar), 5.16 (d, *J* = 9.1 Hz, 1H, NH), 4.94 (d, *J*_{1,2} = 9.9 Hz, 1H, H-1), 4.79 (d, *J* = 12.0 Hz, 1H, CHCCl₃), 4.75 (d, *J* = 12.0 Hz, 1H, CHCCl₃), 3.89 (dd, *J*_{6a,6b} = 11.3 Hz, *J*_{6a,5} = 2.8 Hz, 1H, H-6a), 3.82-3.75 (m, 2H, H-3 and H-6b), 3.67 (dd, *J*_{4,3} = *J*_{4,5} = 7.9 Hz, 1H, H-4), 3.47 (m, 1H, H-2), 3.36 (m, 1H, H-5), 0.20 (s, 9H, Si(CH₃)₃), 0.17 (s, 9H, Si(CH₃)₃), 0.14 (s, 9H, Si(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.8 (NH<u>C</u>=O), 133.9, 131.9, 128.8, 127.4 (6C, 6C-Ar), 95.3 (CH₂<u>C</u>Cl₃), 86.2 (C-1), 80.9 (C-5), 76.7 (C-3), 74.7 (<u>C</u>H₂CCl₃), 71.6 (C-4), 62.1 (C-6), 57.5 (C-2), 0.8 (Si(<u>C</u>H₃)₃), 0.7 (Si(<u>C</u>H₃)₃), -0.2 (Si(<u>C</u>H₃)₃); ESI HRMS for C₂4H₄2Cl₃NNaO₆SSi₃ [M+Na]⁺: calcd 684.0998, found 684.1004.

Phenyl 2-allyloxycarbonylamino-2-deoxy-3,4,6-tri-O-trimethylsilyl-1-thio-β-

D-glucopyranoside 4a: From **4** (0.059 g, 0.166 mmol); reaction time: 2h. **4a** (0.085 g, 90%) as a white foam; $[\alpha]^{22}_{D}$ -7.2 (*c* 0.5, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ 7.54-7.52 (m, 2H, 2H-Ar), 7.39-7.27 (m, 3H, 3H-Ar), 5.99-5.88 (m, 1H, CH₂C<u>H</u>=CH₂), 5.35 (dd, J_{trans} = 17.4 Hz, J = 1.4 Hz, 1H, CH₂CH=C<u>H₂</u>), 5.23 (d, J_{cis} = 10.5 Hz, 1H, CH₂CH=C<u>H₂</u>), 4.95 (d, $J_{1,2}$ = 10.0 Hz, 1H, H-1), 4.85 (d, J = 9.1 Hz, 1H, NH), 4.60 (m, 2H, C<u>H</u>₂CH=CH₂), 3.87-3.72 (m, 3H, H-3, H-6a and H-6b), 3.61 (dd, $J_{4,3} = J_{4,5} = 8.2$ Hz, 1H, H-4), 3.38-3.29 (m, 1H, H-5),

0.17 (s, 9H, Si(CH₃)₃), 0.15 (s, 9H, Si(CH₃)₃), 0.14 (s, 9H, Si(CH₃)₃); ¹³C NMR (63 MHz, CDCl₃) δ 155.4 (NH<u>C</u>=O), 132.8 (CH₂<u>C</u>H=CH₂), 131.9, 128.8, 127.3 (6C, 6C-Ar), 117.8 (CH₂CH=<u>C</u>H₂), 89.1 (C-1), 80.9 (C-5), 77.2 (C-3), 71.8 (C-4), 65.7 (<u>C</u>H₂CH=CH₂), 62.1 (C-6), 57.5 (C-2), 0.8 (Si(<u>C</u>H₃)₃), 0.7 (Si(<u>C</u>H₃)₃), -0.2 (Si(<u>C</u>H₃)₃); ESI HRMS for C₂₅H₄₅NNaO₆SSi₃[M+Na]⁺: calcd 594.2168, found 594.2164.

(2-Methyl-5-*tert*-butylphenyl) 2-deoxy-2-trifluoroacetamido-3,4,6-tri-*O*-trimethylsilyl-1-thio-β-D-glucopyranoside 5a: From 5 (1.16 g, 2.65 mmol); reaction time: 17h. 5a (1.68 g, 97%) as a white amorphous solid; $[\alpha]^{22}_{D}$ -14.2 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 1.9 Hz, 1H, H-Ar), 7.22 (dd, *J* = 1.9 Hz, *J* = 7.9 Hz, 1H, H-Ar), 7.13 (d, *J* = 7.9 Hz, 1H, H-Ar), 6.87 (d, *J* = 8.3 Hz, 1H, NH), 4.95 (d, *J*_{1,2} = 8.4 Hz, 1H, H-1), 4.05-3.76 (m, 5H, H-2, H-3, H-4, H-6a and H-6b), 3.53-3.50 (m, 1H, H-5), 2.35 (s, 3H, CH₃), 1.32 (s, 9H, C(C<u>H₃)₃), 0.20 (s, 9H, Si(CH₃)₃), 0.18 (s, 9H, Si(CH₃)₃), 0.16 (s, 9H, Si(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 149.5, 135.8, 132.9, 129.9, 128.7, 124.7 (6C, 6C-Ar), 85.8 (C-1), 81.0 (C-5), 74.5 (C-3 or C-4), 70.5 (C-3 or C-4), 62.3 (C-6), 55.8 (C-2), 31.3 (C(<u>C</u>H₃)₃), 20.2 (CH₃), 0.5 (Si(<u>C</u>H₃)₃), 0.2 (Si(<u>C</u>H₃)₃), 0.2 (Si(<u>C</u>H₃)₃); ESI HRMS for C₂₈H₅₀F₃NNaO₅Si₃ [M+Na]⁺: calcd 676.2562, found 676.2574.</u>

(2-Methyl-5-tert-butylphenyl) 2-deoxy-2-trichloroacetamido-3,4,6-tri-O-trimethylsilyl-

1-thio-β-D-glucopyranoside 6a: From **6** (2.05 g, 4.21 mmol); reaction time: 2h. **6a** (2.86 g, 97%) as a white amorphous solid; $[α]^{22}_{D}$ -12.7 (*c* 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ 7.67 (d, *J* = 2.3 Hz, 1H, H-Ar), 7.37 (d, *J* = 8.6 Hz, 1H, NH), 7.23 (dd, *J* = 2.3 Hz, *J* = 8.2 Hz, 1H, H-Ar), 7.14 (d, *J* = 8.2 Hz, 1H, H-Ar), 5.02 (d, *J*_{1,2} = 7.7 Hz, 1H, H-1), 4.06 (dd, *J*_{6a,6b} = 10.9 Hz, *J*_{6a,5} = 5.9 Hz, 1H, H-6a), 4.03-3.97 (m, 1H, H-2), 3.93-3.84 (m, 3H, H-3, H-4 and H-6b), 3.61 (dd, *J*_{5,4} = 9.6 Hz, 1H, H-5), 2.40 (s, 3H, CH₃), 1.35 (s, 9H, C(C<u>H₃)</u>₃), 0.23 (s, 9H, Si(CH₃)₃), 0.22 (s, 9H, Si(CH₃)₃), 0.17 (s, 9H, Si(CH₃)₃); ¹³C NMR (90 MHz, CDCl₃) δ 161.7 (NH<u>C</u>=O), 149.9, 136.6, 134.5, 130.2, 129.1, 124.9 (6C, 6C-Ar), 85.7 (C-1), 81.6 (C-5), 74.6 (C-3 or C-4), 70.6 (C-3 or C-4), 62.9 (C-6), 57.1 (C-2), 34.8 (C(CH₃)₃), 31.7 (C(CH₃)₃), 20.7 (CH₃), 0.9 (Si(<u>CH₃</u>)₃), 0.7 (Si(<u>CH₃</u>)₃), 0.0 (Si(<u>CH₃</u>)₃); ESI HRMS for C₂₈H₅₀Cl₃NNaO₅SSi₃ [M+Na]⁺: calcd 724.1675, found 724.1672.

(2-Methyl-5-*tert*-butylphenyl) 2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-3,4,6tri-*O*-trimethylsilyl-1-thio- β -D-glucopyranoside 7a: From 7 (0.450 g, 0.872 mmol); reaction time: 2h. 7a (0.614 g, 96%) as a white foam; $[\alpha]^{22}_{D}$ +3.2 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 1.9 Hz, 1H, H-Ar), 7.20 (dd, *J* = 1.9 Hz, *J* = 7.9 Hz, 1H, H-Ar), 7.11 (d, *J* = 7.9 Hz, 1H, H-Ar), 5.06 (d, *J* = 9.0 Hz, 1H, NH), 4.87 (d, *J*_{1,2} = 10.1 Hz, 1H, H-1), 4.80 (d, *J* = 12.1 Hz, 1H, CHCCl₃), 4.70 (d, *J* = 12.1 Hz, 1H, CHCCl₃), 3.86-3.70 (m, 4H, H-3, H-4, H-6a and H-6b), 3.54-3.45 (m, 1H, H-2), 3.33 – 3.28 (m, 1H, H-5), 2.35 (s, 3H, CH₃), 1.32 (s, 9H, C(C<u>H₃</u>)₃), 0.20 (s, 9H, Si(CH₃)₃), 0.17 (s, 9H, Si(CH₃)₃), 0.14 (s, 9H, Si(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.8 (NHC=O), 149.5, 136.1, 133.8, 129.8, 128.5, 124.4 (6C, 6C-Ar), 95.2 (CH₂CCl₃), 87.1 (C-1), 80.8 (C-5), 76.7 (C-3), 74.8 (CH₂CCl₃), 71.4 (C-4), 62.0 (C-6), 57.7 (C-2), 34.5 (C(CH₃)₃), 31.4 (C(CH₃)₃), 20.3 (CH₃), 0.9 (Si(CH₃)₃), 0.7 (Si(CH₃)₃), -0.1 (Si(CH₃)₃); ESI HRMS for C₂₉H₅₂Cl₃NNaO₆SSi₃ [M+Na]⁺: calcd 754.1781, found 754.1808.

