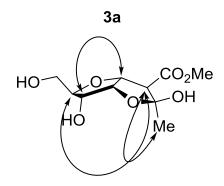
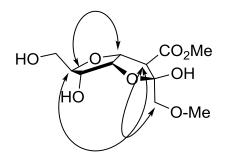
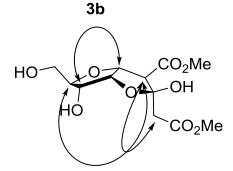
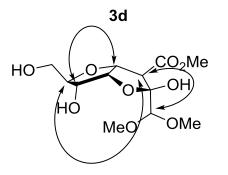
Supporting Informations

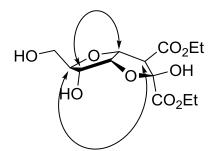

Organocatalyzed Cascade Reactions of Carbohydrates – A Direct Access to C-Glycosides

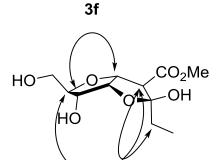
Benjamin Voigt and Rainer Mahrwald Department of Chemistry, Humboldt-University Berlin, Brook-Taylor Str. 2, Germany

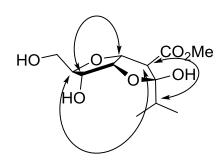

rainer.mahrwald@rz.hu-berlin.de

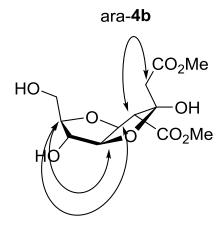

Determination of Configuration

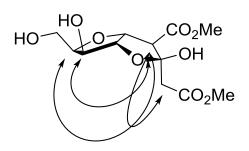

The relative and absolute configuration of the new generated stereocenters was assigned by analysis of nO-interactions of H-Atoms at stereocenters introduced by the employed carbohydrate. The relevant interactions observed in NOESY-experiments are depicted as arrows in the following scheme.



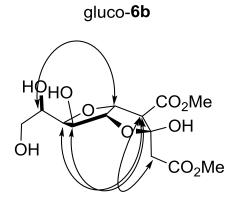


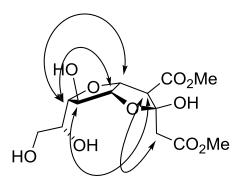






3gi



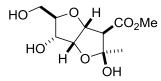


xylo-**5b**

galacto-**7b**

Experimental Procedures

 1 H – NMR, 13 C-NMR and correlation experiments were carried out at 500 MHz and 125 MHz. Chemical shifts are given in ppm. Purification of products was accomplished by flash chromatography using silica (Merck silica gel 60, particle size 0.04 - 0.063 mm) with a solvent mixture of DCM/MeOH 95:5 to 9:1.


Substances were purchased from Aldrich, TCI and ACROS and used without further purification. Substance **2d** was synthesized according to N.E. Norris^[1].

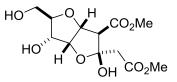
General procedures

150 mg (1 mmol, 1 eq) of the pentoses **1a** - c (180 mg (1 mmol, 1 eq) of the hexoses **1d** - e), (1.2 mmol, 1.2 eq) of the β -keto ester **2**, 23 mg (0.2 mmol, 0.2 eq) of L-proline and 15 mg (0.1 mmol, 0.1 eq) DBU were dissolved in 0.5 ml DMF and the reaction mixture was stirred for 72 h at room temperature. The mixture was purified by silica flash chromatography, using solvent mixtures of dichlormethane/ methanol (95:5 to 9:1). The products were isolated as colourless oils.

Characterization of Products

methyl (2S,3R,3aR,5R,6R,6aR)-2,6-dihydroxy-5-(hydroxymethyl)-2-methylhexahydrofuro[3,2-b]furan-3-carboxylate (3a)

Yield: 67%


¹H NMR (500 MHz, Methanol- d_4) δ 5.26 (dd, J = 5.3, 4.3 Hz, 1H), 4.60 (t, J = 5.3 Hz, 1H), 3.88 (dd, J = 8.9, 5.4 Hz, 1H), 3.80 (dd, J = 12.1, 2.3 Hz, 1H), 3.72 (s, 3H), 3.70 – 3.65 (m, 1H), 3.59 (dd, J = 12.0, 5.1 Hz, 1H), 2.97 (d, J = 4.3 Hz, 1H), 1.68 (s, 3H).

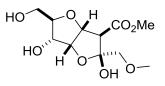
¹³C NMR (125 MHz, Methanol-*d*₄) δ 171.16, 107.51, 85.22, 81.65, 80.89, 72.51, 63.01, 62.18, 52.47, 25.95.

HRMS: calcd. for $C_{10}H_{15}O_7^-$: 247.0823, found: 247.0825

 $[\alpha]_{D}^{25^{\circ}C} = +129 \text{ (C=1, MeOH)}$

methyl (2S,3R,3aR,5R,6R,6aR)-2,6-dihydroxy-5-(hydroxymethyl)-2-(2-methoxy-2-oxoethyl)hexahydrofuro[3,2-b]furan-3-carboxylate (**3b**)

Yield: 86%


¹H NMR (500 MHz, Methanol-d4) δ = 5.30 (dd, J = 5.3, 4.2 Hz, 1H), 4.66 (t, J = 5.4 Hz, 1H), 3.92 (dd, J = 8.9, 5.5 Hz, 1H), 3.83 (dd, J = 12.2, 2.4 Hz, 1H), 3.75 (s, 3H), 3.73 (s, 3H), 3.74 (dd, J = 11.0, 7.5, 1H), 3.62 (ddd, J = 5.8, 2.6, 1.3 Hz, 1H), 3.62 (d, J = 4.0 Hz, 1H), 3.11 (d, J = 15.6 Hz, 1H), 3.02 (d, J = 15.5 Hz, 1H).

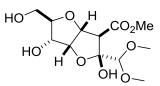
¹³C NMR (125 MHz, Methanol- d_4) δ= 172.03, 170.83, 106.20, 84.47, 81.89, 81.19, 72.44, 62.04, 60.22, 52.58, 52.37, 49.85, 42.58.

HRMS-ESI: calcd. for $C_{12}H_{17}O_9^-$: 305.0878, found: 305.0878

 $[\alpha]_D^{25^{\circ}C} = +79 \text{ (C=1, MeOH)}$

methyl (2R,3R,3aR,5R,6R,6aR)-2,6-dihydroxy-5-(hydroxymethyl)-2-(methoxymethyl)hexahydrofuro[3,2-b]furan-3-carboxylate (**3c**)

Yield: 84%


¹H NMR (500 MHz, Methanol-d4) δ = 5.28 (dd, J = 5.4, 4.3 Hz, 1H), 4.67 (dd, J = 5.4 Hz, 1H), 3.87 (dd, J = 8.7, 5.3 Hz, 1H), 3.79 (dd J= 12.1, 2.3 Hz, 1H), 3.72 (s, 3H), 3.71 (dd, J = 10.6, 7.5 Hz, 1H), 3.63 (d, J = 10.4 Hz, 1H), 3.60 (d, J = 11.5 Hz, 1H), 3.58 (dd, J= 12.1, 5.0 Hz, 1H), 3.48 (s, 3H), 3.33 (d, J = 4.3 Hz, 1H).

