Electronic Supplementary Information

Intermolecular (4+3) Cycloadditions of Aziridinyl Enolsilanes

Sze Kui Lam, Sarah Lam, Pauline Chiu*
Department of Chemistry, the University of Hong Kong, Pokfulam Road, Hong Kong

Table of Contents

General Experimental S3
Preparation of Aziridinyl Ketones 3a-m S4
Preparation of Aziridinyl Enolsilanes 1a-m S16
General Experimental Procedure for ($4+3$) Cycloadditions S24
$(4+3)$ Cycloadditions of Aziridinyl Enolsilanes 1a with furan (Table 1, selected entries) S24
(4+3) Cycloadditions of Aziridinyl Enolsilanes 1a-g with Dienes (Table 2) S27
(4+3) Cycloadditions of Aziridinyl Enolsilanes 1h-m with Dienes (Table 3) S39
Asymmetric (4+3) Cycloadditions of Aziridinyl Enolsilanes S49
NMR Spectra of all new compounds S55
Chiral HPLC Chromatograms S229
X-ray Crystallographic Data of (-)- β-4aa S261

General Experimental

Preparative: All anhydrous reactions were performed in oven-dried round-bottomed flasks under a positive pressure of dry argon. Air and moisture-sensitive compounds were introduced via syringes or cannulae using standard inert atmosphere techniques. Reactions were monitored by thin layer chromatography (TLC) using E. Merck silica gel plates, Kieselgel $60 \mathrm{~F}_{254}$ with 0.2 mm thickness. Components were visualized by illumination with short-wavelength ultra-violet light and/or staining. Flash column chromatography was performed with E. Merck silica gel 60 (230-400 mesh ASTM). Solvents and chemicals were purified according to standard procedures. All solvents used for reactions were distilled or dried by passing through drying columns. Tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, nitroethane $\left(\mathrm{EtNO}_{2}\right)$, furan, 1,1,1,3,3,3-hexamethyldisilazane (HMDS) were distilled from CaH_{2} under argon. Cyclopentadiene was prepared from freshly cracking dicyclopentadiene. Other reagents were used as received.

Analytical: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR nuclear magnetic resonance spectra were recorded in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$, with tetramethylsilane (TMS) as an internal standard at ambient temperature on a Bruker DX 300 spectrometer, Bruker Avance 400 spectrometer, Bruker DX 500 spectrometer, or Bruker Avance 600 operating at $300 \mathrm{MHz}, 400 \mathrm{MHz}, 500 \mathrm{MHz}$ or 600 MHz respectively for ${ }^{1} \mathrm{H}$, and at $75 \mathrm{MHz}, 100 \mathrm{MHz}, 125 \mathrm{MHz}$ or 150 MHz respectively for ${ }^{13} \mathrm{C}$. All spectra were calibrated at $\delta 7.26$ or $\delta 0.00 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ spectra (residual CHCl_{3} or TMS respectively), and 77.16 ppm for ${ }^{13} \mathrm{C}$ spectra. Splitting patterns were designated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. $\quad \mathrm{IR}$ absorption spectra were recorded as solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on a Bio-Rad FTS 165 spectrometer from $4000 \mathrm{~cm}^{-1}$ to $400 \mathrm{~cm}^{-1}$. Electron impact mass spectrometry was recorded on a Finnigan MAT 95 mass spectrometer or API QSTAR PULSAR i LC/MS/TOF System for both low resolution and high resolution, with accurate mass reported for the molecular ion $\left(\mathrm{M}^{+}\right)$or next largest fragment thereof. Analytical HPLC was carried out on a Waters Analytical/Preparative HPLC system equipped with a 1525 Binary Pump, a 2707 Autosampler, and a variable wavelength Waters 2498 UV detector operating with Breeze 2 software. Preparative HPLC was carried out on a Waters HPLC with a 510 HPLC pump and 410 differential refractometer.

Preparation of Aziridinyl Ketones 3a-m

Preparation of 3a

Aziridinyl ketone 3a was prepared according to literature procedure in 3 steps from D-serine methyl ester hydrochloride. ${ }^{1} \quad(\boldsymbol{R})$-1-(1-Tosylaziridin-2-yl)ethanone ($(+)$-3a): White solid; $\mathrm{R}_{f}=0.69$ (50\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.25(\mathrm{dd}, J=7.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.744(\mathrm{~s}, 3 \mathrm{H}), 2.06$ ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.6,145.5,133.9,130.1,128.3,42.0,32.0,26.0,21.8$ ppm. The spectral characteristics corresponded to those of $\mathbf{3 a}$ in the literature. ${ }^{1}$ The enantiomeric excess was determined by HPLC analysis [Daicel chiralcel OF, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 40 \% \mathrm{IPA}$ in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=20.38 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=22.66 \mathrm{~min}\right]$ to be 99% ee .

Preparation of 3b

To a solution of methyl aziridine-2-carboxylate $(0.4226 \mathrm{~g}, 4.180 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL}, 8.6 \mathrm{mmol})$ and $\mathrm{MsCl}(0.62 \mathrm{~mL}, 8.0 \mathrm{mmol})$. The resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous NaHCO_{3} and extracted with EtOAc. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using 40% EtOAc in hexane to afford S1 ($0.7463 \mathrm{~g}, 99 \%$ yield). Methyl 1-(methylsulfonyl)aziridine-2-carboxylate (S1): Colourless oil; $\mathrm{R}_{f}=0.48$ (50% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.13$ (dd, $J=7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 167.1,52.2,38.9,35.2,31.1 \mathrm{ppm}$; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3058,2956,1755(\mathrm{C}=\mathrm{O})$, 1444, $1394 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $148\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 18\right), 120$ (59), 100 (100), 79 (62), 72 (19); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right)$ 148.0063, Found 148.0075.

To a solution of $\mathbf{S} \mathbf{1}(1.605 \mathrm{~g}, 8.968 \mathrm{mmol})$ in anhydrous THF $(90 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added 1.45 M

[^0]Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

MeLi $(6.5 \mathrm{~mL}, 9.4 \mathrm{mmol})$. The resulting mixture was stirred for 20 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using 35% EtOAc in hexane to afford 3b (0.4989 g , 34\% yield). 1-(1-(Methylsulfonyl)aziridin-2-yl)ethanone (3b): Colourless oil; $\mathrm{R}_{f} 0.38$ (50\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 3.05$ (dd, $J=7.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.24$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 200.2$, 41.1, 38.8, 31.0, 25.6 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3062$, 2939, $1720(\mathrm{C}=\mathrm{O}), 1411,1326 \mathrm{~cm}^{-1}$; LRMS (EI, 20 $\mathrm{eV}): \mathrm{m} / \mathrm{z} 163$ ($\mathrm{M}^{+}, 17$), 148 (29), 122 (100), 120 (58), 107 (25), 84 (26); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\left(\mathrm{M}^{+}\right) 163.0298$, Found 163.0303.

Preparation of 3c

Aziridinyl methyl ester $\mathbf{S 2}$ was prepared according to literature procedure. ${ }^{2}$ To a solution of $\mathbf{S} \mathbf{2}$ $(1.040 \mathrm{~g}, 3.673 \mathrm{mmol})$ in anhydrous THF $(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $1.45 \mathrm{M} \mathrm{MeLi}(2.6 \mathrm{~mL}, 3.7$ mmol). The resulting mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using 15% EtOAc in hexane to afford $\mathbf{S 3}$ ($0.7244 \mathrm{~g}, 74 \%$ yield). 1-(1-(Mesitylsulfonyl)aziridin-2-yl)ethanone (3c): White solid; mp: 33-36 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.52(20 \%$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.61(\mathrm{~s}, 2 \mathrm{H}), 3.14$ (dd, $J=7.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70 (s, $6 \mathrm{H}), 2.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 200.5,143.6,140.4,132.6,132.1,41.1,31.3,25.4,23.0,20.7 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3047, 2977, 2939, 1712 (C=O), 1604, $1450 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 267 ($\mathrm{M}^{+}, 17$), 153 (35), 149 (34), 136 (48), 119 (78), 106 (35), 89 (54), 81 (69); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$267.0924, Found 267.0917.