(2-Methyl-5-tert-butylphenyl) 2-allyloxycarbonylamino-2-deoxy-3,4,6-tri-O-

trimethylsilyl-1-thio-β-D-glucopyranoside 8a: From 8 (1.29 g, 3.03 mmol); reaction time: 1h30. 8a (1.89 g, 97%) as a white foam; $[\alpha]^{22}_{D}$ +3.0 (*c* 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 7.63 (d, *J* = 1.9 Hz, 1H, H-Ar), 7.20 (dd, *J* = 1.9 Hz, *J* = 7.9 Hz, 1H, H-Ar), 7.12 (d, *J* = 7.9 Hz, 1H, H-Ar), 6.02-5.87 (m, 1H, CH₂C<u>H</u>=CH₂), 5.32 (dd, *J*_{trans} = 17.3 Hz, *J* = 1.3 Hz, 1H, CH₂CH=C<u>H₂</u>), 5.20 (dd, *J*_{cis} = 10.3 Hz, *J* = 1.3 Hz, 1H, CH₂CH=C<u>H₂</u>), 4.89 (d, *J*_{1,2} = 10.1 Hz, 1H, H-1), 4.83 (d, *J* = 9.1 Hz, 1H, NH), 4.67-4.54 (m, 2H, C<u>H</u>₂CH=CH₂), 4.05-3.76 (m, 5H, H-2, H-3, H-4, H-6a and H-6b), 3.53-3.50 (m, 1H, H-5), 2.35 (s, 3H, CH₃), 1.32 (s, 9H, C(C<u>H₃)₃</u>), 0.20 (s, 9H, Si(CH₃)₃), 0.18 (s, 9H, Si(CH₃)₃), 0.16 (s, 9H, Si(CH₃)₃); ¹³C NMR (63 MHz, CDCl₃) δ 155.5 (NH<u>C</u>=O), 149.5, 136.3 (2C, C-Ar), 134.0 (CH₂<u>C</u>H=CH₂), 132.9, 129.8, 129.0, 124.5 (4C, C Ar), 117.9 (CH₂CH=<u>C</u>H₂), 87.3 (C-1), 80.7 (C-5), 77.0 (C-3), 71.6 (C-4), 65.7 (<u>C</u>H₂CH=CH₂), 62.1 (C-6), 57.7 (C-2), 31.4 (C(<u>C</u>H₃)₃), 20.3 (CH₃), 0.9 (Si(<u>C</u>H₃)₃), 0.7 (Si(<u>C</u>H₃)₃), -0.1 (Si(<u>C</u>H₃)₃); ESI HRMS for C₃₀H₅₅NNaO₆SSi₃ [M+Na]⁺: calcd 664.2950, found 664.2934.

(2-Methyl-5-tert-butylphenyl) 2-deoxy-2-methoxycarbonylamino-3,4,6-tri-O-

trimethylsilyl-1-thio-β-D-glucopyranoside 9a: From 9 (1.10 g, 2.75 mmol) with 3 equiv of HMDS; reaction time: 6h30. 9a (1.65 g, 97%) as a white foam; $[α]^{22}{}_D$ +4.0 (*c* 1, CHCl₃); ¹H NMR (300 MHz, (CD₃)₂CO) δ 7.65 (d, *J* = 1.9 Hz, 1H, H-Ar), 7.24 (dd, *J* = 1.9 Hz, *J* = 7.9 Hz, 1H, H-Ar), 7.15 (d, *J* = 7.9 Hz, 1H, H-Ar), 6.55 (d, *J* = 9.8 Hz, 1H, NH), 4.86 (d, *J*_{1,2} = 10.5 Hz, 1H, H-1), 3.90 (m, 2H, H-6a and H-6b), 3.83-3.71 (m, 2H, H-3 and H-4), 3.67 (s, 3H, CH₃), 3.63-3.53 (m, 1H, H-2), 3.29-3.24 (m, 1H, H-5), 2.33 (s, 3H, CH₃), 1.35 (s, 9H, C(C<u>H₃</u>)₃), 0.23 (s, 9H, Si(CH₃)₃), 0.18 (s, 9H, Si(CH₃)₃), 0.17 (s, 9H, Si(CH₃)₃); ¹³C NMR (90

MHz, $(CD_3)_2CO$) δ 158.3 (NH<u>C</u>=O), 151.0, 137.0, 136.1, 131.3, 129.4, 125.6 (6C, 6C-Ar), 89.8 (C-1), 82.0 (C-5), 79.6 (C-3), 73.3 (C-4), 63.6 (C-6), 59.2 (C-2), 52.8 (CH₃), 35.8 (<u>C</u>(CH₃)₃), 32.5 (C(<u>CH₃</u>)₃), 21.0 (CH₃), 1.9 (Si(<u>CH₃</u>)₃), 1.8 (Si(<u>CH₃</u>)₃), 1.0 (Si(<u>CH₃</u>)₃); ESI HRMS for C₂₈H₅₃NNaO₆SSi₃ [M+Na]⁺: calcd 638.2794, found 638.2828.

Methyl 2-deoxy-2-trifluoroacetamido-3,4,6-tri-*O*-trimethylsilyl-α-D-glucopyranoside

10a: From **10** (0.400 g, 1.39 mmol) with 3.5 equiv of HMDS; reaction time: 24h. **10a** (0.668 g, 95%) as a white amorphous solid; $[\alpha]^{22}{}_{D}$ +56.2 (*c* 0.45, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ 6.40 (d, *J* = 8.3 Hz, 1H, NH), 4.64 (d, *J*_{1,2} = 3.7 Hz, 1H, H-1), 4.08 (dd, *J*_{1,2} = 3.7 Hz, *J*_{2,3} = 10.0 Hz, 1H, H-2), 3.77-3.72 (m, 3H, H-3, H-6a and H-6b), 3.62 (dd, *J*_{4,3} = 8.0 Hz, *J*_{4,5} = 9.2 Hz, 1H, H-4), 3.54-3.50 (m, 1H, H-5), 3.37 (s, 3H, CH₃), 0.19 (s, 9H, Si(CH₃)₃), 0.14 (s, 9H, Si(CH₃)₃), 0.13 (s, 9H, Si(CH₃)₃); ¹³C NMR (90 MHz, CDCl₃) δ 97.7 (C-1), 73.5 (C-3), 73.2 (C-5), 71.8 (C-4), 61.7 (C-6), 54.9 (C-2), 54.4 (CH₃), 0.8 (2C, 2Si(<u>CH₃</u>)₃), -0.3 (Si(<u>CH₃</u>)₃); ESI HRMS for C₁₈H₃₈F₃NNaO₆Si₃ [M+Na]⁺: calcd 528.1851, found 528.1845.

tert-Butyldimethylsilyl 2-deoxy-2-trifluoroacetamido-3,4,6-tri-O-trimethylsilyl-β-

D-glucopyranoside 11a: From **11** (1.07 g, 2.75 mmol); reaction time: 3h30. **11a** (1.60 g, 96%) as a white amorphous solid; $[\alpha]^{22}_{D}$ -2.4 (*c* 0.38, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ 6.72 (d, *J* = 8.6 Hz, 1H, NH), 4.91 (d, *J*_{1,2} = 5.5 Hz, 1H, H-1), 3.94 (dd, *J*_{6a,6b} = 10.9 Hz, *J*_{6a,5} = 4.5 Hz, 1H, H-6a), 3.82 (dd, *J*_{3,2} = *J*_{3,4} = 7.6 Hz, 1H, H-3), 3.76-3.72 (m, 2H, H-4 and H-6b), 3.63 (m,1, H-2), 3.39 (m, 1H, H-5), 0.91 (s, 9H, C(C<u>H</u>₃)₃), 0.20 (s, 9H, Si(CH₃)₃), 0.16 (s, 9H, Si(CH₃)₃), 0.14 (s, 9H, Si(CH₃)₃), 0.13 (s, 3H, CH₃), 0.11 (s, 3H, CH₃); ¹³C NMR (90 MHz, CDCl₃) δ 94.2 (C-1), 77.1 (C-5), 73.6 (C-3), 71.0 (C-4), 62.2 (C-6), 58.3 (C-2), 25.5 (C(<u>C</u>H₃)₃), 17.8 (<u>C</u>(CH₃)₃), 0.6 (Si(<u>C</u>H₃)₃), 0.5 (Si(<u>C</u>H₃)₃), -0.4 (Si(<u>C</u>H₃)₃), -4.3 (CH₃), -5.4 (CH₃); ESI HRMS for C₂₃H₅₀F₃NNaO₆Si₄ [M+Na]⁺: calcd 628.2560, found 628.2573.