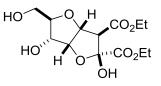
¹³C NMR (125 MHz, Methanol-*d*₄) δ= δ 170.95, 107.90, 84.61, 82.02, 82.02, 74.98, 72.89, 62.21, 59.93, 57.97, 52.52.

HRMS-ESI: calcd. for $C_{11}H_{17}O_8^-$: 277.0929, found: 277.0930

 $[\alpha]_{D}^{25^{\circ}C} = +90 \text{ (C=1, MeOH)}$

methyl (2R,3R,3aR,5R,6R,6aR)-2-(dimethoxymethyl)-2,6-dihydroxy-5-(hydroxymethyl)hexahydrofuro[3,2-b]furan-3-carboxylate (**3d**)

Yield: 36%


¹H NMR (500 MHz, Methanol- d_4) δ = 5.19 (dd, J = 5.3, 4.0 Hz, 1H), 4.68 (t, J = 5.3 Hz, 1H), 3.87 (dd, J = 8.7, 5.3 Hz, 1H), 3.79 (dd, J = 12.2, 2.4 Hz, 1H), 3.73 – 3.70 (m, 1H)3.72 (s, 3H), 3.60 (s, 3H), 3.58 (s, 3H), 3.58 (dd, J = 12.2, 5.2 Hz, 1H), 3.32 (d, J = 4.1 Hz, 1H).

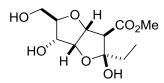
¹³C NMR (125 MHz, Methanol-*d*₄) δ 171.18, 108.16, 106.98, 84.61, 82.24, 82.17, 73.03, 62.21, 58.69, 58.12, 52.57.

HRMS-ESI: calcd. for C₁₂H₁₉O₉: 307.1035, found: 307.1035

 $[\alpha]_{D}^{25^{\circ}C} = +38 \text{ (C=1, MeOH)}$

diethyl (2R,3R,3aR,5R,6R,6aR)-2,6-dihydroxy-5-(hydroxymethyl)hexahydrofuro[3,2-b]furan-2,3-dicarboxylate (**3e**)

Yield: 37%


¹H NMR (500 MHz, Methanol- d_4) $\delta = 5.26$ (dd, J = 5.3, 4.1 Hz, 1H), 4.73 (t, J = 5.3 Hz, 1H), 4.20 – 4.11 (m, 4H), 3.93 (dd, J = 8.8, 5.2 Hz, 1H), 3.83 (dd, J = 12.1, 2.3 Hz, 1H), 3.78 (ddd, J = 9.0, 4.9, 2.3 Hz, 1H), 3.67 (d, J = 4.1 Hz, 1H), 3.60 (dd, J = 12.1, 4.9 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H).

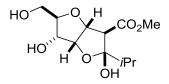
¹³C NMR (125 MHz, Methanol- d_4) δ= 169.83, 169.43, 104.67, 83.84, 83.28, 81.81, 72.58, 63.43, 62.15, 61.40, 14.36.

HRMA-ESI: calcd. for C₁₃H₂₄O₉N⁺: 338.1446, found: 338.1447

 $[\alpha]_{D}^{25^{\circ}C} = -39 \text{ (C=1, MeOH)}$

methyl (2S,3R,3aR,5R,6R,6aR)-2-ethyl-2,6-dihydroxy-5-(hydroxymethyl)hexahydrofuro[3,2-b]furan-3-carboxylate (**3f**)

Yield: 62%

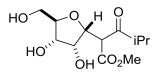

¹H NMR (500 MHz, Methanol- d_4) δ 5.23 (dd, J = 5.1, 3.9 Hz, 1H), 4.63 (t, J = 5.2 Hz, 1H), 3.90 (dd, J = 9.0, 5.2 Hz, 1H), 3.81 (dd, J = 12.1, 2.3 Hz, 1H), 3.71 (s, 3H), 3.69 (ddd, J = 9.0, 5.0, 2.3 Hz, 1H), 3.58 (dd, J = 12.1, 5.0 Hz, 1H), 3.08 (d, J = 3.9 Hz, 1H), 1.97 (qd, J = 7.5, 2.4 Hz, 2H), 1.07 (t, J = 7.5 Hz, 3H).

¹³C NMR (125 MHz, Methanol-*d*₄) δ 171.34, 109.74, 85.22, 81.88, 81.13, 72.74, 62.22, 60.04, 52.43, 32.41, 8.74.

HRMS-ESI: calcd for C₁₁H₁₇O₇⁻ : 261.0980, found: 261.0981

 $[\alpha]_{D}^{25^{\circ}C} = +113 \text{ (C=1, MeOH)}$

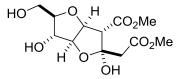
methyl (2S,3R,3aR,5R,6R,6aR)-2,6-dihydroxy-5-(hydroxymethyl)-2-isopropylhexahydrofuro[3,2-b]furan-3-carboxylate (**3g**)


Yield: accumulated **3gi** + **3gii**: 46% (30:70)

¹H NMR (500 MHz, Deuterium Oxide) δ = 5.19 (dd, *J* = 4.7, 3.3 Hz, 1H), 4.72 (t, *J* = 4.9 Hz, 1H), 4.10 – 4.08 (m, 1H), 3.87 – 3.84 (m, 1H), 3.74 (s, 3H), 3.71 (dd, *J* = 12.8, 4.4 Hz, 1H), 3.65 (dd, *J* = 12.8, 5.3 Hz, 1H), 3.37 (d, *J* = 3.3 Hz, 1H), 2.22 (p, *J* = 6.9 Hz, 1H), 1.06 (d, *J* = 6.9 Hz, 3H), 1.05 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (125 MHz, Deuterium Oxide) δ= 171.85, 110.95, 84.14, 80.26, 80.03, 70.72, 60.09, 57.64, 52.59, 35.55, 16.71, 15.90.