[^1]Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

Preparation of 3d

S3

To a solution of DL-Serine methyl ester hydrochloride ($1.556 \mathrm{~g}, 9.999 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}, 21 \mathrm{mmol})$ and 2, 4, 6-triisopropylbenzenesulfonyl chloride (3.514 g , $11.60 \mathrm{mmol})$. The resulting mixture was stirred overnight at $0^{\circ} \mathrm{C}$. The reaction was quenched with aqueous NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash coloumn chromatography using 35% EtOAc in hexane to afford S3 ($3.5504 \mathrm{~g}, 92 \%$ yield). 3-Hydroxy-2-(2,4,6-triisopropylphenylsulfonamido) propanoate (S3): White solid; mp: 117-119 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.20\left(35 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~s}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.12-4.04 (m, 3H), 3.91 (d, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.63 (s, 3H), 2.89 (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (br, s, 1H), 1.28-1.23 (m, 18H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,153.3,150.4,132.2$, 124.0, 63.7, 57.2, 53.0, 34.2, 30.0, 25.0, 24.8, 23.7, 23.6 ppm; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3340,2960,2931,2869$, 1743 (C=O), $1332 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 385 ($\mathrm{M}^{+}, 1$), 267 (100), 251 (37), 236 (13), 221 (30), 218 (28); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}^{+}\right)$385.1917, Found 385.1925.

To a solution of $\mathbf{S 3}(3.411 \mathrm{~g}, 8.859 \mathrm{mmol})$ in THF $(80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PPh}_{3}(2.947 \mathrm{~g}, 11.25$ mmol) and diethylazodicarboxylate $(1.8 \mathrm{~mL}, 11 \mathrm{mmol})$. The resulting mixture was stirred overnight from $0{ }^{\circ} \mathrm{C}$ to room temperature. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using 8% EtOAc in hexane to afford $\mathbf{S 4}(2.9513 \mathrm{~g}$, 91\% yield). Methyl 1-((2,4,6-triisopropylphenyl)sulfonyl)aziridine-2-carboxylate (S4): White solid; mp: 54-56 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.33$ (10% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.19$ ($\mathrm{s}, 2 \mathrm{H}$), 4.65 (septet, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.62$ (septet, $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,154.1,151.9,131.8,124.2,52.0,35.8,34.4,31.6$, 30.2, 25.1, 25.0, 23.5 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3064,2956,2929,2900,2869,1743(\mathrm{C}=\mathrm{O}), 1598,1564$ cm^{-1}; LRMS (EI, 20eV) m/z 367 ($\mathrm{M}^{+}, 1$), 294 (3), 266 (43), 251 (79), 233 (3), 218 (62); HRMS (EI,

To a solution of $\mathbf{S 4}(1.512 \mathrm{~g}, 4.119 \mathrm{mmol})$ in anhydrous THF $(80 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added 1.45 M MeLi ($2.9 \mathrm{~mL}, 4.2 \mathrm{mmol}$). The resulting mixture was stirred for 20 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using 8% EtOAc in hexane to afford $\mathbf{3 d}(0.1 .2284 \mathrm{~g}$, 85\% yield). 1-(1-((2,4,6-Triisopropylphenyl)sulfonyl)aziridin-2-yl)ethanone (3d): Colourless oil; $\mathrm{R}_{f}=0.50\left(20 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.20(\mathrm{~s}, 2 \mathrm{H}), 4.59$ (septet, $J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.24 (dd, $J=7.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 200.1,154.2,151.9,131.7,124.3,41.6,34.4,31.6,30.1$, 25.3, 25.1, 25.0, 23.6 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3060,2964,2929,2871,2893,1712(\mathrm{C}=\mathrm{O}), 1598,1560$ cm^{-1}; LRMS (EI, 20 eV) m/z 351 ($\mathrm{M}^{+}, 1$), 266 (66), 251 (74), 249 (4), 235 (2), 233 (3); HRMS (EI, $20 \mathrm{eV})$ Calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$351.1863, Found 351.1859.

Preparation of 3e

Aziridinyl methyl ester $\mathbf{S 5}$ was prepared according to literature procedure from L-serine. ${ }^{3}$

To a solution of (-)-S5 (19.02 g, 55.37 mmol$)$ in $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{~mL})$ was added $\mathrm{NaOH}(3.452 \mathrm{~g}, 86.27$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight from $0^{\circ} \mathrm{C}$ to room temperature. The bulk of the $\mathrm{CH}_{3} \mathrm{CN}$ was removed in vacuo. $\mathrm{H}_{2} \mathrm{O}(110 \mathrm{~mL})$ and citric acid monohydrate ($23.62 \mathrm{~g}, 112.4 \mathrm{mmol}$) in EtOAc (400 mL) was added and the resulting mixture was stirred at room temperature for 30 min . The two layers were separated and the aqueous layer was

[^2]extracted with EtOAc (100 mL x 5). The combined organic layers were dried over anhydrous MgSO_{4} and the volatiles were removed in vacuo. The crude product of (-)-S6 was subjected to the subsequent reaction without further purification.

To a solution of (-)-S6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was added DMAP ($\left.0.6810 \mathrm{~g}, 5.574 \mathrm{mmol}\right), \mathrm{Et}_{3} \mathrm{~N}$ (11.6 $\mathrm{mL}, 83.5 \mathrm{mmol}$), N,O-dimethylhydroxylamine hydrochloride ($5.593 \mathrm{~g}, 57.34 \mathrm{mmol}$) and DCC (11.65 $\mathrm{g}, 56.44 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight and quenched with brine. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL} \times 3)$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 25% EtOAc in hexane to afford (-)-S7 ($18.4927 \mathrm{~g}, 41 \%$ yield). (S)-N-Methoxy-N-methyl-1-tritylaziridine-2-carboxamide ((-)-S7): White solid; mp: 58-60 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}$ $=0.30(20 \%$ EtOAc in hexane $) ; \quad[\alpha]_{\mathrm{D}}{ }^{20}=-53.3^{\circ}\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.54-7.52 (m, 6H), 7.29-7.19 (m, 9H), $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{dd}, J=5.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,144.0,129.5,127.7,127.0,74.6,61.5,32.7$, 29.2, 28.1 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3042, 2980, $1665(\mathrm{C}=\mathrm{O}), 1489,1341,1244,1017 \mathrm{~cm}^{-1}$; LRMS (EI, 20 $\mathrm{eV}) \mathrm{m} / \mathrm{z} 341\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}, 1\right), 243$ (100), 165 (47); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right)$ 341.1654, Found 341.1648.

To a solution of (-)-S7 (8.241 g, 22.13 mmol) in THF (90 mL) was added MeLi (2.39 M in diethoxymethane, $9.8 \mathrm{~mL}, 23 \mathrm{mmol}$) slowly at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$ before quenching with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($100 \mathrm{~mL} \times 3$), separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford (-)-S8 (7.0657 g, 98\% yield). (S)-1-(1-Tritylaziridin-2-yl)ethanone ((-)-S8): Colourless oil; $\mathrm{R}_{f}=0.68$ (20\% EtOAc in hexane $) ; \quad[\alpha]_{\mathrm{D}}{ }^{20}=-69.3^{\circ}\left(\mathrm{c}=0.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.47-7.40 (m, 6 H$)$, 7.30-7.20 (m, 9H), 2.28 (s, 3H), 2.20 (dd, $J=2.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (dd, $J=6.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.44$ (dd, $J=6.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.8,143.5,129.3,127.8,127.1,74.6,39.4$, 29.1, 25.2 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3086,3067,2984,1701(\mathrm{C}=\mathrm{O}), 1489,1447,1356,1217,1003 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 327 ($\mathrm{M}^{+}, ~ 1$), 243 (100), 165 (46); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}$ $\left(\mathrm{M}^{+}\right)$327.1623, Found 327.1619.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

1. TFA, $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$

To a solution of (-)-S8 ($2.361 \mathrm{~g}, 7.212 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added $\mathrm{MeOH}(0.300 \mathrm{~mL}$, $7.41 \mathrm{mmol})$ and TFA $(1.1 \mathrm{~mL}, 14 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 \min. $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}, 22 \mathrm{mmol})$ was added and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . $(\mathrm{Boc})_{2} \mathrm{O}(1.8 \mathrm{~mL}, 7.8 \mathrm{mmol})$ was then added and the mixture was stirred at room temperature overnight before washing with 10% citric acid solution, $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 20% EtOAc in hexane to afford (-)-3e ($1.1299 \mathrm{~g}, 85 \%$). (S)-tert-Butyl 2-acetylaziridine-1-carboxylate((-)-3e): Colourless oil; $\mathrm{R}_{f}=0.39$ (20\% EtOAc in hexane $) ;[\alpha]_{\mathrm{D}}{ }^{20}=-104.2^{\circ}\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.10(\mathrm{dd}, J=6.0,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=3.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.7,160.0,82.3,41.1,31.8,27.9,27.0 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2992$, 2982, 1724 (C=O), 1711 ($\mathrm{C}=\mathrm{O}$), 1370, $1283 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $170\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 2\right), 150$ (5), 126 (28), 112 (100), 105 (29), 85 (77), 77 (10); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ 170.0817, Found 170.0810. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 6 \% \mathrm{IPA}$ in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=15.03 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ $12.27 \mathrm{~min}]$ to be 99% ee.