tert-Butyldiphenylsilyl 2-deoxy-2-trifluoroacetamido-3,4,6-tri-O-trimethylsilyl-β-

D-glucopyranoside 12a: From **12** (0.960 g, 1.87 mmol); reaction time: 2h15. **12a** (1.32 g, 97%) as a white amorphous solid; $[\alpha]^{22}_{D}$ -14.3 (*c* 0.75, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 7.73-7.67 (m, 4H, 4H-Ar), 7.46-7.36 (m, 6H, 6H-Ar), 6.65 (d, *J* = 9.2 Hz, 1H, NH), 4.77 (d, *J*_{1,2} = 5.7 Hz, 1H, H-1), 3.99-3.90 (m, 1H, H-2), 3.84-3.75 (m, 2H, H-4 and H-6a), 3.65-3.54 (m, 2H, H-3 and H-6b), 3.21-3.15 (m, 1H, H-5), 1.10 (s, 9H, C(C<u>H₃</u>)₃), 0.15 (s, 18H, Si(CH₃)₃), 0.04 (s, 9H, Si(CH₃)₃); ¹³C NMR (63 MHz, CDCl₃) δ 136.0, 133.3, 132.8, 130.1, 129.9, 127.8, 127.6 (12C, 12C-Ar), 94.4 (C-1), 77.2 (C-5), 73.7 (C-3), 70.4 (C-4), 62.0 (C-6),

56.8 (C-2), 26.8 (C($\underline{C}H_3$)₃), 19.1 ($\underline{C}(CH_3)_3$), 0.5 (Si($\underline{C}H_3$)₃), 0.3 (Si($\underline{C}H_3$)₃), -0.5 (Si($\underline{C}H_3$)₃); ESI HRMS for C₃₃H₅₄F₃NNaO₆Si₄ [M+Na]⁺: calcd 752.2873, found 752.2859.

General procedure for tandem acetalation/benzylation

To a solution of persilylated substrate in dry CH_2Cl_2 (c = 0.2 M) were added benzaldehyde (3 equiv) and 3Å molecular sieves (1 g per g of substrate). The mixture was stirred at room temperature for 15 min. before adding trifluoromethanesulfonic acid (5 mol%) and triethylsilane (1.2 equiv). After stirring for 10-40 min., triethylamine was added and the solution was then diluted with CH_2Cl_2 , filtered through a celite pad and washed with water. The aqueous layer was extracted with CH_2Cl_2 then the combined organic layers were dried over Na₂SO₄, filtered and concentrated. Compounds **11b** and **12b** were purified by silica gel chromatography. For the other products (**1b-10b**), the crude residue was taken up in a minimal amount of solvent then hexanes were added to precipitate the product. After triturating for 15 min, then cooling at -25°C for 1h, the precipitate was filtered off and washed with hexanes.

Phenyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-trifluoroacetamido-1-thio-β-D-

glucopyranoside 1b: From **1a** (0.080 g, 0.137 mmol); room temperature; reaction time: 15 min. **1b** (0.069 g, 92%) as a white amorphous solid; $[\alpha]^{22}_{D}$ -25.8 (*c* 0.5, CH₂Cl₂/MeOH 4:1); ¹H NMR (250 MHz, DMSO) δ 7.47-7.20 (m, 15H, 15H-Ar), 5.76 (s, 1H, CH-Ph), 5.10 (d, $J_{1,2} = 9.8$ Hz, 1H, H-1), 4.77 (d, J = 11.7 Hz, 1H, CHPh), 4.60 (d, J = 11.7 Hz, 1H, CHPh), 4.30 (dd, $J_{6a,6b} = 10.1$ Hz, $J_{6a,5} = 5.1$ Hz, 1H, H-6a), 4.00-3.78 (m, 4H, H-2, H-3, H-4 and H-6b), 3.65-3.57 (m, 1H, H-5); ¹³C NMR (63 MHz, DMSO) δ 138.6-126.4 (18C, 18C Ar), 100.6 (CH-Ph), 86.3 (C-1), 81.1 (C-4), 79.4 (C-3), 74.0 (CH₂Ph), 70.4 (C-5), 68.0 (C-6), 54.3 (C-2); ESI HRMS for C₂₈H₂₆F₃NNaO₅S [M+Na]⁺: calcd 568.1376, found 568.1368.

Phenyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-trichloroacetamido-1-thio-β-D-

glucopyranoside 2b: From **2a** (0.158 g, 0.250 mmol) at 0°C; reaction time: 10 min. **2b** (0.116 g, 78%) as a white amorphous solid; $[\alpha]^{22}_{D}$ -24.6 (*c* 0.5, CH₂Cl₂/MeOH 4:1); ¹H NMR (250 MHz, DMSO) δ 7.49-7.24 (m, 15H, 15H-Ar), 5.76 (s, 1H, CH-Ph), 5.19 (d, $J_{1,2} =$ 9.8 Hz, 1H, H-1), 4.75 (d, J = 11.7 Hz, 1H, CHPh), 4.65 (d, J = 11.7 Hz, 1H, CHPh), 4.31 (dd, $J_{6a,6b} = 10.1$ Hz, $J_{6a,5} = 4.7$ Hz, 1H, H-6a), 4.04-3.78 (m, 4H, H-2, H-3, H-4 and H-6b), 3.60-3.51 (m, 1H, H-5); ¹³C NMR (63 MHz, DMSO) δ 161.7 (NHC=O), 138.2, 137.5, 133.4, 130.7, 129.1, 128.8, 128.1, 127.5, 125.9 (18C, 18C-Ar), 100.6 (CH-Ph), 87.0 (C-1), 81.0 (C- 4), 79.5 (C-3), 74.1 (CH₂Ph), 70.4 (C-5), 68.1 (C-6), 55.9 (C-2); ESI HRMS for $C_{28}H_{26}Cl_3NNaO_5S [M+Na]^+$: calcd 616.0489, found 616.0486.

Phenyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-

1-thio-β-D-glucopyranoside 3b: From **3a** (0.143 g, 0.215 mmol); room temperature; reaction time: 10 min. **3b** (0.114 g, 85%) as a white amorphous solid; $[\alpha]^{22}{}_{D}$ -11.8 (*c* 0.5, CH₂Cl₂/MeOH 4:1); ¹H NMR (360 MHz, DMSO) δ 7.64 (d, *J* = 9.6 Hz, 1H, NH), 7.45-7.25 (m, 15H, 15H-Ar), 5.72 (s, 1H, CH-Ph), 5.01 (d, *J*_{1,2} = 10.4 Hz, 1H, H-1), 4.88 (d, *J* = 12.8 Hz, 1H, CHPh or CHCCl₃), 4.83 (d, *J* = 12.8 Hz, 1H, CHPh or CHCCl₃), 4.76 (d, *J* = 11.8 Hz, 1H, CHPh or CHCCl₃), 4.65 (d, *J* = 11.8 Hz, 1H, CHPh or CHCCl₃), 4.27 (dd, *J*_{6a,6b} = 10.0 Hz, *J*_{6a,5} = 5.0 Hz, 1H, H-6a), 3.81-3.75 (m, 3H, H-3, H-4 and H-6b), 3.67-3.60 (m, 1H, H-2), 3.58-3.52 (m, 1H, H-5); ¹³C NMR (63 MHz, DMSO) δ 154.3 (NHC=O), 138.1, 137.4, 132.8, 130.7, 129.1, 128.8, 128.1, 127.5, 127.4, 125.9 (18C, 18C-Ar), 100.0 (CH-Ph), 96.1 (CH₂CCl₃), 86.5 (C-1), 80.4 (C-3 or C-4), 79.6 (C-3 or C-4), 73.5 (2C, CH₂Ph, <u>CH₂CCl₃), 69.8 (C-5), 67.6 (C-6), 55.9 (C-2); ESI HRMS for C₂₉H₂₈Cl₃NNaO₆S [M+Na]⁺: calcd 646.0595, found 646.0585.</u>

Phenyl 2-allyloxycarbonylamino-3-O-benzyl-4,6-O-benzylidene-2-deoxy-1-thio-β-D-

glucopyranoside 4b: From **4a** (0.085 g, 0.149 mmol); room temperature; reaction time: 20 min. **4b** (0.066 g, 83%) as a white amorphous solid; $[\alpha]^{22}_{D}$ -17.4 (*c* 0.5, CH₂Cl₂/MeOH 4:1); ¹H NMR (300 MHz, DMSO) δ 7.62 (d, *J* = 9.4 Hz, 1H, NH), 7.45 – 7.26 (m, 15H, 15H-Ar), 5.98-5.85 (m, 1H, CH₂C<u>H</u>=CH₂), 5.72 (s, 1H, CH-Ph), 5.34 (dd, *J*_{trans} = 17.3 Hz, *J* = 1.3 Hz, 1H, CH₂CH=C<u>H₂</u>), 5.17 (d, *J*_{cis} = 10.5 Hz, 1H, CH₂CH=C<u>H₂</u>), 5.00 (d, *J*_{1,2} = 10.2 Hz, 1H, H-1), 4.75 (d, *J* = 11.9 Hz, 1H, CHPh), 4.63 (d, *J* = 11.9 Hz, 1H, CHPh), 4.52 (m, 2H, C<u>H</u>₂CH=CH₂), 4.25 (dd, *J*_{6a,6b} = 10.0 Hz, *J*_{6a,5} = 4.7 Hz, 1H, H-6a), 3.80-3.73 (m, 3H, H-3, H-4 and H-6b), 3.65-3.50 (m, 2H, H-2 and H-5); ¹³C NMR (63 MHz, DMSO) δ 155.7 (NHC=O), 138.6, 137.6, 133.8, 133.6, 129.9, 129.0, 128.7, 128.1, 128.0, 127.3, 126.9, 126.3, 125.9 (19C, 18C-Ar and CH₂CH=CH₂), 116.8 (CH₂CH=CH₂), 100.1 (CH-Ph), 86.5 (C-1), 80.5 (C-3 or C-4), 80.0 (C-3 or C-4), 73.5 (CH₂Ph), 69.7 (C-5), 67.6 (C-6), 64.4 (CH₂CH=CH₂), 55.6 (C-2); ESI HRMS for C₃₀H₃₁NNaO₆S [M+Na]⁺: calcd 556.1764, found 556.1763.