HRMS-ESI: calcd. for C₁₂H₁₉O₇ : 275.1136, found: 275.1136

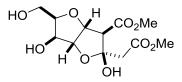

methyl 2-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-4-methyl-3-oxopentanoate (*keto-3g*)

¹H NMR (500 MHz, Deuterium Oxide) δ = 4.38 (dd, *J* = 9.4, 5.0 Hz, 1H), 4.34 (dd, *J* = 8.2, 5.4 Hz, 1H), 4.26 (d, *J* = 8.2 Hz, 1H), 4.23 (d, *J* = 9.4 Hz, 1H), 4.11 (t, *J* = 5.2 Hz, 1H), 4.07 – 4.04 (m, 2H), 4.03 (q, *J* = 5.4 Hz, 1H), 3.92 – 3.85 (m, 2H), 3.76 (s, 3H), 3.74 (s, 3H), 3.70 (ddd, *J* = 12.4, 3.5, 1.3 Hz, 2H), 3.60 (ddd, *J* = 12.4, 8.6, 5.0 Hz, 2H), 2.89 (dq, *J* = 13.6, 6.8 Hz, 2H), 1.13 (d, *J* = 7.0 Hz, 3H), 1.11 (d, *J* = 7.0 Hz, 3H), 1.08 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (126 MHz, Deuterium Oxide) δ= 211.67, 210.97, 169.46, 168.66, 83.58, 83.29, 81.20, 81.00, 73.22, 73.10, 70.79, 61.41, 61.38, 59.40, 59.33, 53.18, 53.13, 42.28, 42.20, 17.08, 16.96, 16.82, 16.76.

methyl (2R,3S,3aS,5R,6R,6aS)-2,6-dihydroxy-5-(hydroxymethyl)-2-(2-methoxy-2-oxoethyl)hexahydrofuro[3,2-b]furan-3-carboxylate (ara-**4b**)

Yield: 81%


¹H NMR (500 MHz, Methanol- d_4) δ = 5.22 (dd, J = 5.6, 3.7 Hz, 1H), 4.62 (dd, J = 5.6, 2.1 Hz, 1H), 4.02 (dd, J = 5.4, 2.0 Hz, 1H), 3.85 (ddd, J =, 5.8, 5.44, 4.27 Hz, 1H), 3.71 (s, 3H), 3.70 (s, 3H), 3.65 (dd, J = 11.7, 4.3 Hz, 1H) 3.56 (dd, J = 11.7, 5.8 Hz, 1H), 3.55 (d, J = 4.0 Hz, 1H), 3.02 (d, J = 15.1 Hz, 1H), 2.93 (d, J = 14.6 Hz, 1H).

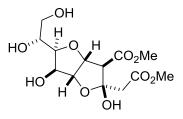
¹³C NMR (125 MHz, Methanol-*d*₄) δ= 171.73, 170.82, 107.07, 107.03, 90.32, 89.53, 85.20, 77.22, 63.04, 60.37, 52.47, 52.30, 43.63.

HRMS-ESI: calcd. for C₁₁H₁₇O₉⁻ : 305.0878, found: 305.0878

 $[\alpha]_{D}^{25^{\circ}C} = -36 \text{ (C=1, MeOH)}$

methyl (2S,3R,3aR,5R,6S,6aR)-2,6-dihydroxy-5-(hydroxymethyl)-2-(2-methoxy-2-oxoethyl)hexahydrofuro[3,2-b]furan-3-carboxylate (xylo-**5b**)

Yield: 83%


¹H NMR (500 MHz, Methanol- d_4) δ = 5.40 (dd, J = 5.6, 4.1 Hz, 1H), 4.54 (d, J = 5.5 Hz, 1H), 4.06 (d, J = 2.9 Hz, 1H), 3.92 (ddd, J = 6.4, 4.9, 2.9 Hz, 1H), 3.81 (dd, J = 11.5, 5.0 Hz, 1H), 3.74 (dd, J = 11.5, 6.3 Hz, 1H), 3.73 (s, 3H), 3.69 (s, 3H), 3.59 (d, J = 4.4 Hz, 1H), 3.06 (d, J = 15.3 Hz, 1H), 2.90 (d, J = 15.2 Hz, 1H).

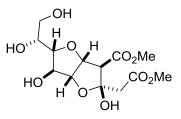
¹³C NMR (125 MHz, Methanol- d_4) δ= 171.64, 170.99, 88.16, 84.60, 81.99, 75.96, 60.85, 58.85, 52.57, 52.27, 42.56.

HRMS-ESI: calcd. for $C_{23}H_{18}O_9Cl^-$: 341.0645, found: 341.0645

 $[\alpha]_{D}^{25^{\circ}C} = +49 \text{ (C=1, MeOH)}$

 $methyl\ (2S,3R,3aR,5S,6S,6aR)-5-((R)-1,2-dihydroxyethyl)-2,6-dihydroxy-2-(2-methoxy-2-oxoethyl)hexahydrofuro [3,2-b]furan-3-carboxylate\ (gluco-$ **6b**)

Yield: 27%


¹H NMR (500 MHz, Methanol- d_4) δ = 5.38 (dd, J = 5.3, 4.2 Hz, 1H), 4.54 (d, J = 5.3 Hz, 1H), 4.15 (d, J = 2.7 Hz, 1H), 3.89 (ddd, J = 8.8, 6.0, 3.1 Hz, 1H), 3.75 (dd, J = 4.4, 2.9 Hz, 1H) 3.74 (dd, J = 11.4, 8.8 Hz, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 3.58 (dd, J = 11.4, 6.1 Hz, 1H), 3.05 (d, J = 15.2 Hz, 1H), 2.90 (d, J = 15.0 Hz, 1H).

¹³C NMR (125 MHz, Methanol- d_4) δ= 171.66, 171.02, 105.75, 105.72, 87.85, 84.78, 81.03, 75.60, 70.38, 65.37, 59.10, 52.53, 52.30, 42.72.

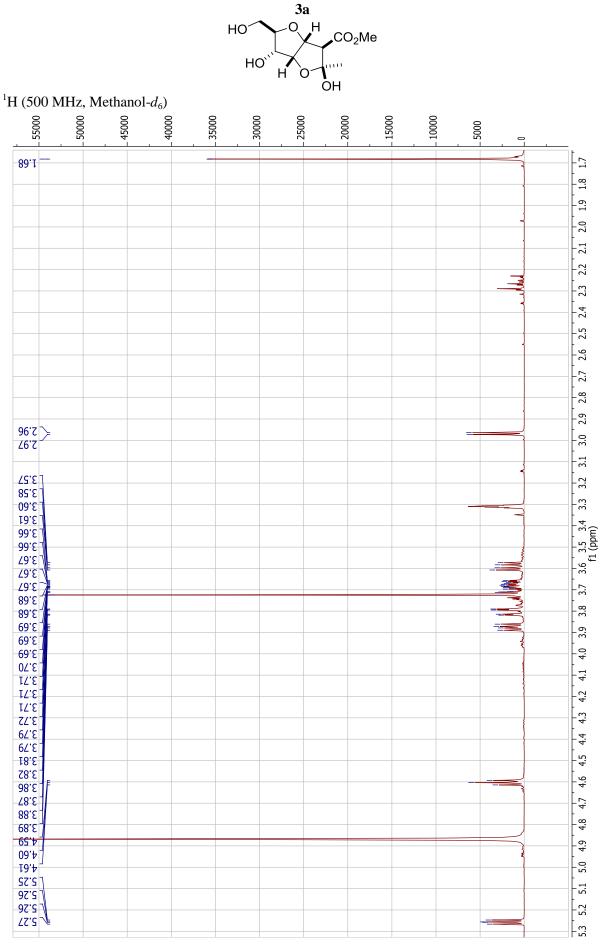
HRMS-ESI: calcd. for $C_{13}H_{20}O_{10}Cl^{-}$: 371.0750, found: 371.0751