The racemic aziridinyl ketone $3 \boldsymbol{e}$ could be obtained in one step from methyl vinyl ketone as described below.

The solution of $\mathrm{BnNH}_{2}(8.0 \mathrm{~mL}, 73 \mathrm{mmol})$ and $\mathrm{BzOH}(3.775 \mathrm{~g}, 30.92 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(250 \mathrm{~mL})$ was stirred at room temperature for 10 min . Methyl vinyl ketone ($10.9 \mathrm{~mL}, 134 \mathrm{mmol}$) was added and the resulting mixture was stirred for 10 min . BocNHOTs ${ }^{4}(21.36 \mathrm{~g}, 76.33 \mathrm{mmol})$ was added and the mixture was stirred for $5 \mathrm{~min} . \mathrm{NaHCO}_{3}(10.47 \mathrm{~g}, 124.6 \mathrm{mmol})$ was added and the reaction

[^3]Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013
mixture was stirred at room temperature overnight. The mixture was filter through a short pad of silica gel and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 20% EtOAc in hexane to afford $\mathbf{(\pm)} \mathbf{)} \mathbf{3 e}(12.9158 \mathrm{~g}$, 94\% yield).

Preparation of $\mathbf{3 f}$

To a solution of (-)-S8 $(0.1014 \mathrm{~g}, 0.3097 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ was added $\mathrm{MeOH}(0.015 \mathrm{~mL}$, $0.37 \mathrm{mmol})$ and TFA $(0.050 \mathrm{~mL}, 0.65 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . $\mathrm{Et}_{3} \mathrm{~N}(0.130 \mathrm{~mL}, 0.935 \mathrm{mmol})$ was added and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . $\mathrm{CBzCl}(0.050 \mathrm{~mL}, 0.35 \mathrm{mmol})$ was then added and the mixture was stirred at room temperature overnight before washing with 10% citric acid solution, $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 25% EtOAc in hexane to afford (-)-3f(0.0372 g, 55\%). (S)-Benzyl 2-acetylaziridine-1-carboxylate ((-)-3f): Colourless oil; $\mathrm{R}_{f}=0.42$ ($35 \% \mathrm{EtOAc}$ in hexane $) ;[\alpha]_{\mathrm{D}}{ }^{20}=-71.1^{\circ}\left(\mathrm{c}=0.59, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37-7.33 (m, 5 H$)$, $5.17(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=6.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=3.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.2, 161.1, $135.4,128.7,128.6,128.5,68.8,41.0,32.0,27.1 \mathrm{ppm}$. The spectral characteristics corresponded to those of $\mathbf{(} \mathbf{\pm} \mathbf{)} \mathbf{- 3 f}$ in the literature. ${ }^{5}$ The enantiomeric excess was determined by HPLC analysis [Daicel chiralcel OD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 20 \% \mathrm{IPA}$ in hexane, t_{R} (major) $=23.76 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $\left.)=20.13 \mathrm{~min}\right]$ to be 99% ee.

The racemic aziridinyl ketone 3 f could be obtained in one step from methyl vinyl ketone as described below.

The solution of $\mathrm{BnNH}_{2}(2.750 \mathrm{~mL}, 25.18 \mathrm{mmol})$ and $\mathrm{BzOH}(1.288 \mathrm{~g}, 10.55 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(84 \mathrm{~mL})$

[^4]was stirred at room temperature for 10 min . Methyl vinyl ketone $(1.7 \mathrm{~mL}, 21 \mathrm{mmol})$ was added and the resulting mixture was stirred for 10 min . CBzNHOTs $^{6}(8.099 \mathrm{~g}, 25.20 \mathrm{mmol})$ was added and the mixture was stirred for $5 \mathrm{~min} . \mathrm{NaHCO}_{3}(3.527 \mathrm{~g}, 41.98 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature overnight. The mixture was filter through a short pad of silica gel and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 20\% EtOAc in hexane to afford ($\mathbf{\pm}$) $\mathbf{- 3 f}(1.7522 \mathrm{~g}$, 38% yield).

Preparation of $\mathbf{3 g}$

$$
\text { 1. TFA, } \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}
$$

To a solution of (-)-S8 (2.344 g, 7.158 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35.8 \mathrm{~mL})$ was added $\mathrm{MeOH}(0.290 \mathrm{~mL}$, $7.16 \mathrm{mmol})$ and TFA $(1.1 \mathrm{~mL}, 14 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 \min. $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}, 22 \mathrm{mmol})$ was added and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . $\operatorname{PivCl}(1.0 \mathrm{~mL}, 8.1 \mathrm{mmol})$ was then added and the mixture was stirred at room temperature overnight before washing with 10% citric acid solution, $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 25% EtOAc in hexane to afford (-)-3g (1.0018 g, 83\%). (S)-1-(2-Acetylaziridin-1-yl)-2,2-dimethylpropan-1-one ((-)-3g): Colourless oil; $\mathrm{R}_{f}=0.36(20 \%$ EtOAc in hexane); $[\alpha]_{\mathrm{D}}{ }^{20}=-169.9^{\circ}\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.09(\mathrm{dd}, J=$ $6.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=3.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.0,189.7,41.3,41.2,30.6,27.7,25.6 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2972$, 2938, 1711 (C=O), 1694 (C=O), 1479, 1396, 1277, $1198 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $169\left(\mathrm{M}^{+}, 2\right), 154$ (4), 126 (43), 112 (10), 85 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right) 169.1103$, Found 169.1095. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AY-3, 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10 \% \mathrm{IPA}$ in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=22.42 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=16.21 \mathrm{~min}\right]$ to be 99% ee.

[^5]Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

Preparation of $\mathbf{3 h}$

The solution of $\mathrm{BnNH}_{2}(0.105 \mathrm{~mL}, 0.961 \mathrm{mmol})$ and $\mathrm{BzOH}(0.0503 \mathrm{~g}, 0.412 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(3.2$ mL) was stirred at room temperature for 10 min . Trans-3-nonen-2-one ($0.135 \mathrm{~mL}, 0.816 \mathrm{mmol}$) was added and the resulting mixture was stirred for 10 min . TsNHOTs ${ }^{7}(0.3301 \mathrm{~g}, 0.9669 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature overnight. The mixture was filter through a short pad of silica gel and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were removed in vасиo. The residue was purified by flash column chromatography using $20 \% \mathrm{EtOAc}$ in hexane to afford $\mathbf{3 i}$ and $\mathbf{S 9}(0.1443 \mathrm{~g}, 57 \%$ yield, 17.9:1). Analytically pure $\mathbf{3 h}$ and $\mathbf{S 9}$ were obtained by further careful column chromatography using $80 \% \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane. $\mathbf{1 - (}\left(\mathbf{2} \boldsymbol{S}^{*}, \mathbf{3} \boldsymbol{R}^{*}\right) \mathbf{3} \mathbf{3 - P e n t y l}-1$-tosylaziridin-2-yl)ethanone (3h): Colourless oil; $\mathrm{R}_{f}=0.64\left(80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{qd}, J=5.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.92(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.5,144.7,136.9,129.9,127.6,50.3,49.8,31.3,28.1,27.6,26.0,22.5,21.7,14.0$ ppm; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3053,2961,2930,2861,1713(\mathrm{C}=\mathrm{O}), 1599,1458,1444,1406,1331,1163 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 366 ($\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}, 2$), 210 (3), 154 (100), 91 (43), 84 (36); HRMS (EI, 20 eV) Calculated for $\quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S} \quad\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right) \quad$ 266.1215, Found 266.1210 . $\mathbf{1 - (}\left(\mathbf{2} \boldsymbol{S}^{*}, \mathbf{3} \boldsymbol{S}^{*}\right) \mathbf{- 3}$-Pentyl-1-tosylaziridin-2-yl)ethanone (S9): Colourless oil; $\mathrm{R}_{f}=0.48\left(80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dq}, J=7.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H})$, 1.34-1.25 (m, 1H), 1.22-1.12 (m, 6H), $0.78(\mathrm{t}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $201.3,145.2,134.3,129.9,128.3,47.3,45.9,31.1,29.4,27.3,26.7,22.4,21.7,13.8 \mathrm{ppm} ;$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3048, 2959, 2930, 2861, $1726(\mathrm{C}=\mathrm{O}), 1599,1410,1331,1163 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $309\left(\mathrm{M}^{+}, 1\right), 266$ (11), 210 (11), 154 (100), 91 (44), 84 (51); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$309.1399, Found 309.1393.