(2-Methyl-5-tert-butylphenyl) 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-

trifluoroacetamido-1-thio-β-D-glucopyranoside 5b: From 5a (0.153 g, 0.234 mmol); 0°C; reaction time: 10 min. 5b (0.122 g, 85%) as a white amorphous solid; $[\alpha]^{22}_D$ +18.1 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, *J* = 8.3 Hz, 1H, NH), 7.56-7.10 (m, 13H, 13H-Ar), 5.60 (s, 1H, CH-Ph), 4.95 (d, *J*_{1,2} = 10.2 Hz, 1H, H-1), 4.86 (d, *J* = 11.7 Hz, 1H, CHPh), 4.66 (d, *J* = 11.7 Hz, 1H, CHPh), 4.35 (dd, *J*_{6a,6b} = 10.6 Hz, *J*_{6a,5} = 4.9 Hz, 1H, H-6a), 3.99-3.74 (m, 4H, H-2, H-3, H-4 and H-6b), 3.55-3.47 (m, 1H, H-5), 2.32 (s, 3H, CH₃), 1.20 (s, 9H, C(C<u>H₃</u>)₃); ¹³C NMR (75 MHz, CDCl₃) δ 149.6, 137.6, 137.0, 131.6, 130.2, 130.0, 129.1, 128.4, 128.3, 128.0, 125.9, 125.4 (18C, 18C-Ar), 101.3 (CH-Ph), 86.7 (C-1), 82.3 (C-4), 77.2 (C-3), 74.5 (CH₂Ph), 70.2 (C-5), 68.6 (C-6), 55.2 (C-2), 31.2 (C(<u>C</u>H₃)₃), 20.1 (CH₃); ESI HRMS for C₃₃H₃₆F₃NNaO₅S [M+Na]⁺: calcd 638.2158, found 638.2144.

(2-Methyl-5-tert-butylphenyl) 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-

trichloroacetamido-1-thio-β-D-glucopyranoside 6b: From 6a (0.152 g, 0.216 mmol); room temperature; reaction time: 10 min. 6b (0.120 g, 83%) as a white amorphous solid; $[α]^{22}_D$ -0.8 (*c* 0.8, CHCl₃/MeOH 1:4); ¹H NMR (360 MHz, CDCl₃) δ 7.65 (d, *J* = 1.8 Hz, 1H, H-Ar), 7.53-7.25 (m, 11H, 11H-Ar), 7.15 (d, *J* = 8.2 Hz, 1H, H-Ar), 6.95 (d, *J* = 7.7 Hz, 1H, NH), 5.63 (s, 1H, CH-Ph), 5.26 (d, *J*_{1,2} = 10.5 Hz, 1H, H-1), 4.93 (d, *J* = 11.4 Hz, 1H, CHPh), 4.72 (d, *J* = 11.4 Hz, 1H, CHPh), 4.41 (dd, *J*_{6a,6b} = 10.4 Hz, *J*_{6a,5} = 5.0 Hz, 1H, H-6a), 4.25 (dd, *J*_{3,2} = *J*_{3,4} = 9.4 Hz, 1H, H-3), 3.91-3.66 (m, 3H, H-2, H-4 and H-6b), 3.65-3.55 (m, 1H, H-5), 2.39 (s, 3H, CH₃), 1.33 (s, 9H, C(C<u>H</u>₃)₃); ¹³C NMR (63 MHz, CDCl₃) δ 161.7 (NH<u>C</u>=O), 149.6, 137.6, 137.1, 131.4, 130.3, 130.1, 129.1, 128.5, 128.3, 128.0, 126.à? 125.4 (18C, 18C-Ar), 101.3 (CH-Ph), 86.1 (C-1), 82.4 (C-4), 77.3 (C-3), 74.9 (CH₂Ph), 70.3 (C-5), 68.9 (C-6), 57.0 (C-2), 34.5 (<u>C</u>(CH₃)₃), 31.3 (C(<u>C</u>H₃)₃), 20.4 (CH₃); ESI HRMS for C₃₃H₃₆Cl₃NNaO₅S [M+Na]⁺: calcd 686.1272, found 686.1273.

(2-Methyl-5-tert-butylphenyl) 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-(2,2,2-

trichloroethoxycarbonylamino)-1-thio-β-D-glucopyranoside 7b: From 7a (0.090 g, 0.123 mmol); room temperature; reaction time: 10 min. 7b (0.077 g, 90%) was obtained as a white foam; $[\alpha]^{22}_{D}$ +2.2 (*c* 1, CH₂Cl₂/MeOH 4:1); ¹H NMR (300 MHz, (CD₃)₂CO) δ 7.64 (d, *J* = 1.9 Hz, 1H, H-Ar), 7.55-7.51 (m, 2H, H-Ar and NH), 7.41-7.24 (m, 10H, 10H-Ar), 7.15 (d, *J* = 7.9 Hz, 1H, H-Ar), 5.76 (s, 1H, CH-Ph), 5.08 (d, *J*_{1,2} = 10.5 Hz, 1H, H-1), 4.91 (d, *J* = 11.9 Hz, 1H, CHPh), 4.86 (s, 2H, CH₂CCl₃), 4.77 (d, *J* = 11.9 Hz, 1H, CHPh), 4.30 (dd, *J*_{6a,6b} = 10.3 Hz, *J*_{6a,5} = 5.1 Hz, 1H, H-6a), 4.01-3.80 (m, 4H, H-2, H-3, H-4 and H-6b), 3.63-3.55 (m,

1H, H-5), 2.33 (s, 3H, CH₃), 1.33 (s, 9H, C(C<u>H₃</u>)₃); ¹³C NMR (75 MHz, (CD₃)₂CO) δ 154.4 (NH<u>C</u>=O), 150.2, 139.8, 138.9, 136.8, 133.8, 130.7, 129.6, 128.9, 128.5, 128.2, 127.0, 125.4 (18C, 18C-Ar), 100.9 (CH-Ph), 96.1 (CH₂<u>C</u>Cl₃), 87.8 (C-1), 81.8 (C-3 or C-4), 79.9 (C-3 or C-4), 74.1 (2C, CH₂Ph, <u>C</u>H₂CCl₃), 70.2 (C-5), 68.2 (C-6), 56.6 (C-2), 34.1 (<u>C</u>(CH₃)₃), 30.7 (C(<u>C</u>H₃)₃), 19.5 (CH₃); ESI HRMS for C₃₄H₃₈Cl₃NNaO₆S [M+Na]⁺: calcd 716.1378, found 716.1390.

(2-Methyl-5-*tert*-butylphenyl) 2-allyloxycarbonylamino-3-*O*-benzyl-4,6-*O*-benzylidene-2deoxy-1-thio-β-D-glucopyranoside 8b: From 8a (0.141 g, 0.220 mmol); room temperature; reaction time: 15 min. 8b (0.123 g, 93%) as a white foam; $[\alpha]^{22}_{D} = +2.4$ (*c* 1, CHCl₃/MeOH 1:1); ¹H NMR (300 MHz, (CD₃)₂CO) δ 7.64 (d, *J* = 1.9 Hz, 1H, H-Ar), 7.55-7.23 (m, 11H, 11H-Ar), 7.15 (d, *J* = 7.9 Hz, 1H, H-Ar), 6.78 (d, *J* = 9.1 Hz, 1H, NH), 6.03-5.91 (m, 1H, CH₂CH=CH₂), 5.74 (s, 1H, CH-Ph), 5.34 (dd, *J*_{trans} = 17.3 Hz, *J* = 1.5 Hz, 1H, CH₂CH=CH₂), 5.17 (d, *J*_{cis} = 10.5 Hz, 1H, CH₂CH=CH₂), 5.07 (d, *J*_{1,2} = 10.2 Hz, 1H, H-1), 4.90 (d, *J* = 11.7 Hz, 1H, CHPh), 4.75 (d, *J* = 11.7 Hz, 1H, CHPh), 4.59 (m, 2H, CH₂CH=CH₂), 4.28 (dd, *J*_{6a,6b} = 10.2 Hz, *J*_{6a,5} = 4.9 Hz, 1H, H-6a), 3.99-3.77 (m, 4H, H-2, H-3, H-4 and H-6b), 3.61-3.53 (m, 1H, H-5), 2.34 (s, 3H, CH₃), 1.33 (s, 9H, C(CH₃)₃); ¹³C NMR (63 MHz, (CD₃)₂CO) δ 155.9 (NHC=O), 150.1, 139.9, 139.0, 136.8, 134.6, 134.0, 130.6, 129.6, 129.5, 129.1, 128.9, 128.4, 128.1, 127.0, 125.3 (19C, 18C-Ar, CH₂CH=CH₂), 116.3 (CH₂CH=CH₂), 100.9 (CH-Ph), 87.9 (C-1), 81.8 (C-4), 80.1 (C-3), 74.1 (CH₂Ph), 70.2 (C-5), 68.3 (C-6), 65.8 (CH₂CH=CH₂), 56.4 (C-2), 31.2 (C(CH₃)₃), 20.1 (CH₃); ESI HRMS for C₃₅H₄₂NO₆S [M+H]⁺: calcd 604.2727, found 604.2724.