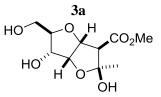
 $[\alpha]_{D}^{25^{\circ}C} = +59 \text{ (C=1, MeOH)}$

methyl (2S,3R,3aR,5R,6S,6aR) - 5 - ((R) - 1,2 - dihydroxyethyl) - 2,6 - dihydroxy - 2 - (2 - methoxy - 2 - oxoethyl) hexahydrofuro [3,2 - b] furan - 3 - carboxylate (galacto - 7b)

Yield: 67%

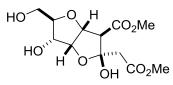
¹H NMR (500 MHz, Methanol- d_4) δ = 5.18 (dd, J = 5.8, 3.9 Hz, 1H), 4.63 (dd, J = 5.8, 2.5 Hz, 1H), 4.15 (dd, J = 6.8, 2.5 Hz, 1H), 3.78 (dd, J = 6.8, 4.0 Hz, 1H), 3.71 (s, 3H), 3.70 (s, 3H), 3.64 (dd, J = 10.8, 7.2 Hz, 1H), 3.63 – 3.55 (m, 2H), 3.61 (d, J = 3.8 Hz, 1H) 3.04 (d, J = 15.1 Hz, 1H), 2.95 (d, J = 14.8 Hz, 1H).

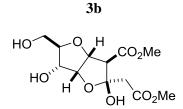

¹³C NMR (125 MHz, Methanol- d_4) δ= 171.98, 170.83, 107.28, 90.54, 88.23, 84.80, 77.35, 72.23, 64.65, 59.90, 52.47, 52.34, 43.54.


HRMS-ESI: calcd. for $C_{13}H_{19}O_{10}^{-1}$: 335.0984, found: 371.0982

 $[\alpha]_{D}^{25^{\circ}C} = +24 \text{ (C=1, MeOH)}$

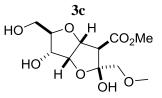
Literature

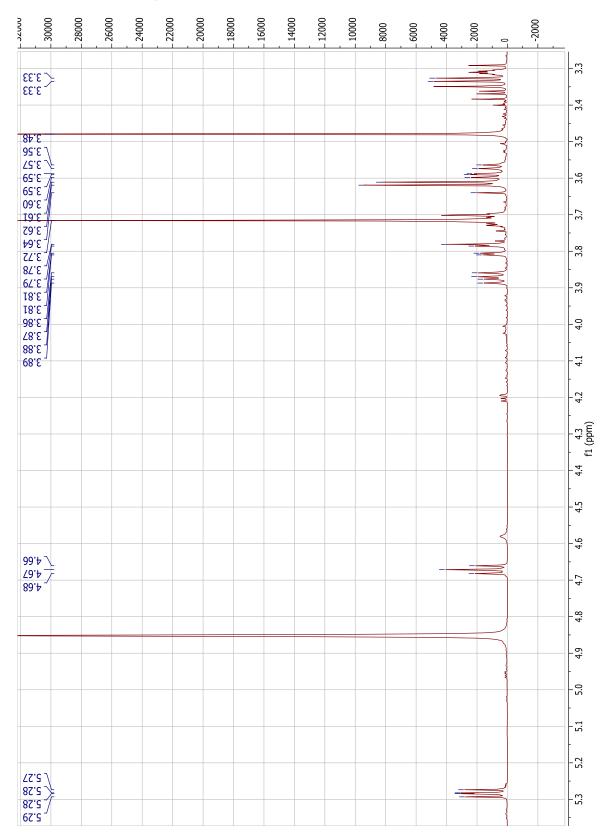

[1] J. A. Secrist, C. J. Hickey, R. E. Norris, J. Org. Chem. **1977**, 42, 525-527.

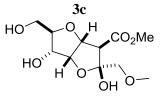


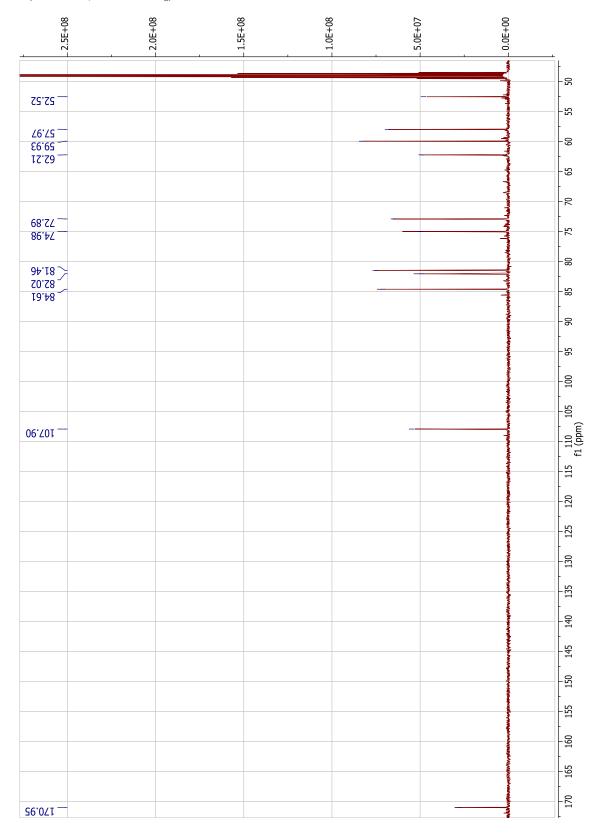
-2.0E+07 2.2E+08 2.0E+08 1.8E+08 1.6E+08 - 1.4E+08 1.2E+08 1.0E+08 8.0E+07 6.0E+07 4.0E+07 2.0E+07 0.0E+00 2.6E+U8 2.4E+08 56.25 + - ജ -6 2 74.52 -03 0.25 63.01 63.01 -R 12.51 - 8 68.08 59.18 82.22 -8 100 f1 (ppm) 12.701 -110 120 130 140 150 160 170 91.171 _____