[^6]Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

Preparation of 3i

$3 i$
The solution of $\mathrm{BnNH}_{2}(2.380 \mathrm{~mL}, 21.79 \mathrm{mmol})$ and $\mathrm{BzOH}(1.116 \mathrm{~g}, 9.139 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(73 \mathrm{~mL})$ was stirred at room temperature for 10 min . Trans-3-nonen-2-one ($3.0 \mathrm{~mL}, 18 \mathrm{mmol}$) was added and the resulting mixture was stirred for 10 min . BocNHOTs ${ }^{4}(6.272 \mathrm{~g}, 21.81 \mathrm{mmol})$ was added and the mixture was stirred for $5 \mathrm{~min} . \quad \mathrm{NaHCO}_{3}(10.47 \mathrm{~g}, 124.6 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature overnight. The mixture was filter through a short pad of silica gel and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 10% EtOAc in hexane to afford $3 \mathbf{i}(3.8041 \mathrm{~g}, 82 \%$ yield). ($\mathbf{2} \mathbf{S}^{*}, \mathbf{3} \mathbf{R}^{*}$)-tert-Butyl 2-acetyl-3-pentylaziridine-1-carboxylate (3i): Colourless oil; $\mathrm{R}_{f}=$ 0.56 (20\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~m}, 12 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8,159.2,81.7,46.7,45.6,31.4,31.3,29.1,28.0,26.6,22.6$, 14.0 ppm . The spectral characteristics corresponded to those of $\mathbf{3 i}$ in the literature. ${ }^{8}$

Preparation of 3j

To a solution of $\mathbf{3 i}(1.153 \mathrm{~g}, 4.515 \mathrm{mmol})$ in THF (22.6 mL) was added TBAF (1.0 M in THF, 5.0 $\mathrm{mL}, 5.0 \mathrm{mmol}$). The reaction mixture was heated under reflux for 6 h and then cooled to room temperature. The reaction was quenched with aqueous NaHCO_{3}, extracted with EtOAc (50 mL x 3), separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 30% EtOAc in hexane to afford S10 ($0.4324,63 \%$ yield). 1-(($\left.2 S^{*}, \mathbf{3} \boldsymbol{R}^{*}\right)$-3-Pentylaziridin-2-yl)ethanone (S10): Colourless oil; $\mathrm{R}_{f}=$ 0.38 (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 333 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 2.51(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (s, $3 \mathrm{H}), 2.01(\mathrm{td}, J=5.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=$ 6.9 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.6, 42.9, 42.3, 33.2, 31.5, 28.8, 26.8, 22.5, 13.8 ppm; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3323 (NH), 3065, 3036, 2959, 2932, 2859, 1701 (C=O), 1458, 1425, 1377, 1231,

[^7]$1173 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $155\left(\mathrm{M}^{+}, 1\right), 112$ (7), 84 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}\left(\mathrm{M}^{+}\right)$155.1310, Found 155.1296.

To a solution of $\mathbf{S 1 0}(0.0558 \mathrm{~g}, 0.364 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.100 \mathrm{~mL}, 0.719$ $\mathrm{mmol})$ and $\mathrm{PivCl}(0.065 \mathrm{~mL}, 0.53 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ and warmed to room temperature gradually. After 3 h , the reaction was quenched with brine, extracted with EtOAc (10 mL x 3), separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using $10 \% \mathrm{EtOAc}$ in hexane to afford $\mathbf{3 j}(0.0644 \mathrm{~g}, 74 \%$ yield $)$. $\mathbf{1 - (}\left(\mathbf{2} \mathbf{S}^{*}, \mathbf{3} \mathbf{R}^{*}\right)$-2-Acetyl-3-pentylaziridin-1-yl)-2,2-dimethylpropan-1-one (3j): Colourless oil; $\mathrm{R}_{f}=0.50$ ($20 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dddd}, J=7.3,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.0,187.5,46.9,45.9,41.1,31.5,31.4,29.0,27.6,26.3,22.6,14.1 \mathrm{ppm} ;$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2990, 2963, 2934, $1717(\mathrm{C}=\mathrm{O}), 1674(\mathrm{C}=\mathrm{O}), 1425,1311,1117,1080 \mathrm{~cm}^{-1}$; LRMS (EI, 20 $\mathrm{eV}) \mathrm{m} / \mathrm{z} 239\left(\mathrm{M}^{+}, 1\right), 224$ (1), 210 (1), 196 (12), 168 (6), 154 (26), 140 (10), 102 (15), 84 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$239.1885, Found 239.1878.

Preparation of $3 k$

Aziridinyl methyl ester S11 was prepared according to the literature procedure. ${ }^{9}$ To a solution of $\mathbf{S 1 1}(1.550 \mathrm{~g}, 5.754 \mathrm{mmol})$ in anhydrous THF (30 mL) was added MeLi (1.96 M in diethoxymethane, $3.0 \mathrm{~mL}, 5.9 \mathrm{mmol}$) slowly at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78{ }^{\circ} \mathrm{C}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} x$ 3), separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 20% EtOAc in hexane to afford $3 k$ ($0.8376 \mathrm{~g}, 57 \%$ yield). 1-(2-Methyl-1-tosylaziridin-2-yl)ethanone (3k): White solid; mp: 107-110 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.57$ (30\% EtOAc in hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.81(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 203.9,144.8,136.9,129.8,127.7,52.3,38.4,24.2,21.7,13.5 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3071,2986,2947$, $1715(\mathrm{C}=\mathrm{O}), 1599,1495,1456,1329,1256,1165 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $253\left(\mathrm{M}^{+}, 1\right), 210(20)$,

[^8]155 (75), 98 (90), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$253.0773, Found 253.0765 .

Preparation of 31

Aziridinyl methyl ester $\mathbf{S} \mathbf{2}$ was prepared according to the literature procedure. ${ }^{1}$ To a solution of S12 ($1.102 \mathrm{~g}, 4.316 \mathrm{mmol}$) in anhydrous THF (17 mL) was added EtLi (0.84 M in dibutylether, 5.4 $\mathrm{mL}, 4.5 \mathrm{mmol}$) slowly at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 31 ($0.4252 \mathrm{~g}, 39 \%$ yield). 1-(1-Tosylaziridin-2-yl)propan-1-one (31): White solid; $\mathrm{R}_{f}=0.45$ (30\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.31 (dd, $J=7.3,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.74 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (s, 3H), 2.43-2.35 (m, 2H), 0.97 (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0,145.4,134.1,130.0,128.3,41.2,32.7$, $32.2,21.8,7.2 \mathrm{ppm}$. The spectral characteristics corresponded to those of $\mathbf{3 1}$ in the literature. ${ }^{10}$

Preparation of $\mathbf{3 m}$

$\mathbf{S 1 3}$ was prepared according to the literature procedure. ${ }^{1}$ To a solution of $\mathbf{S 1 3}(8.830 \mathrm{~g}, 32.34 \mathrm{mmol})$ in anhydrous THF (300 mL) at $-90^{\circ} \mathrm{C}$ was added $0.55 \mathrm{M} i-\operatorname{PrLi}(181 \mathrm{~mL}, 100 \mathrm{mmol})$. The resulting mixture was stirred for 2 h from $-90^{\circ} \mathrm{C}$ to $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78{ }^{\circ} \mathrm{C}$, neutralized to pH 7 by addition of 3 M HCl and extracted with EtOAc. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $30 \% \mathrm{EtOAc}$ in hexane to afford (-)-14 (4.3291 g, 47\% yield). (R)-N-(1-Hydroxy-4-methyl-3-oxopentan-2-yl)-4methylbenzene sulfonamide ((-)-14): White solid; mp: $132-135{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.48(50 \% \mathrm{EtOAc}$ in

[^9]hexane $) ; \quad[\alpha]_{\mathrm{D}}{ }^{20}=-89.6^{\circ}\left(\mathrm{c}=1.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=7.0,1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.68$ (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.68(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9,144.0,136.3,129.8,127.3,63.2,61.8,37.3$, 21.5, 18.7, 17.3 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3581,3296,3062,2976,2931,1718(\mathrm{C}=\mathrm{O}), 1598 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $214\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}, 24\right.$), 184 (13), 155 (54), 91 (100), 71 (24); HRMS (EI) Calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}\right)$ 214.0532, Found 214.0530.