(2-Methyl-5-tert-butylphenyl) 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-

methoxycarbonylamino-1-thio-β-D-glucopyranoside 9b: From 9a (0.183 g, 0.297 mmol); room temperature; reaction time: 30 min. 9b (0.135 g, 79%) as a white foam; $[\alpha]^{22}_{D}$ -2.0 (*c* 0.35, MeOH); ¹H NMR (300 MHz, (CD₃)₂CO) δ 7.63 (d, *J* = 2.3 Hz, 1H, H-Ar), 7.54 -7.23 (m, 11H, 11H-Ar), 7.16 (d, *J* = 7.9 Hz, 1H, H-Ar), 6.68 (d, *J* = 8.7 Hz, 1H, NH), 5.75 (s, 1H, CH-Ph), 5.07 (d, *J*_{1,2} = 10.6 Hz, 1H, H-1), 4.89 (d, *J* = 11.9 Hz, 1H, CHPh), 4.73 (d, *J* = 11.9 Hz, 1H, CHPh), 4.28 (dd, *J*_{6a,6b} = 10.2 Hz, *J*_{6a,5} = 5.3 Hz, 1H, H-6a), 3.98 -3.73 (m, 4H, H-2, H-3, H-4 and H-6b), 3.65 (s, 3H, CH₃), 3.60-3.52 (m, 1H, H-5), 2.33 (s, 3H, CH₃), 1.33 (s, 9H, C(C<u>H₃</u>)₃); ¹³C NMR (63 MHz, (CD₃)₂CO) δ 156.5 (NH<u>C</u>=O), 149.3, 139.0, 138.1, 135.9, 133.0, 129.8, 128.8, 128.7, 128.0, 127.5, 127.2, 126.2, 124.4 (18C, 18C-Ar), 100.9 (CH-Ph), 87.8 (C-1), 81.8 (C-4), 80.1 (C-3), 74.1 (CH₂Ph), 70.2 (C-5), 68.3 (C-6), 56.5 (C-2), 51.3 (CH₃), 34.1 (<u>C</u>(CH₃)₃), 30.7 (C(<u>C</u>H₃)₃), 19.4 (CH₃); ESI HRMS for C₃₃H₃₉NNaO₆S [M+Na]⁺: calcd 600.2390, found 600.2400.

Methyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-trifluoroacetamido-a-D-

glucopyranoside 10b: From **10a** (0.110 g, 0.217 mmol); 0°C; reaction time: 35 min. **10b** (0.081 g, 80%) as a white amorphous solid; $[\alpha]^{22}{}_{D}$ +60.4 (*c* 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ 7.53-7.26 (m, 10H, 10H-Ar), 6.23 (d, *J* = 9.1 Hz, 1H, NH), 5.63 (s, 1H, CH-Ph), 4.91 (d, *J* = 11.7 Hz, 1H, CHPh), 4.77 (d, *J*_{1,2} = 3.7 Hz, 1H, H-1), 4.68 (d, *J* = 11.7 Hz, 1H, CHPh), 4.33-4.25 (m, 2H, H-2 and H-6a), 3.88-3.75 (m, 4H, H-3, H-4, H-5 and H-6b), 3.40 (s, 3H, CH₃); ¹³C NMR (90 MHz, CDCl₃) δ 129.2, 128.6, 128.4, 128.2, 128.0, 126.1 (12C, C-Ar), 101.40 (CH-Ph), 98.26 (C-1), 82.74 (C-3), 75.00 (C-4 or C-5), 74.22 (CH₂Ph), 68.84 (C-6), 62.67 (C-4 or C-5), 55.34 (CH₃), 53.01 (C-2); ESI HRMS for C₂₃H₂₅F₃NO₆ [M+H]⁺: calcd 468.1628, found 468.1612.

tert-Butyldimethylsilyl 3-*O*-benzyl-4,6-*O*-benzylidene-2-deoxy-2-trifluoroacetamido-β-Dglucopyranoside 11b: From 11a (1.00 g, 1.65 mmol); 0°C; reaction time: 10 min.

11b (0.866 g, 92%) as a white foam after flash chromatography (cyclohexane/EtOAc 9:1 to 4:1); $[\alpha]^{22}_{D}$ -63.0 (*c* 1, MeOH); ¹H NMR (360 MHz, CDCl₃) δ 7.54-7.23 (m, 10H, 10H-Ar), 6.56 (d, *J* = 8.3 Hz, 1H, NH), 5.56 (s, 1H, CH-Ph), 5.00 (d, *J*_{1,2} = 7.8 Hz, 1H, H-1), 4.90 (d, *J* = 11.8 Hz, 1H, CHPh), 4.69 (d, *J* = 11.8 Hz, 1H, CHPh), 4.32 (dd, *J*_{6a,6b} = 10.5 Hz, *J*_{6a,5} = 5.0 Hz, 1H, H-6a), 4.02 (dd, *J*_{3,2} = *J*_{3,4} = 9.5 Hz, 1H, H-3), 3.82-3.67 (m, 3H, H-2, H-4 and H-6b), 3.56-3.48 (m, 1H, H-5), 0.99 (s, 9H, C(C<u>H</u>₃)₃), 0.13 (s, 3H, CH₃), 0.11 (s, 3H, CH₃); ¹³C NMR (90 MHz, CDCl₃) δ 157.4 (q, *J* = 37.7 Hz, CF₃C=O), 137.9, 137.4, 129.1, 128.6, 128.4, 128.1, 126.2 (12C, 12C-Ar), 101.3 (CH-Ph), 95.5 (C-1), 82.7 (C-4), 75.9 (C-3), 74.3 (CH₂Ph), 68.7 (C-6), 66.2 (C-5), 59.1 (C-2), 25.5 (C(CH₃)₃), 17.8 (C(CH₃)₃), -4.2 (CH₃), -5.5 (CH₃); ESI HRMS for C₂₈H₃₆F₃NNaO₆Si [M+Na]⁺: calcd 590.2156, found 590.2153.

tert-Butyldiphenylsilyl 3-*O*-benzyl-4,6-*O*-benzylidene-2-deoxy-2-trifluoroacetamido-β-D-glucopyranoside 12b: From 12a (0.183 g, 0.250 mmol); room temperature; reaction time: 40 min. 12b (0.125 g, 72%) as a white foam after flash chromatography (cyclohexane/EtOAc 95:5 to 90:10); $[\alpha]^{22}_{D}$ +0.1 (*c* 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 7.67-7.56 (m, 4H, 4H-Ar), 7.48 – 7.22 (m, 16H, 16H-Ar), 6.12 (d, *J* = 8.9 Hz, 1H, NH), 5.55 (s, 1H, CH-Ph), 4.86 (d, *J* = 11.9 Hz, 1H, CHPh), 4.70 (d, *J*_{1,2} = 7.9 Hz, 1H, H-1), 4.64 (d, *J* = 11.9 Hz, 1H, CHPh), 4.07 (dd, *J*_{6a,6b} = 10.5 Hz, *J*_{6a,5} = 5.1 Hz, 1H, H-6a), 3.99-3.88 (m, 1H, H-2), 3.76-3.65

(m, 3H, H-3, H-4 and H-6b), 3.16-3.06 (m, 1H, H-5), 1.06 (s, 9H, $C(C\underline{H}_3)_3$); ¹³C NMR (63 MHz, CDCl₃) δ 157.2 (q, J = 36.8 Hz, CF₃C=O), 137.8, 137.3, 136.0, 135.8, 132.9, 132.5, 130.2, 130.0, 129.2, 128.6, 128.4, 128.1, 127.8, 127.6, 126.1 (24C, 24C-Ar), 115.7 (q, J = 288.7 Hz, <u>C</u>F₃C=O), 101.3 (CH-Ph), 95.7 (C-1), 82.6 (C-4), 76.0 (C-3), 74.1 (CH₂Ph), 68.4 (C-6), 65.9 (C-5), 58.5 (C-2), 26.8 (C(<u>C</u>H₃)₃), 19.1 (<u>C</u>(CH₃)₃); ESI HRMS for C₃₈H₄₀F₃NNaO₆Si [M+Na]⁺: calcd 714.2469, found 714.2473.