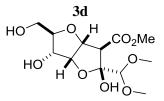
3b



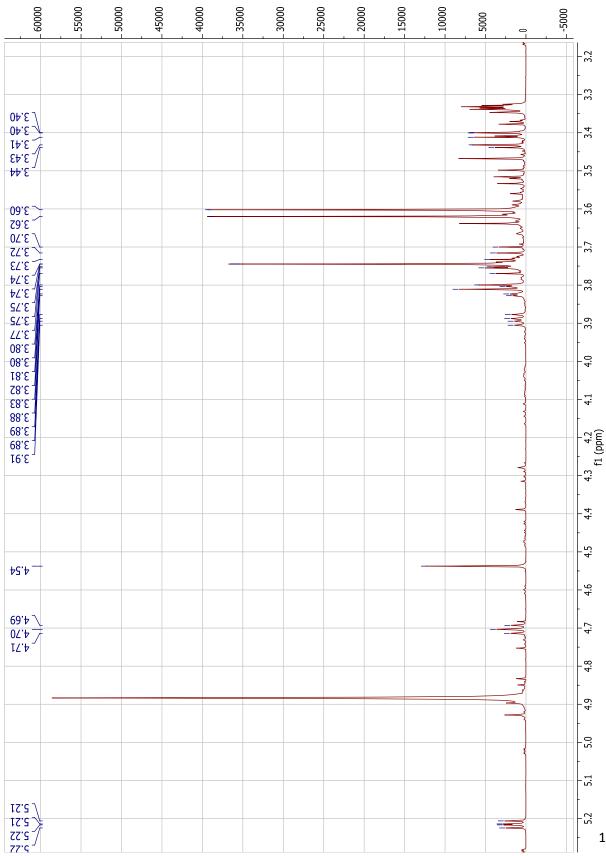

	_ 50000 - 45000	- 40000	- - 35000	- 30000	- - 25000	- - 2000	- 15000	- - 10000	- 5000	0	-5000
0.5											
20'2 20'2 20'2 50'2 50'2											
ET.E											
											-
19'E 19'E]											
79'8 79'8											
29'2] 29'2]											
19'E 19'E 19'E 29'E 28'E 28'E 48'E 48'E 56'E 26'E									3		ŀ
57.5 27.5											-
T8'E											
+8.5_ 1_3.84											
06'8											
Z6'E											-
											-
S9.₽ ∕											
99'⊅ <u>∕</u> 29'⊅											
										\leq	-
										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2'S 2'30 2'30 2'30 2'30 2'31											
02.3											



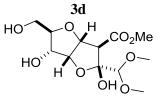


5.0E+08 4.5E+08 4.0E+08 3.5E+08 3.0E+08 - 2.5E+08 2.0E+08 1.5E+08 1.0E+08 5.0E+07 - 0.0E+00 5.5E+08 -4 45.58 -4 58'6+ 25'35 25'28 -23 -12 +0.23 ____62.04 -9 -13 -2 44[.]72.44 -K - 8 74,47 81.89 81.19 - 58 -8 -2 100 105 (ppm) 02.901 — 110 f1 ( 115 120 125 130 135 -41 145 150 155 160 165 28.071 / بر 172.03 170

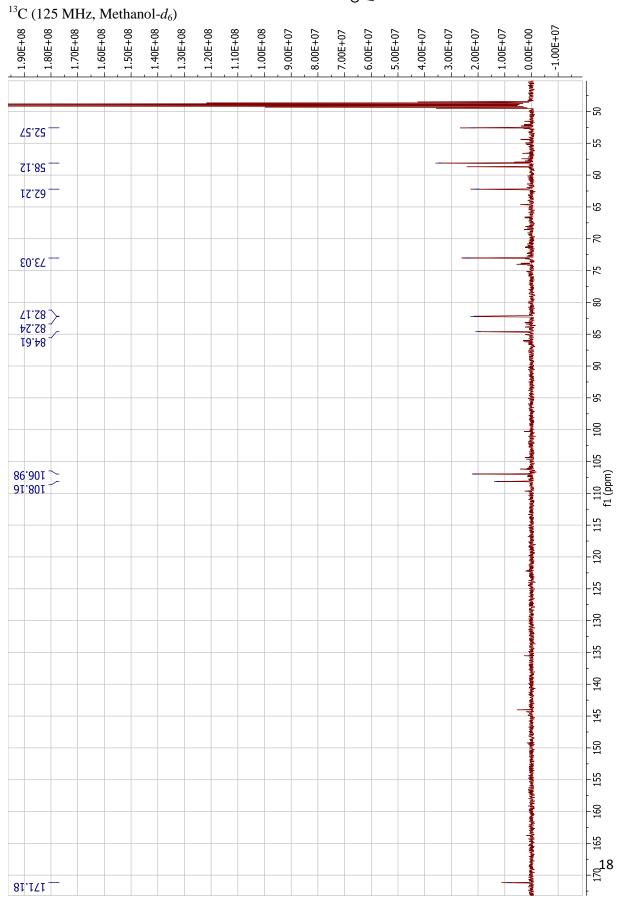

¹³C (125 MHz, Methonol- $d_6$ )