To a solution of (-)-14 (4.329 g, 15.19 mmol$)$ in THF $(1.9 \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PPh}_{3}(7.863 \mathrm{~g}$, 30.01 mmol) and diisopropylazodicarboxylate ($5.9 \mathrm{~mL}, 30 \mathrm{mmol}$). The resulting mixture was stirred for 2 h at room temperature. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using 12% EtOAc in hexane to afford (+)-3m (2.1516 g , 53\% yield). (\boldsymbol{R})-2-Methyl-1-(1-tosylaziridin-2-yl)propan-1-one ((+)-3m): Colourless oil; $\mathrm{R}_{f}=$ $0.24(10 \%$ EtOAc in hexane $) ; \quad[\alpha]_{\mathrm{D}}{ }^{20}=+66.9^{\circ}\left(\mathrm{c}=1.86, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{dd}, J=7.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 1 H), 2.26 (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.07(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9,3 \mathrm{H}), 0.80$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 205.2,144.7,135.4,129.8,128.4,39.3,38.7$, 32.0, 21.1, 17.7, 17.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3056,2978,2936,2877,1717(\mathrm{C}=\mathrm{O}), 1598,1494 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 267 ($\mathrm{M}^{+}, 3$), 224 (4), 212 (6), 155 (72), 136 (8), 112 (52), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$267.0924, Found 267.0916. The enantiomeric excess was determined by HPLC analysis [Daicel chiralcel OF, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 30 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=21.16 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=28.58 \mathrm{~min}\right]$ to be 92% ee .

Preparation of Azridinyl Enolsilanes 1a-m

To a solution of (+)-3a(0.9596 g, 4.010 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.7$ $\mathrm{mL}, 12 \mathrm{mmol})$ and TESOTf $(1.85 \mathrm{~mL}, 8.12 \mathrm{mmol})$. The resulting mixrture was stirred at $0^{\circ} \mathrm{C}$ for 3 h. The reaction was quenched with aqueous NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$, separated
and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using 5\% EtOAc and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford (+)-1a $(1.2760 \mathrm{~g}, 90 \%$ yield). (R)-1-Tosyl-2-(1-(triethylsilyloxy)vinyl)aziridine ((+)-1a): Colourless oil; $\mathrm{R}_{f}=0.45(10 \%$ EtOAc in hexane $) ;[\alpha]_{\mathrm{D}}{ }^{20}=+42.8^{\circ}\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{dd}, J=7.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (s, 3H), $0.85(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.51(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 152.4,144.1,136.5$, 129.7, 128.2, 94.6, 41.2, 31.3, 21.1, 6.7, 5.0 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3067,2960,2914,2878,1636(\mathrm{C}=\mathrm{C})$, $1598 \mathrm{~cm}^{-1}$; LRMS (EI, 20eV) m/z 353 (M+1), 324 (100), 296 (25), 198 (5), 177 (6), 155 (12), 115 (15); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}\right) 353.1480$, Found 353.1480.

To a solution of $\mathbf{3 b}(0.4873 \mathrm{~g}, 2.990 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}$, $9.2 \mathrm{mmol})$ and TESOTf ($1.4 \mathrm{~mL}, 6.2 \mathrm{mmol}$). The resulting mixrture was stirred overnight from -78 ${ }^{\circ} \mathrm{C}$ to $-18{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $8 \% \mathrm{EtOAc}$ and $0.1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford $\mathbf{1 b} \quad(0.6523 \mathrm{~g}, 79 \%$ yield). 1-(Methylsulfonyl)-2-(1-(triethylsiloxy) vinyl)aziridine (1b): Colourless oil; $\mathrm{R}_{f}=0.34$ (10% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=7.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.34$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 152.4,94.3,40.4$, 39.1, 30.7, 6.7, 5.0 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3062,2958,2877,1635(\mathrm{C}=\mathrm{C}), 1458,1411 \mathrm{~cm}^{-1}$; LRMS (EI, $20 \mathrm{eV}) \mathrm{m} / \mathrm{z} 277$ ($\mathrm{M}^{+}, 1$), 248 (100), 220 (89), 206 (35), 190 (3), 181 (1); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}\right)$277.1162, Found 277.1164.

To a solution of $\mathbf{3 c}(0.6404 \mathrm{~g}, 2.400 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}$, $9.2 \mathrm{mmol})$ and TESOTf ($1.4 \mathrm{~mL}, 6.2 \mathrm{mmol}$). The resulting mixrture was stirred overnight from -78 ${ }^{\circ} \mathrm{C}$ to $-18{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The
combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $3 \% \mathrm{EtOAc}$ and $0.1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford 1c ($0.8569 \mathrm{~g}, ~ 94 \%$ yield). 1-(Mesitylsulfonyl)-2-(1-(triethylsiloxy) vinyl)aziridine (1c): Colourless oil; $\mathrm{R}_{f}=0.36\left(5 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $6.60(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=7.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}$, $6 \mathrm{H}), 2.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.49(\mathrm{q}$, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 152.8,142.8,140.2,133.8,132.0,93.7,40.7$, 30.6, 23.3, 20.7, 6.7, 5.0 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2962,2916,2877,1635(\mathrm{C}=\mathrm{C}), 1604,1566 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 381 ($\mathrm{M}^{+}, 4$), 352 (58), 317 (8), 269 (5), 205 (8), 198 (14), 119 (100), 115 (50), 87 (44), 77 (23); HRMS (EI, 20 eV): Calculatd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}\right)$381.1788, Found 381.1793.

To a solution of $\mathbf{3 d}(0.6509 \mathrm{~g}, 1.854 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}$, $5.7 \mathrm{mmol})$ and TESOTf ($0.9 \mathrm{~mL}, 4.0 \mathrm{mmol}$). The resulting mixrture was stirred overnight from -78 ${ }^{\circ} \mathrm{C}$ to $-18{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $2 \% \mathrm{EtOAc}$ and $0.1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford 1d $(0.7655 \mathrm{~g}, \quad 89 \%$ yield). 2-(1-(Triethylsiloxy)vinyl)-1-((2,4,6triisopropylphenyl)sulfonyl) aziridine (1d): Colourless oil; $\mathrm{R}_{f}=0.47$ (5% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.19$ (s, 2H), 4.70 (septet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.26 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=7.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}), 0.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.53(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 153.5$, $152.8,151.7,132.9,124.0,93.4,40.9,34.4,31.6,30.1,25.3,25.2,23.6,6.7,5.0 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2960, 2933, 2875, 1635 (C=C), 1598, $1560 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $465\left(\mathrm{M}^{+}, 1\right), 450$ (3), 436 (59), 396 (88), 386 (10), 381 (14), 366 (23), 267 (33); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}\right) 465.2727$, Found 465.2731.

To a solution of HMDS ($2.8 \mathrm{~mL}, 13 \mathrm{mmol}$) in anhydrous THF (10 mL) at $0^{\circ} \mathrm{C}$ was added n - BuLi (1.28 M in hexane, $6.6 \mathrm{~mL}, 9.5 \mathrm{mmol}$). The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then cooled to $-78^{\circ} \mathrm{C}$. To this was added (-)-3e ($1.1938 \mathrm{~g}, 4.6752 \mathrm{mmol}$) in THF (4.0 mL) via cannula. The resulting solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$. TESCl $(0.700 \mathrm{~mL}, 4.17 \mathrm{mmol})$ was added and the reaction was allowed to warm to room temperature. After stirring for 1 h , aqueous NaHCO_{3} was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \mathrm{x} \mathrm{3})$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $2 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford (-)-1e ($0.6596 \mathrm{~g}, 53 \%$ yield). (S)-tert-Butyl 2-(1-(triethylsiloxy)vinyl)aziridine-1-carboxylate ((-)-1e): Colourless oil; $\mathrm{R}_{f}=0.41$ (5% EtOAc in hexane); $[\alpha]_{\mathrm{D}}{ }^{20}=-70.9^{\circ}\left(\mathrm{c}=1.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 4.44(\mathrm{~d}, \mathrm{~J}$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=5.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07 (dd, $J=5.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.64(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1641.6,154.4,93.0,80.3,39.5,30.3,28.0,6.9,5.2 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3067$, 3044, 2992, 2980, 1715 (C=O), 1634, 1458, 1416, 1369, 1288, $1007 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 242 $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 4\right), 240(6), 214(55), 199$ (23), 170 (71), 142 (45), 128 (50), 115 (70), 103 (74), 87 (100), 75 (60); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 242.1212, Found 242.1208.