General procedure for one-pot acetalation/benzylation/benzylidene opening

To a solution of persilylated substrate in dry CH_2Cl_2 (c = 0.2 M) were added benzaldehyde (3 equiv) and AW300 molecular sieves (1 g per g of substrate). The mixture was stirred at room temperature for 15 min. then trifluoromethanesulfonic acid (5 mol%) and triethylsilane (1.2 equiv) were added. After stirring for 10-20 min., additional triethylsilane (5 equiv), dry acetonitrile (final $CH_2Cl_2/MeCN$ solvent ratio of 4:1, c = 0.15 M) and extra trifluoromethanesulfonic acid (5-15 mol%) were added. The solution was stirred for another 1-5h, diluted with CH_2Cl_2 , filtered through a celite pad and washed with satd. aq. NaHCO₃. The aqueous layer was extracted with CH_2Cl_2 then the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The crude material was purified by flash chromatography to afford the desired compound.

(2-Methyl-5-*tert*-butylphenyl) 3,6-di-*O*-benzyl-2-deoxy-2-trifluoroacetamido-1-thio-β-Dglucopyranoside 5d: From 5a (0.176 g, 0.269 mmol); added TfOH: 10 mol%; 0°C; reaction time: 2h. 5d (0.119 g, 72%) as a white foam after flash chromatography (cyclohexane/EtOAc 9:1 to 3:1); $[\alpha]^{22}_D$ +2.5 (*c* 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ 7.58-7.11 (m, 13H, 13H-Ar), 6.34 (d, *J* = 7.7 Hz, 1H, NH), 5.00 (d, *J*_{1,2} = 10.4 Hz, 1H, H-1), 4.82 (d, *J* = 11.7 Hz, 1H, CHPh), 4.71 (d, *J* = 11.7 Hz, 1H, CHPh), 4.63 (d, *J* = 11.8 Hz, 1H, CHPh), 4.57 (d, *J* = 11.8 Hz, 1H, CHPh), 3.89-3.73 (m, 4H, H-3, H-4, H-6a and H-6b), 3.67 (m, 1H, H-2), 3.58-3.53 (m, 1H, H-5), 2.94 (br s, 1H, OH), 2.34 (s, 3H, CH₃), 1.27 (s, 9H, C(C<u>H₃)₃); ¹³C NMR (90 MHz, CDCl₃) δ 149.7, 137.8, 137.5, 137.0, 131.8, 130.1, 128.7, 128.6, 128.4, 128.2, 128.0, 125.4 (18C, 18C-Ar), 86.7 (C-1), 80.9 (C-3 or C-4), 77.7 (C-5), 74.5 (CH₂Ph), 73.9 (CH₂Ph), 73.5 (C-3 or C-4), 70.5 (C-6), 55.2 (C-2), 31.3 (C(<u>C</u>H₃)₃), 20.2 (CH₃); ESI HRMS for C₃₃H₃₈F₃NNaO₅S [M+Na]⁺: calcd 640.2315, found 640.2285.</u> (2-Methyl-5-*tert*-butylphenyl) 3,6-di-*O*-benzyl-2-deoxy-2-trichloroacetamido-1-thio-β-D-glucopyranoside 6d: From 6a (0.187 g, 0.266 mmol); added TfOH: 10 mol%; 0°C; reaction time: 2h30. 6d (0.128 g, 72%) as a white foam after flash chromatography (cyclohexane/EtOAc 9:1 to 3:1); $[\alpha]^{22}_{D}$ -0.1 (*c* 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ 7.66 (s, 1H, H-Ar), 7.37-7.32 (m, 10H, 10H-Ar), 7.24 (d, *J* = 8.2 Hz, 1H, H-Ar), 7.13 (d, *J* = 8.2 Hz, 1H, H-Ar), 6.98 (d, *J* = 8.2 Hz, 1H, NH), 5.14 (d, *J*_{1,2} = 10.0 Hz, 1H, H-1), 4.84 (d, *J* = 11.4 Hz, 1H, CHPh), 4.79 (d, *J* = 11.4 Hz, 1H, CHPh), 4.64 (d, *J* = 12.3 Hz, 1H, CHPh), 4.58 (d, *J* = 12.3 Hz, 1H, CHPh), 3.98 (dd, *J*_{3,2} = *J*_{3,4} = 9.4 Hz, 1H, H-3), 3.84-3.69 (m, 4H, H-2, H-4, H-6a and H-6b), 3.61-3.55 (m, 1H, H-5), 2.90 (br s, 1H, OH), 2.39 (s, 3H, CH₃), 1.29 (s, 9H, C(C<u>H</u>₃)₃); ¹³C NMR (90 MHz, CDCl₃) δ 161.7 (NH<u>C</u>=O), 149.7, 138.0, 137.6, 137.1, 137.0, 132.0, 131.9, 130.2, 130.1, 128.7, 128.6, 128.3, 128.2, 128.0, 127.9, 125.3 (18C, 18C-Ar), 85.8 (C-1), 81.2 (C-3), 77.7 (C-5), 74.9 (CH₂Ph), 73.8 (CH₂Ph), 73.4 (C-4), 70.5 (C-6), 56.7 (C-2), 31.3 (C(<u>C</u>H₃)₃), 20.5 (CH₃); ESI HRMS for C₃₃H₃₈Cl₃NNaO₅S [M+Na]⁺: calcd 688.1428, found 688.1426.

(2-Methyl-5-*tert*-butylphenyl) 3,6-di-*O*-benzyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonyl amino)-1-thio-β-D-glucopyranoside 7d: From 7a (0.120 g, 0.163 mmol); added TfOH: 10 mol%; room temperature; reaction time: 4h30. 7d (0.076 g, 67%) as a white foam after flash chromatography (cyclohexane/EtOAc 4:1 to 3:1); $[\alpha]^{22}_{D}$ +16.7 (*c* 1, MeOH); ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 1.9 Hz, 1H, H-Ar), 7.37-7.33 (m, 10H, 10H-Ar), 7.22 (d, *J* = 7.9 Hz, 1H, H-Ar), 7.12 (d, *J* = 7.9 Hz, 1H, H-Ar), 5.12 (d, *J* = 8.3 Hz, 1H, NH), 4.95 (d, *J*_{1,2} = 10.5 Hz, 1H, H-1), 4.82-4.76 (m, 4H, CH₂Ph, CH₂CCl₃), 4.63 (d, *J* = 12.1 Hz, 1H, CHPh), 4.57 (d, *J* = 12.1 Hz, 1H, CHPh), 3.84-3.73 (m, 4H, H-3, H-4, H-6a and H-6b), 3.57-3.44 (m, 2H, H-2 and H-5), 2.89 (br s, 1H, OH), 2.37 (s, 3H, CH₃), 1.28 (s, 9H, C(C<u>H₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.8 (NHC=O), 149.7, 138.2, 137.6, 136.7, 132.3, 130.0, 129.7, 128.7, 128.6, 128.3, 128.1, 128.0, 127.9, 125.0 (18C, 18C-Ar), 95.4 (CH₂CCl₃), 86.5 (C-1), 81.8 (C-3), 77.7 (C-5), 74.7 (<u>CH₂CCl₃), 74.6 (CH₂Ph), 73.3 (CH₂Ph), 73.3 (C-4), 70.6 (C-6), 56.2 (C-2), 34.5 (<u>C</u>(CH₃)₃), 31.3 (C(<u>CH₃)₃), 20.3 (CH₃); ESI HRMS for C₃₄H₄₀Cl₃NNaO₆S [M+Na]⁺: calcd 718.1534, found 718.1527.</u></u></u>

(2-Methyl-5-*tert*-butylphenyl) 2-allyloxycarbonylamino-3,6-di-*O*-benzyl-2-deoxy-1-thio**β-D-glucopyranoside 8d:** From **8a** (0.176 g, 0.274 mmol); added TfOH: 15 mol%; room temperature; reaction time: 3h30. **8d** (0.100 g, 60%) as a white foam after flash chromatography (cyclohexane/EtOAc 4:1 to 3:1); $[\alpha]^{22}_{D}$ +2.0 (*c* 1, CHCl₃); ¹H NMR (250 MHz, (CD₃)₂CO) δ 7.69 (d, J = 1.9 Hz, 1H, H-Ar), 7.39-7.26 (m, 10H, 10H-Ar), 7.21 (d, J = 7.9 Hz, 1H, H-Ar), 7.13 (d, J = 7.9 Hz, 1H, H-Ar), 6.73 (d, J = 8.5 Hz, 1H, NH), 6.03-5.88 (m, 1H, CH₂C<u>H</u>=CH₂), 5.32 (dd, $J_{trans} = 17.4$ Hz, J = 1.5 Hz, 1H, CH₂CH=C<u>H₂</u>), 5.15 (dd, $J_{cis} = 10.5$ Hz, J = 1.5 Hz, 1H, CH₂CH=C<u>H₂</u>), 4.97-4.74 (m, 3H, H-1, 2CHPh), 4.57 (s, 4H, 2CHPh, C<u>H</u>₂CH=CH₂), 3.88 (dd, $J_{6a,6b} = 10.7$ Hz, $J_{6a,5} = 1.8$ Hz, 1H, H-6a), 3.79-3.55 (m, 5H, H-2, H-3, H-4, H-5 and H-6b), 2.33 (s, 3H, CH₃), 1.28 (s, 9H, C(C<u>H₃</u>)₃); ¹³C NMR (90 MHz, (CD₃)₂CO) δ 155.9 (NH<u>C</u>=O), 150.2, 140.2, 139.7, 136.2, 134.8, 134.7, 130.4, 129.0, 128.8, 128.4, 128.1, 128.0, 124.7, (19C, 18C-Ar, CH₂CH=CH₂), 116.2 (CH₂CH=CH₂), 87.4 (C-1), 84.3 (C-3), 80.0 (C-5), 74.4 (CH₂Ph), 72.9 (CH₂Ph), 71.0 (C-4), 69.9 (C-6), 64.7 (CH₂CH=CH₂), 56.1 (C-2), 34.1 (C(CH₃)₃), 30.8 (C(CH₃)₃), 19.4 (CH₃); ESI HRMS for C₃₅H₄₃NNaO₆S [M+Na]⁺: calcd 628.2703, found 628.2695.