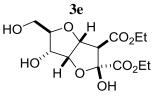




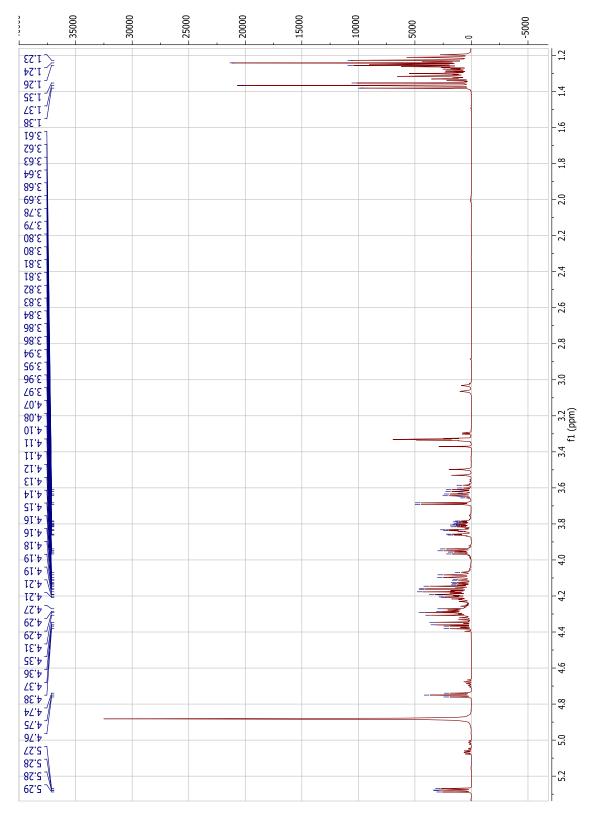


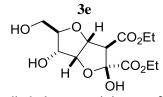



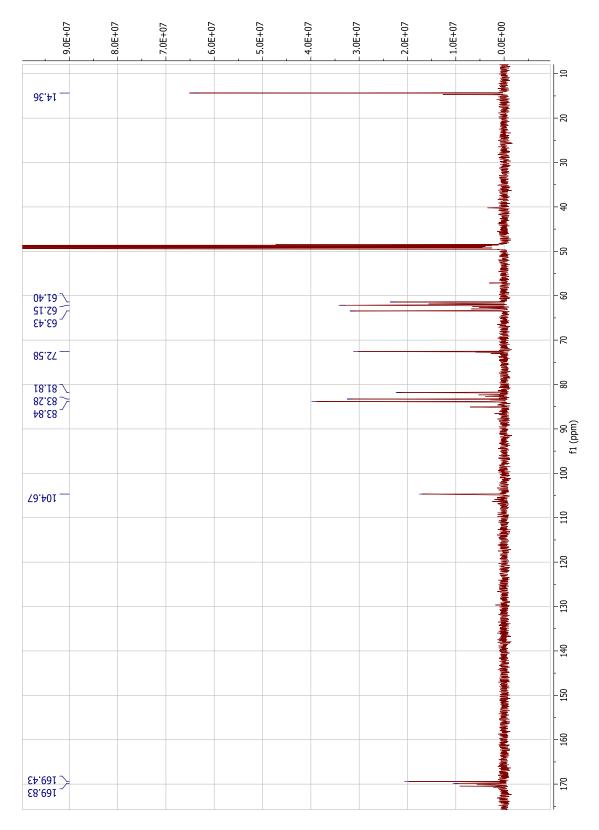


¹H (500 MHz, Methanol- $d_6$ )