To a solution of HMDS ($0.250 \mathrm{~mL}, 1.18 \mathrm{mmol}$) in anhydrous THF $(0.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added n-BuLi $(1.09 \mathrm{M}$ in hexane, $0.6 \mathrm{~mL}, 0.7 \mathrm{mmol})$. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then cooled to $-78{ }^{\circ} \mathrm{C}$. To this was added (-) $\mathbf{- 3 f}(0.0723 \mathrm{~g}, 0.330 \mathrm{mmol})$ in THF (1.0 mL) via cannula. The resulting solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$. $\operatorname{TESCl}(0.050 \mathrm{~mL}, 0.30 \mathrm{mmol})$ was added and the reaction was allowed to warm to room temperature. After stirring for 1 h , aqueous NaHCO_{3} was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $2 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford (-)-1f(0.0430 g, 43% yield). (S)-Benzyl 2-(1-(triethylsiloxy)vinyl)aziridine-1-carboxylate((-)-1f): Colourless oil; $\mathrm{R}_{f}=0.46$ (5\% EtOAc in hexane); $[\alpha]_{\mathrm{D}}{ }^{20}=-37.8^{\circ}\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.30(\mathrm{~m}$, $5 \mathrm{H}), 5.15(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.1(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 2.96$ (dd, $J=5.5,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.69(\mathrm{q}, J=8.0 \mathrm{~Hz}$,
$6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,152.6,136.0,128.6,128.3,128.1,93.8,68.1,39.8$, 29.8, 6.7, 4.9 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3065,3046,2959,2940,1721(\mathrm{C}=\mathrm{O}), 1634,1385,1300,1194 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $304\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 1\right), 260$ (7), 198 (4), 115 (10), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$ 304.1369, Found 304.1362.

To a solution of $(-) \mathbf{- 3 g}(0.9000 \mathrm{~g}, 5.319 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26.6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.5$ $\mathrm{mL}, 11 \mathrm{mmol})$ and TESOTf $(1.8 \mathrm{~mL}, 7.9 \mathrm{mmol})$. The resulting mixrture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h. The reaction was quenched with aqueous NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $1 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford (-)-1g (1.3941 g, 92\% yield). (S)-2,2-Dimethyl-1-(2-(1-(triethylsiloxy)vinyl)aziridin-1-yl)propan -1-one $((-)-\mathbf{- 1 g})$: Colourless oil; $\mathrm{R}_{f}=0.56\left(5 \%\right.$ EtOAc in hexane); $[\alpha]_{\mathrm{D}}{ }^{20}=-77.8^{\circ}(\mathrm{c}=0.38$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 4.34(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=$ $6.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 190.2,154.6,92.5,41.3,39.8$, 29.1, 28.0, 6.8, 5.2 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3044,2980,2961,1682(\mathrm{C}=\mathrm{O}), 1633,1479,1458,1416,1366$, 1296, 1287, 1244, $1119 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 283 (M^{+}, 13), 254 (28), 227 (15), 198 (35), 171 (45), 143 (70), 129 (27), 115 (78), 87 (100), 75 (28); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}$ $\left(\mathrm{M}^{+}\right) 283.1968$, Found 283.1960.

To a solution of $\mathbf{3 h}(0.5884 \mathrm{~g}, 1.902 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}$, 5.8 mmol) and TESOTf ($0.85 \mathrm{~mL}, 3.7 \mathrm{mmol}$). The resulting mixrture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with aqueous NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $7 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford $\mathbf{1 h}(0.8041 \mathrm{~g}$, 100\% yield). ($\mathbf{2} \boldsymbol{R}^{\boldsymbol{*}}, \mathbf{3} \mathbf{S}^{\boldsymbol{*}}$)-2-Pentyl-1-tosyl-3-(1-(triethylsiloxy)vinyl)aziridine (1h): Colourless oil; $\mathrm{R}_{f}=0.68\left(10 \% \mathrm{EtOAc}\right.$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013
$=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{qd}, J$ $=4.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.27$ $(\mathrm{m}, 1 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 4 \mathrm{H}), 0.87-0.79(\mathrm{~m}, 12 \mathrm{H}), 0.46(\mathrm{q}, ~ J=7.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 153.5, 143.4, 139.5, 129.5, 127.8, 93.3, 49.5, 49.1, 31.6, 28.6, 28.0, 22.8, 21.1, 14.1, 6.8, 5.0 ppm; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3068,2996,2960,2934,2876,1636,1599,1458,1416,1321,1261,1159 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $394\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 6\right), 352$ (7), 268 (100), 183 (12), 155 (15), 115 (74), 87 (77), 77 (29); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$ 394.1872, Found 394.1867.

To a solution of HMDS ($3.0 \mathrm{~mL}, 14 \mathrm{mmol}$) in anhydrous THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}$ (1.28 M in hexane, $7.4 \mathrm{~mL}, 9.5 \mathrm{mmol}$). The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then cooled to $-78{ }^{\circ} \mathrm{C}$. To this was added $\mathbf{3 i}(1.1938 \mathrm{~g}, 4.6752 \mathrm{mmol})$ in THF $(4.0 \mathrm{~mL})$ via cannula. The resulting solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$. $\mathrm{TESCl}(0.750 \mathrm{~mL}, 4.47 \mathrm{mmol})$ was added and the reaction was allowed to warm to room temperature. After stirring for 1 h , aqueous NaHCO_{3} was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} \mathrm{x} \mathrm{3})$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $1 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford $\mathbf{1 i}(1.1823 \mathrm{~g}, 72 \%$ yield). ($\mathbf{2} \mathbf{R}^{\boldsymbol{*}}, \mathbf{3 S ^ { * }}$)-tert-Butyl 2-pentyl-3-(1-(triethylsiloxy)vinyl)aziridine-1-carboxylate (1i): Colourless oil; $\mathrm{R}_{f}=0.43\left(5 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.47(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{td}, J=6.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}$, $9 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 5 \mathrm{H}), 1.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.84(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 160.1,154.2,93.2,79.9$, $46.0,41.9,31.8,31.5,28.2,27.1,23.0,14.2,7.0,5.3 \mathrm{ppm}$; IR () 3051, 2959, 2934, 2878, 1713 (C=O), 1632, 1458, 1422, 1319, $1157 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $312\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 1\right), 268$ (86), 140 (30), 198 (53), 182 (12), 157 (11), 115 (100), 87 (99); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 312.1995$, Found 312.2006.

To a solution of $\mathbf{3 j}(0.3837 \mathrm{~g}, 1.603 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL}$,
$3.6 \mathrm{mmol})$ and TESOTf $(0.6 \mathrm{~mL}, 3 \mathrm{mmol})$. The resulting mixrture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with aqueous NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL} x$ 3), separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $3 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford $\mathbf{1} \mathbf{j}(0.4677 \mathrm{~g}, 83 \%$ yield $)$.

2,2-Dimethyl-1-(($\left.2 R^{*}, 3 S^{*}\right)$-2-pentyl-3-(1-(triethylsiloxy)vinyl)aziridin-1-yl)propan-1-one (1j):

 Colourless oil; $\mathrm{R}_{f}=0.46$ (5% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.32(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=7.0,5.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 5 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.85(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.64(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 187.5, 155.0, 92.7, 48.1, 41.0, 39.7, 31.9, 31.7, 28.0, 27.2, 22.9, 14.2, 6.9, 5.2 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3061,3050,2959,2936,1667$ (C=O), 1423, $1283 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 353 ($\mathrm{M}^{+}, 9$), 324 (21), 282 (25), 268 (100), 115 (66), 87 (55); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right) 353.2750$, Found 353.2752.