(2-Methyl-5-*tert*-butylphenyl) 3,6-di-*O*-benzyl-2-deoxy-2-methoxycarbonylamino-1-thioβ-D-glucopyranoside 9d: From 9a (0.198 g, 0.321 mmol); added TfOH: 15 mol%; room temperature; reaction time: 5h. 9d (0.092 g, 49%) as a white foam after flash chromatography (cyclohexane/EtOAc 9:1 to 3:1); $[\alpha]^{22}_{D}$ +18.9 (*c* 1, MeOH); ¹H NMR (250 MHz, (CD₃)₂CO) δ 7.68 (s, 1H, H-Ar), 7.38-7.11 (m, 12H, 12H-Ar), 6.63 (d, *J* = 12.2 Hz, 1H, NH), 4.96-4.88 (m, 2H, H-1 and CHPh), 4.76 (d, *J* = 11.7 Hz, 1H, CHPh), 4.57 (s, 2H, CH₂Ph), 3.88 (dd, *J*_{6a,6b} = 9.8 Hz, *J*_{6a,5} = 1.6 Hz, 1H, H-6a), 3.76-3.53 (m, 8H, H-2, H-3, H-4, H-5, H-6b and CH₃), 2.33 (s, 3H, CH₃), 1.28 (s, 9H, C(C<u>H₃</u>)₃); ¹³C NMR (63 MHz, (CD₃)₂CO) δ 156.6 (NH<u>C</u>=O), 150.3, 140.3, 139.7, 136.3, 134.8, 130.4, 129.0, 128.9, 128.4, 128.1, 128.0, 124.8 (18C, 18C-Ar), 87.3 (C-1), 84.3 (C-3), 80.0 (C-5), 74.4 (CH₂Ph), 72.9 (CH₂Ph), 71.0 (C-4), 69.9 (C-6), 56.1 (C-2), 34.1 (<u>C</u>(CH₃)₃), 30.8 (C(<u>C</u>H₃)₃), 19.4 (CH₃); ESI HRMS for C₃₃H₄₁NNaO₆S [M+Na]⁺: calcd 602.2547, found 602.2542.

Methyl 3,6-di-*O*-benzyl-2-deoxy-2-trifluoroacetamido-α-D-glucopyranoside 10d:

From **10a** (0.112 g, 0.221 mmol); added TfOH: 5 mol%; 0°C; reaction time: 2h. **10d** (0.070 g, 67%) as a white foam after flash chromatography (cyclohexane/EtOAc 7:3 to 3:2); $[\alpha]^{22}_{D}$ +58.4 (*c* 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 7.38-7.28 (m, 10H, 10H-Ar), 6.30 (d, *J* = 9.8 Hz, 1H, NH), 4.79-4.54 (m, 5H, H-1 and 2CH₂Ph), 4.22 (ddd, $J_{2,3} = J_{2,NH} = 9.8$ Hz, $J_{2,1} = 3.8$ Hz, 1H, H-2), 3.85-3.58 (m, 5H, H-3, H-4, H-5, H-6a and H-6b), 3.38 (s, 3H, CH₃), 2.73 (br s, 1H, OH); ¹³C NMR (90 MHz, CDCl₃) δ 138.0, 137.7, 128.8, 128.6, 128.2, 128.0, 127.9 (12C, 12C-Ar), 97.8 (C-1), 79.1 (C-3), 74.5 (CH₂Ph), 73.8 (CH₂Ph), 72.6 (C-4 or C-5), 70.1

(C-6), 70.0 (C-4 or C-5), 55.3 (CH₃), 52.7 (C-2); ESI HRMS for C₂₃H₂₆F₃NNaO₆ [M+Na]⁺: calcd 492.1604, found 492.1580.

tert-Butyldiphenylsilyl 3,6-di-O-benzyl-2-deoxy-2-trifluoroacetamido-β-D-

glucopyranoside 12d: To a solution of 12a (85 mg, 0.116 mmol) in dry CH₂Cl₂ (650 µL) was added AW300 molecular sieves (85 mg). The mixture was stirred at room temperature for 15 min., cooled to 0°C then benzaldehyde (35 µL, 0.349 mmol), trifluoromethane sulfonic acid (5 mol%) and triethylsilane (22 µL, 0.139 mmol) were successively added. The mixture was stirred at 0°C for 15 min. then triethylsilane (94 µL, 0.582 mmol) and trifluoroacetic acid (17 µL, 0.232 mmol) were added. After stirring for 35 min. at 0°C, the solution was diluted with CH₂Cl₂, filtered through a celite pad and washed with satd. aq. NaHCO₃. The aqueous layer was extracted with CH₂Cl₂, then the combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (cyclohexane/EtOAc 3:1) to afford **12d** (0.055 g, 68%) as a white foam. $[\alpha]^{22}_{D}$ -10.1 (c 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 7.72-7.62 (m, 4H, 4H-Ar), 7.45-7.26 (m, 6H, 6H-Ar), 6.16 (d, J = 8.8 Hz, 1H, NH), 4.81-4.64 (m, 3H, H-1 and 2CHPh), 4.53 (d, J = 11.9 Hz, 1H, CHPh), 4.43 (d, J =11.9 Hz, 1H, CHPh), 3.98-3.87 (m, 1H, H-2), 3.80 dd, $J_{4,3} = J_{4,5} = 9.0$ Hz, 1H, H-4), 3.64-3.49 (m, 3H, H-3, H-6a and H-6b), 3.17-3.09 (m, 1H, H-5), 2.88 (br s, 1H, OH), 1.09 (s, 9H, C(CH₃)₃); ¹³C NMR (63 MHz, CDCl₃) δ 138.0, 137.7, 136.0, 135.9, 133.1, 132.6, 130.1, 129.9, 128.7, 128.6, 128.2, 128.1, 128.0, 127.8, 127.5 (24C, 24C-Ar), 95.3 (C-1), 79.9 (C-3), 73.9 (CH₂Ph), 73.9 (CH₂Ph), 73.5 (2C, C-4 and C-5), 70.4 (C-6), 57.8 (C-2), 26.7 (C(CH₃)₃), 19.1 (C(CH₃)₃); ESI HRMS for $C_{38}H_{42}F_{3}KNO_{6}Si [M+K]^{+}$: calcd 732.2365, found 732.2363.

General procedure for one-pot acetalation/benzylation/glycosylation

To a solution of persilylated substrate in dry CH_2Cl_2 (c = 0.2 M) were added benzaldehyde (2.2 equiv) and 3Å molecular sieves (1 g per g of substrate). The mixture was stirred at room temperature for 15 min. Trifluoromethanesulfonic acid (10 mol%) and triethylsilane (1.1 equiv) were then added. After stirring for 15 min. at room temperature, the mixture was cooled then **12d** (0.8 equiv) in dry CH_2Cl_2 (c = 0.1 M) was added followed by *N*-iodosuccinimide (1.5 equiv). The solution was stirred until total consumption of the starting acceptor, then diluted with CH_2Cl_2 , filtered through a celite pad and washed with satd. aq. NaHCO₃ and Na₂S₂O₃. The aqueous phase was extracted with CH_2Cl_2 . The organic layers

were combined, dried over Na₂SO₄, filtered and concentrated. The mixture was purified by a LH20 size exclusion chromatography (CH₂Cl₂/MeOH 1:1) to furnish the desired disaccharide.