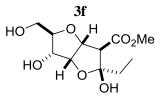



17

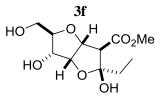


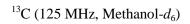


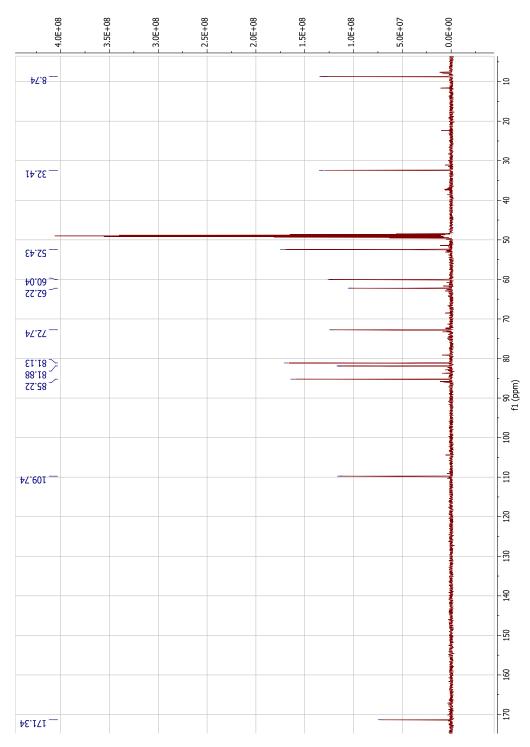



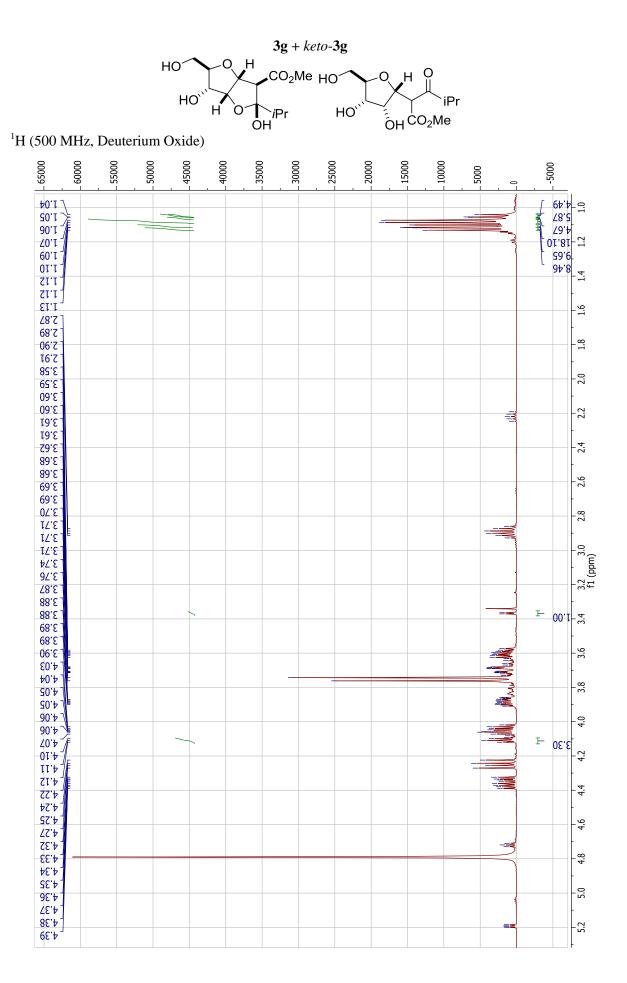


Contains 5% diethyl oxosuccinic ester 2e as impurity

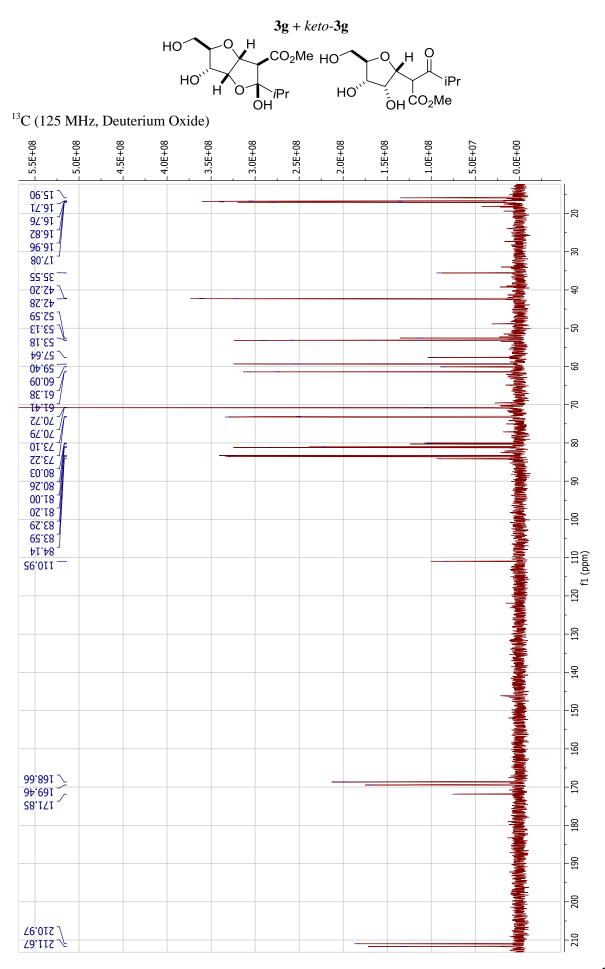




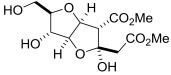


Contains 5% diethyl oxosuccinic ester 2e as impurity

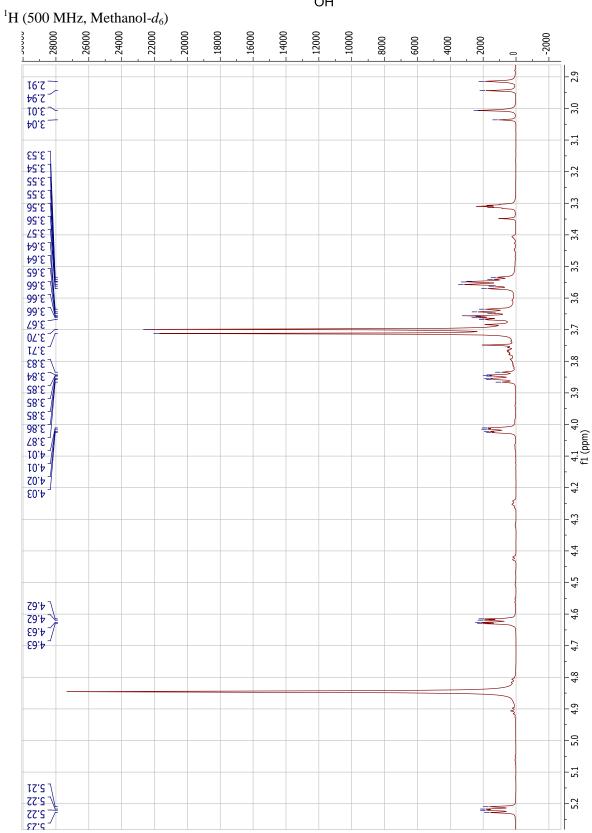


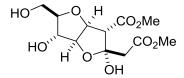


45000 40000 35000 30000 25000 20000 15000 10000 5000 0 Mull 1:0-50'T ∖ ∠0'T ∕ 80'T 1.2 1.4 56'T ] 1.6 56 T 96'1 1.8 Z6'I 79.1 J 86'T 2.0 86.1 [ 66'T 2.2 00'Z 2'00 5'00 2.4 3.08 2.6 60'8 3'26 73.57 2.8 65'8 3'60 3.2 3.0 f1 (nnm) 29.5 29'8 89.5 89'E 89.5 3.68 3.4 69'8 69'8 69'E 02'E 3.6 0Z'E 3.8 02.5 17.5 -62'2 3'20 3'80 3'85 3'85 3'85 -4-4.2 68'8 3'60 4.4 16.5 3'65 ∕ 4'64 √ 4'63 4'64 4.6 4.8 5.0 [ 2[.]22 5.23 5.23 5.23 5.2