To a solution of $\mathbf{3 k}(0.8323 \mathrm{~g}, 3.286 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}$, 10 mmol) and TESOTf ($1.5 \mathrm{~mL}, 6.6 \mathrm{mmol}$). The resulting mixrture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with aqueous NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $5 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford $\mathbf{1 k}(1.1232 \mathrm{~g}$, 93\% yield). 2-Methyl-1-tosyl-2-(1-(triethylsiloxy)vinyl)aziridine (1k): Colourless oil; $\mathrm{R}_{f}=0.34$ (5% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.91$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.76 (d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.46(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.86$ ($\mathrm{s}, 3 \mathrm{H}$), $0.90(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 157.1$, $143.4,139.3,129.5,127.8,91.8,49.9,39.8,21.1,16.7,6.9,5.1 \mathrm{ppm}$; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3050,2959,2878$, 1634, 1599, 1458, 1321, 1285, 1186, $1159 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $338\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 84\right), 212$ (78), 155 (48), 155 (88), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right)$ 338.1246, Found 338.1241.

To a solution of $\mathbf{3 1}(0.6970 \mathrm{~g}, 2.751 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.150$ $\mathrm{mL}, 8.274 \mathrm{mmol}$) and TESOTf ($1.250 \mathrm{~mL}, 5.485 \mathrm{mmol}$). The resulting mixrture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with aqueous NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$, separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using $4 \% \mathrm{EtOAc}$ and $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford $1 \mathbf{1}$ ($0.8280 \mathrm{~g}, 82 \%$ yield). (Z)-1-Tosyl-2-(1-(triethylsiloxy)prop-1-en-1-yl)aziridine (11): White solid; mp: 52-58 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.29\left(5 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.85$ (d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=7.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H})$, $0.60(\mathrm{qd}, J=7.7,2.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 145.6,144.4,137.0,130.0,128.7$, 108.0, 42.2, 31.8, 21.5, 11.4, 7.3, 6.1 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3071,2959,2878,1674,1599,1387 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 367 ($\mathrm{M}^{+}, 2$), 338 (85), 310 (11), 256 (21), 224 (55), 212 (40), 155 (66), 115 (61), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}\right)$367.1637, Found 367.1648.

To a solution of $(+)-\mathbf{3 m}(2.137 \mathrm{~g}, 8.002 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(4.5$ $\mathrm{mL}, 32 \mathrm{mmol}$) and TESOTf ($5.4 \mathrm{~mL}, 24 \mathrm{mmol}$). The resulting mixrture was stirred overnight from $-78{ }^{\circ} \mathrm{C}$ to $-18{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography using 5\% EtOAc and 0.1% $\mathrm{Et}_{3} \mathrm{~N}$ in hexane to afford (-)-1m (1.6641 g, 55\% yield). (R)-2-(2-Methyl-1-(triethylsiloxy)prop-1 -en-1-yl)-1-tosyl aziridine ((-)-1m): White solid; mp: 56-59 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.43(10 \%$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ (dd, J $=7.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.54$ $(\mathrm{s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.70-0.57(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 144.1,138.2$, 136.6, 129.6, 128.3, 117.0, 38.1, 31.0, 21.1, 18.9, 18.0, 7.1, 5.7 ppm ; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3068,2958$, 2915, 2877, $1673(\mathrm{C}=\mathrm{C}), 1598 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $381\left(\mathrm{M}^{+}, 5\right), 352$ (35), 256 (45), 226 (64), 224 (48), 210 (13), 196 (13), 177 (10); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}\right)$381.1788, Found 381.1789.

General Experimental Procedure for (4+3) Cycloadditions

To a solution of the aziridinyl enolsilane in EtNO_{2} (or other reaction solvent) pre-cooled to $-90{ }^{\circ} \mathrm{C}$ (or alternative target temperature) was added the diene and TFA (or TfOH). The progress of the reaction was monitored by TLC. When the reaction was complete as judged by TLC, aqueous NaHCO_{3} was added to the reaction mixture. The organic layer was separated. The aqueous layer was back extracted with EtOAc. The combined organic layers were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash column chromatography on silica gel.

$(4+3)$ Cycloadditions of aziridinyl enolsilanes 1 a with furan (Table 1, Selected entries)

Table 1, entry 1:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 a}(0.3521 \mathrm{~g}$, $0.9975 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.100 \mathrm{~mL}, 1.13 \mathrm{mmol})$ at $-90{ }^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using $35 \% \mathrm{EtOAc}$ in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 a a}$ and $\boldsymbol{\beta}$-4aa $(0.1715 \mathrm{~g}, 56 \%$ yield, $60: 40)$. 4-Methyl-N-(($\left(1 R^{*}, 2 S^{*}, 5 R^{*}\right)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamid e ($\boldsymbol{\alpha}$-4aa): White solid; mp: 117-119 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.21$ (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.85(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, \mathrm{J}$ $=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=7.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=4.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=15.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.91$ (d, $J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 206.4,143.3,138.4,134.8,132.4,130.1,127.7$, 79.8, 78.2, 57.2, 45.8, 40.8, 21.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3380(\mathrm{NH}), 3059,2965,2926,1709(\mathrm{C}=\mathrm{O})$, 1653 (C=C), $1410 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 307 ($\mathrm{M}^{+}, 1$), 239 (13), 184 (15), 171 (21), 155 (51); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S} \quad\left(\mathrm{M}^{+}\right)$307.0873, Found 307.0871. 4-Methyl-N-(($\left(1 S^{*}, 2 S^{*}, 5 S^{*}\right)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\beta}$-4aa): White solid; mp: 137-139 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.17$ (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J$ $=6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.22(\mathrm{~m}, 2 \mathrm{H})$,

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013
2.35 (dd, J = 16.8, 5.2 Hz, 1H), 2.21 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 205.7,143.3,138.3,134.5,133.1,130.1,127.9,79.3,77.7,55.5$, 45.4, 44.1, 21.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3683(\mathrm{NH}), 3063$, 2957, 2927, 2855, $1717(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{C})$, $1465 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 307 ($\mathrm{M}^{+}, 2$), 261 (6), 239 (4), 226 (2), 184 (33), 171 (19), 155 (68); HRMS (EI, 20 eV) Calculatd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$307.0873, Found 307.0873.

Table 1, entry 2:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 a}(0.3543 \mathrm{~g}$, $1.003 \mathrm{mmol})$ in $\mathrm{EtCN}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TfOH $(0.100 \mathrm{~mL}, 1.13 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using $35 \% \mathrm{EtOAc}$ in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 a a}$ and $\boldsymbol{\beta}-\mathbf{4 a a}(0.2104 \mathrm{~g}, 68 \%$ yield, $38: 62$).

Table 1, entry 3:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 a}(0.3531 \mathrm{~g}$, $0.9999 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TfOH $(0.100 \mathrm{~mL}, 1.13 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 35% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 a a}$ and $\boldsymbol{\beta}$-4aa ($0.2628 \mathrm{~g}, 86 \%$ yield, $50: 50$).

Table 1, entry 6:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 a}(0.3539 \mathrm{~g}$, $1.002 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013
worked up. The crude product was purified by flash column chromatography using 35% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 a} \mathbf{a}$ and $\boldsymbol{\beta}$ - $\mathbf{4 a \mathbf { a }}(0.3048 \mathrm{~g}, 99 \%$ yield, 55:45).

Table 1, entry 8:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 a}(0.3554 \mathrm{~g}$, $1.006 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.11 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 35% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 a a}$ and $\boldsymbol{\beta}$ - $\mathbf{4 a} \mathbf{a}(0.2583 \mathrm{~g}, 84 \%$ yield, $60: 40$).

Table 1, entry 10:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 a}(0.3533 \mathrm{~g}$, $1.000 \mathrm{mmol})$ in $i-\mathrm{PrNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 35% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 a} \mathbf{a}$ and $\boldsymbol{\beta}$ - $\mathbf{4 a} \mathbf{a}(0.3039 \mathrm{~g}, 99 \%$ yield, $50: 50$).

Table 1, entry 12:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 a}(0.3538 \mathrm{~g}$, $1.001 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA ($0.37 \mathrm{~mL}, 5.0 \mathrm{mmol}$) at $-90{ }^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using $35 \% \mathrm{EtOAc}$ in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 a} \mathbf{a}$ and $\boldsymbol{\beta}$ - $\mathbf{4 a a}(0.0834 \mathrm{~g}, 27 \%$ yield, 52:48) and aziridinyl ketone $3 \mathbf{a}$ ($0.1730 \mathrm{~g}, 72 \%$ yield).