tert-Butyldiphenylsilyl (3-*O*-benzyl-4,6-*O*-benzylidene-2-deoxy-2-trichloroacetamido-β-D-glucopyranoside)-(1→4)-3,6-di-*O*-benzyl-2-deoxy-2-trifluoroacetamido-β-D-

glucopyranoside 13: From **6a** (53 mg, 0.075 mmol); -30 to -5°C; reaction time: 1h30. **13** (50 mg, 70%) as a white foam; $[\alpha]^{22}_{D}$ -33.0 (*c* 1, CH₂Cl₂/MeOH 4:1); ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.59 (m, 4H, 4H-Ar), 7.54-7.26 (m, 21H, 21H-Ar), 6.45 (d, *J* = 8.2 Hz, 1H, NH), 6.28 (d, *J* = 8.7 Hz, 1H, NH), 5.52 (s, 1H, CH-Ph), 4.88 (d, *J* = 11.7 Hz, 1H, CHPh), 4.82 (d, *J* = 11.7 Hz, 1H, CHPh), 4.71-4.55 (m, 5H, H-1, H-1 and 3CHPh), 4.30 (d, *J* = 12.1 Hz, 1H, CHPh), 4.23 (dd, *J*_{6a,6b} = 10.5 Hz, *J*_{6a,5} = 4.9 Hz, 1H, H-6a'), 4.11 (dd, *J*_{4,3} = *J*_{4,5} = 8.7 Hz, 1H, H-4), 3.98-3.89 (m, 1H, H-2), 3.80-3.47 (m, 6H, H-2', H-3, H-3', H-4', H-6a and H-6b'), 3.35-3.24 (m, 2H, H-5' and H-6b), 3.35 (m, 1H, H-5), 1.05 (s, 9H, C(C<u>H</u>₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.8 (NH<u>C</u>=O), 138.3, 138.0, 137.9, 137.3, 136.1, 135.9, 133.2, 132.7, 130.1, 129.9, 129.3, 128.7, 128.5, 128.4, 128.3, 128.1, 127.9, 127.8, 127.5, 126.2 (36C, 36C-Ar), 101.3 (CH-Ph), 99.4 (C-1'), 95.1 (C-1), 82.6 (C-4'), 77.7 (C-3), 76.0 (C-3'), 75.7 (C-4), 74.4 (C-5), 74.3 (CH₂Ph), 74.0 (CH₂Ph), 73.6 (CH₂Ph), 68.5 (C-6), 67.7 (C-6), 65.9 (C-5'), 58.1 (C-2'), 57.3 (C-2), 26.7 (C(<u>C</u>H₃)₃), 19.0 (<u>C</u>(CH₃)₃); ESI HRMS for C₆₀H₆₂Cl₃F₃N₂NaO₁₁Si [M+Na]⁺: calcd 1199.3033, found 1199.3009.

tert-Butyldiphenylsilyl (3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-

(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside)-(1→4)-3,6-di-*O*-benzyl-2deoxy-2-trifluoroacetamido-β-D-glucopyranoside 14: From 7a (60 mg, 0.082 mmol); -30 to -5°C; reaction time: 2h. 14 (58 mg, 73%) as a white foam; $[α]^{22}_D$ -31.5 (*c* 1, CH₂Cl₂/MeOH 4:1); ¹H NMR (360 MHz, CDCl₃) δ 7.73-7.62 (m, 4H, 4H-Ar), 7.54-7.21 (m, 26H, 26H-Ar), 6.28 (d, *J* = 8.6 Hz, 1H, NH), 5.52 (s, 1H, CH-Ph), 4.90 (d, *J* = 11.8 Hz, 1H, CHPh), 4.84 (d, *J* = 11.4 Hz, 1H, CHPh), 4.70-4.63 (m, 5H, H-1['], 2CHPh and CH₂CCl₃), 4.57 (d, *J* = 11.8 Hz, 1H, CHPh), 4.41 (d, *J*_{1,2} = 7.7 Hz, 1H, H-1), 4.26 (d, *J* = 11.4 Hz, 1H, CHPh), 4.19 (dd, *J*_{6a['],6b[']} = 10.4 Hz, *J*_{6a['],5[']} = 5.0 Hz, 1H, H-6a[']), 4.04 (dd, *J*_{4,3} = *J*_{4,5} = 8.4 Hz, 1H, H-4), 3.98-3.91 (m, 1H, H-2), 3.66-3.58 (m, 3H, H-3, H-4['] and H-6a), 3.52-3.41 (m, 3H, H-2['], H-3['] and H-6b[']), 3.31 (dd, *J*_{6b,6a} = 10.9 Hz, *J*_{6b,5} = 2.7 Hz, 1H, H-6b), 3.26-3.19 (m, 1H, H-5[']), 3.03 (m, 1H, H-5), 1.08 (s, 9H, C(C<u>H</u>₃)₃); ¹³C NMR (90 MHz, CDCl₃) δ 154.1 (NH<u>C</u>=O), 138.3, 138.2, 137.9, 137.4, 133.2, 132.7, 130.2, 129.9, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.5, 126.1 (36C, 36C-Ar), 101.2 (CH-Ph), 100.9 (C-1[']), 95.6 (CH₂<u>C</u>Cl₃), 95.1 (C-1), 82.3 (C-4[']), 77.9 (C-3), 77.3 (C-3[']), 76.4 (C-4), 74.5 (CH₂Ph or CHCCl₃), 74.4 (C-5), 74.1 (CH₂Ph), 74.0 (CH₂Ph or CHCCl₃), 73.7 (CH₂Ph), 68.5 (C-6[']), 67.6 (C-6), 65.8 (C-5[']), 57.7 (C-2[']), 57.4 (C-2), 26.7 (C(<u>C</u>H₃)₃), 19.1 (<u>C</u>(CH₃)₃); ESI HRMS for C₆₁H₆₄Cl₃F₃N₂NaO₁₂Si [M+Na]⁺: calcd 1229.3138, found 1229.3176.

Procedure for the ¹H and ¹⁹F experiments

A solution of trifluoromethanesulfonic acid (2 μ L, 22 μ mol) in dry CD₂Cl₂ (2 mL) was prepared under argon. C₆F₆ (one drop) was added as a standard for ¹⁹F NMR (δ -163 ppm). After stirring at room temperature for 5 min., 1 mL of the solution was put into a NMR tube then ¹H and ¹⁹F NMR spectra were recorded. 3Å or 4Å AW 300 molecular sieves (150 mg) were added to the NMR tube and the suspension was stirred at room temperature for 15 min. After settling, ¹H and ¹⁹F NMR spectra were recorded.

Copy of ¹⁹F NMR spectrum of a 10mM solution of TfOH (235 MHz, CD₂Cl₂)

Copy of ¹H NMR spectrum of a 10mM solution of TfOH with 3Å molecular sieves (360 MHz, CD₂Cl₂)

Copy of ¹H NMR spectrum of a 10mM solution of TfOH with 4Å AW300 molecular sieves (360 MHz, CD_2Cl_2)

Copy of ¹H NMR spectrum of compound 1a (250 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 1a (63 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 2a (250 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 2a (63 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 3a (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 3a (75 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 4a (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 4a (63 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 5a (300 MHz, CDCl₃)

Copy of ¹³C NMR spectrum (DEPT 135) of compound 5a (75 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 6a (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 6a (90 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 7a (300 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 7a (75 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 8a (250 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 8a (63 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 9a (300 MHz, (CD₃)₂CO)

Copy of ¹³C NMR spectrum of compound 9a (90 MHz, (CD₃)₂CO)

Copy of ¹H NMR spectrum of compound 10a (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 10a (90 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 11a (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 11a (90 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 12a (250 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 12a (63 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 1b (250 MHz, DMSO)

Copy of ¹H NMR spectrum of compound 2b (250 MHz, DMSO)

Copy of ¹³C NMR spectrum of compound 2b (63 MHz, DMSO)

Copy of ¹H NMR spectrum of compound 3b (360 MHz, DMSO)

Copy of ¹³C NMR spectrum of compound 3b (90 MHz, DMSO)

Copy of ¹H NMR spectrum of compound 4b (360 MHz, DMSO)

Copy of ¹³C NMR spectrum of compound 3b (90 MHz, DMSO)

Copy of ¹H NMR spectrum of compound 5b (360 MHz, DMSO)

Copy of ¹³C NMR spectrum of compound 5b (90 MHz, DMSO)

Copy of ¹H NMR spectrum of compound 6b (250 MHz, DMSO)

Copy of ¹³C NMR spectrum of compound 6b (63 MHz, DMSO)

Copy of ¹H NMR spectrum of compound 7b (250 MHz, (CD₃)₂CO)

Copy of ¹³C NMR spectrum of compound 7b (63 MHz, (CD₃)₂CO)

Copy of ¹H NMR spectrum of compound 8b (300 MHz, (CD₃)₂CO)

Copy of ¹³C NMR spectrum of compound 8b (63 MHz, (CD₃)₂CO)

Copy of ¹H NMR spectrum of compound 9b (250 MHz, (CD₃)₂CO)

Copy of ¹³C NMR spectrum of compound 9b (63 MHz, (CD₃)₂CO)

Copy of ¹H NMR spectrum of compound 10b (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 10b (90 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 11b (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum (JMod) of compound 10b (90 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 12b (250 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 12b (63 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 5d (300 MHz, CDCl₃)

Copy of ¹³C NMR spectrum (JMod) of compound 5d (75 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 6d (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum (JMod) of compound 6d (90 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 7d (300 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 7d (75 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 8d (250 MHz, (CD₃)₂CO)

Copy of ¹³C NMR spectrum of compound 8d (250 MHz, (CD₃)₂CO)

Copy of ¹H NMR spectrum of compound 9d (250 MHz, (CD₃)₂CO)

Copy of ¹³C NMR spectrum of compound 9d (63 MHz, (CD₃)₂CO)

Copy of ¹H NMR spectrum of compound 10d (360 MHz, CDCl₃)

Copy of ¹³C NMR spectrum (JMod) of compound 10d (90 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 12d (250 MHz, CDCl₃)

Copy of ¹³C NMR spectrum (JMod) of compound 12d (63 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 13 (300 MHz, CDCl₃)

Copy of ¹³C NMR spectrum of compound 13 (63 MHz, CDCl₃)

Copy of ¹H NMR spectrum of compound 14 (300 MHz, CDCl₃)