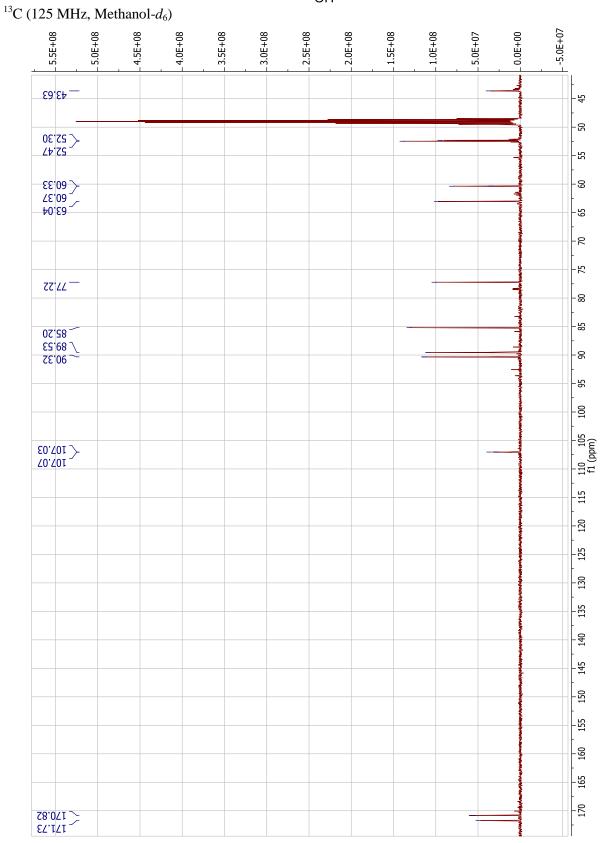




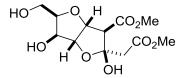


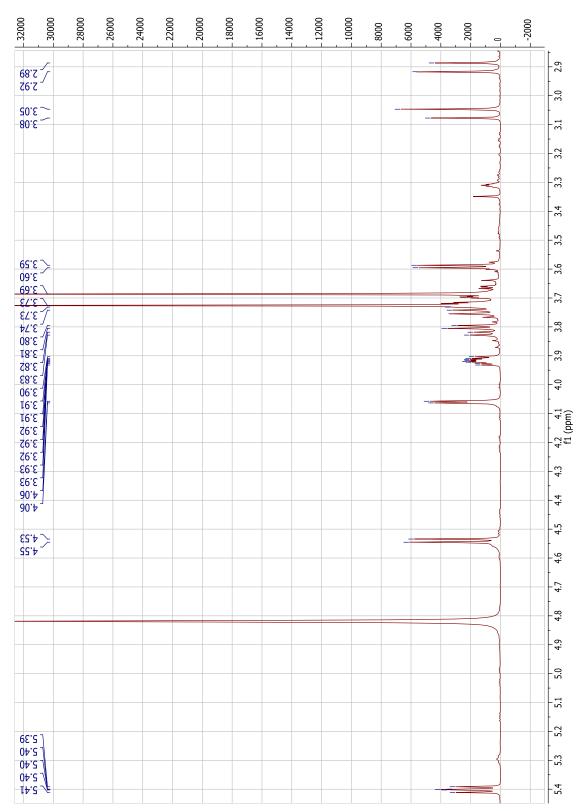





ara-4b

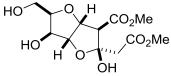





ara-4b

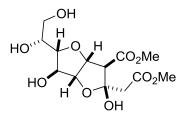


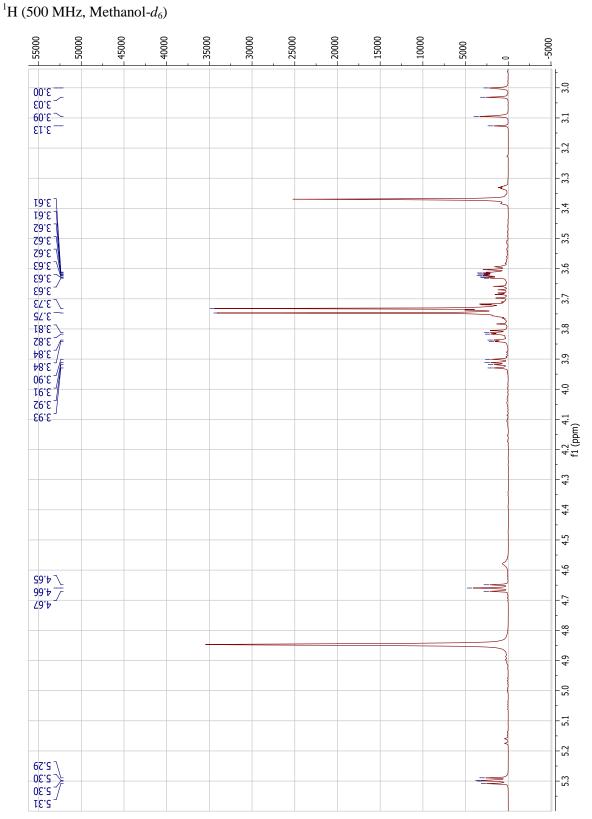




26

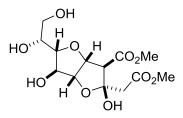


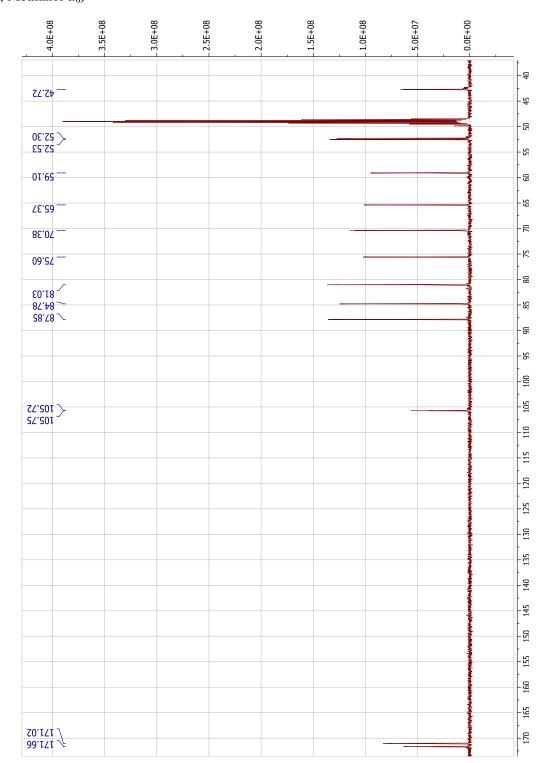




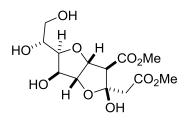



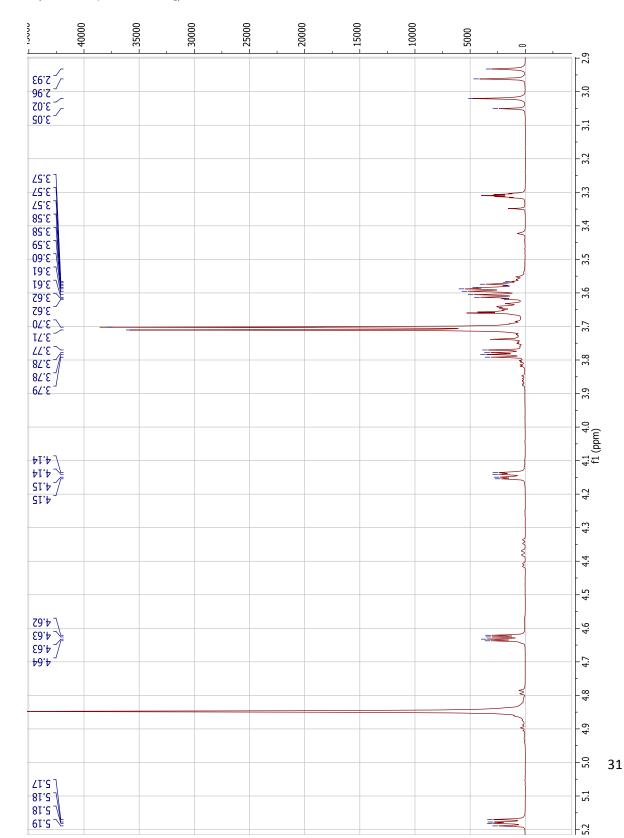


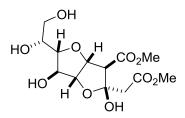


gluco-6b



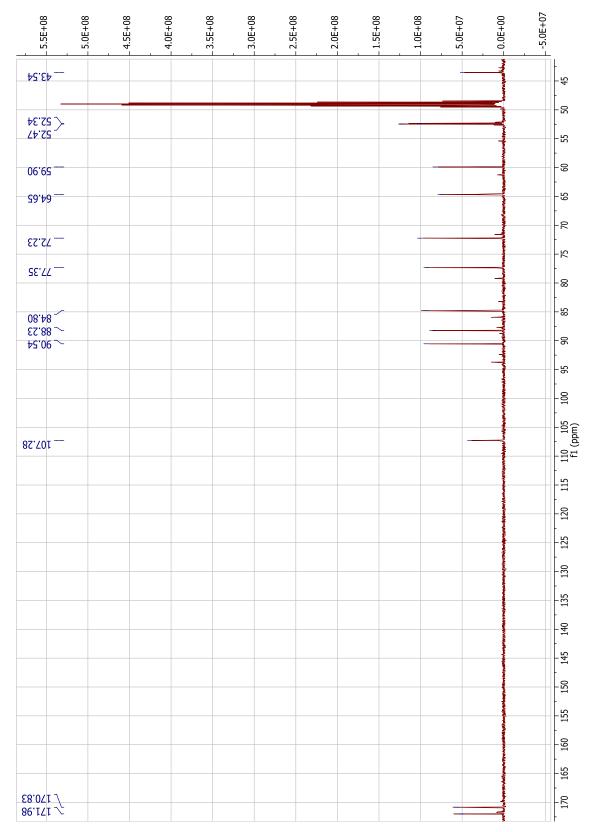





galacto-7b






galacto-7b



¹³C (125 MHz, Methanol- $d_6$ )



32