$(4+3)$ Cycloaddition of aziridinyl enolsilanes $1 \mathrm{a}-\mathrm{g}$ with dienes (Table 2)

Table 2, entry 1:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 a}(0.3538 \mathrm{~g}$, $1.002 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene (0.41 $\mathrm{mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 1% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 a b}$ and $\boldsymbol{\beta}-\mathbf{4 a b}$ ($0.2846 \mathrm{~g}, 93 \%$ yield, $54: 46$).

4-Methyl-N-(($\left(1 R^{*}, 2 R^{*}, 5 R^{*}\right)$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide

(α-4ab): Colourless oil; $\mathrm{R}_{f}=0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 6.87 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{dd}, J=8.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (dd, $J=$ $5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=12.9,7.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{ddd}, J=12.9,8.7,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.60-2.57 (m, 1H), 2.43-2.39 (m, 1H), 2.31-2.27 (m, 1H), 2.03 (dt, $J=16.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J$ $=16.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 210.4,143.3,138.6,137.5,133.9,130.2,127.7,56.7,46.0,43.8,43.5,42.7,39.7$, 21.5 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3339(\mathrm{NH}), 2956$, 2877, $1702(\mathrm{C}=\mathrm{O}), 1599,1455 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 305 ($\mathrm{M}^{+}, 2$), 262 (1), 239 (4), 184 (6), 171 (6), 155 (67), 150 (100), 122 (78); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$305.1080, Found 305.1081. 4-Methyl-N-(((1S*, 2R*, 5 $\left.\boldsymbol{S}^{*}\right)$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\beta}-\mathbf{4 a b}$): White solid; mp: 118-119 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 5.75-5.73 (m, 2H), 5.54 (dd, $J=7.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24-3.10 (m, 2H), 2.57-2.56 (m, 1H), 2.34-2.31 $(\mathrm{m}, 2 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 210.9,143.3,138.6,137.2,136.2,130.2,127.8,54.3,45.2,44.9$, 40.8, 38.3, 36.9, 21.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3350(\mathrm{NH})$, 3045, 2997, 2952, 2879, 1699 (C=O), 1598 cm^{-1}; LRMS (EI, 20 eV) m/z 305 (M ${ }^{+}, 4$), 239 (7), 224 (7), 184 (77), 171 (118), 155 (424); HRMS (EI, 20 eV) Calculatd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 305.1080$, Found 305.1075.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

Table 2, entry 2:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $1 \mathrm{a}(0.3541 \mathrm{~g}$, 1.003 mmol) in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with 2,5-dimethylfuran ($0.53 \mathrm{~mL}, 5.0$ mmol) and TFA ($0.37 \mathrm{~mL}, 5.0 \mathrm{mmol}$) at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 30% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 a c}$ and $\boldsymbol{\beta}-\mathbf{4 a c}(0.0847 \mathrm{~g}, 25 \%$ yield, $79: 21)$ and alkylation product $\mathbf{S 1 5}$ ($0.0367 \mathrm{~g}, 11 \%$ yield). \mathbf{N}-(($\left(\mathbf{R}^{*}, \mathbf{2} \boldsymbol{S}^{*}, \mathbf{5} \boldsymbol{R}^{*}\right) \mathbf{- 1 , 5}$-Dimethyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methylbenzenesulfonamide (α - $\mathbf{4 a c}$): White solid; mp : $128-131{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.45\left(35 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), 6.96 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=6.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 207.6, 142.9, 138.7, 136.5, 135.7, 129.8, 127.3, 86.4, 84.0, 61.1, 51.0, 40.0, 23.1, 21.5, 21.0 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3668(\mathrm{NH}), 3070,2979,2934,1707(\mathrm{C}=\mathrm{O}), 1600 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $335\left(\mathrm{M}^{+}\right.$, 4), 239 (11), 180 (100), 162 (13), 155 (14), 153 (12), 138 (46); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} \quad\left(\mathrm{M}^{+}\right)$335.1186, Found 335.1184. $\mathbf{N}-\left(\left(\left(1 \mathbf{S}^{*}, \mathbf{2} \mathbf{S}^{*}, \mathbf{5} \mathbf{S}^{*}\right) \mathbf{- 1 , 5}\right.\right.$-Dimethyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methylbenzenesulfonamide ($\boldsymbol{\beta}-\mathbf{4 a c}$): White solid; mp : $121-124{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.33$ ($35 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{dd}, J=7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{dd}, J=7.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 207.5,143.3,138.3,137.7,136.9,130.1,127.9,85.2,84.8,55.9,50.9,42.0,23.0,21.4,19.9$ ppm; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $3328(\mathrm{NH}), 3060,2981,1712(\mathrm{C}=\mathrm{O}), 1598,1444 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV): m/z $335\left(\mathrm{M}^{+}, 1\right), 279$ (2), 224 (5), 184 (9), 180 (77), 171 (7), 167 (9), 155 (52); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$35.1186, Found 335.1191. \mathbf{N}-(2-(2,5-Dimethylfuran-3-yl)-3-oxobutyl)-4-methylbenzenesulfonamide (S15): Colourless oil; $\mathrm{R}_{f}=0.62$ ($35 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.54$ (s, $1 \mathrm{H}), 4.84(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=8.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.0$,
$150.9,147.9,143.5,137.1,129.8,127.1,114.2,105.2,50.2,43.6,28.7,21.6,13.5,11.6 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3060,2923,1710(\mathrm{C}=\mathrm{O}), 1598,1583 \mathrm{~cm}^{-1} ;$ LRMS (EI, 20 eV) m/z $335\left(\mathrm{M}^{+}, 3\right), 183(1)$, 164 (8), 155 (19), 152 (100), 137 (21), 136 (18), 122 (11), 121 (15); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 335.1186$, Found 335.1190.

Table 2, entry 3:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane 1 a (0.3543 g , $1.004 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with 1,3-cyclohexadiene $(0.48 \mathrm{~mL}, 5.0$ mmol) and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 5 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 20% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$-4ad and $\boldsymbol{\beta}$-4ad with some polymer from 1,3-cyclohexadiene. To a solution of this mixture in acetone (10 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.9661 \mathrm{~g}$, $7.001 \mathrm{mmol})$ and $\mathrm{MeI}(0.19 \mathrm{~mL}, 3.0 \mathrm{mmol})$ at room temperature. The resulting mixture was stirred overnight at room temperature. The reaction mixture was filtered through a short pad of silica gel and washed with $\mathrm{Et}_{2} \mathrm{O}$. The volatiles were removed in vacuo. The residue was purified by flash column chromatography using 10\% EtOAc in hexane to afford $\boldsymbol{\alpha}$-S16 and $\boldsymbol{\beta}$-S16 ($0.2089 \mathrm{~g}, 63 \%$ yield, 41:59). N,4-Dimethyl-N-(($\left(\mathbf{1 R}^{*}, \mathbf{2} R^{*}, \mathbf{5} R^{*}\right)$-3-oxobicyclo[3.2.2]non-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\alpha}$-S16): Colourless oil; $\mathrm{R}_{f}=0.38\left(20 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.38-6.32(\mathrm{~m}, 2 \mathrm{H}), 3.25$ (dd, $J=$ $13.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 5 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.76$ (m, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 211.9,143.4,135.7,134.0,132.6,129.7,127.4,58.1$, 51.3, 49.1, 35.3, 30.7, 29.1, 26.4, 26.1, 21.4 ppm; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3055,2939,2869,1689(\mathrm{C}=\mathrm{O}), 1458$, $1342 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 333 ($\mathrm{M}^{+}, 1$), 253 (1), 198(73), 185 (13), 178 (41); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S} \quad\left(\mathrm{M}^{+}\right) \quad$ 333.1393, Found 333.1388. $\mathrm{N}, 4-$ Dimethyl-N-(($\left(1 S^{*}, 2 R^{*}, 5 S^{*}\right)$-3-oxobicyclo[3.2.2]non-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\beta}-\mathbf{S 1 6}$): Colourless oil; $\mathrm{R}_{f}\left(20 \%\right.$ EtOAc in hexane) $0.47 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66$ (d, $J=$
$8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.45-6.41(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=14.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}$, $J=14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.42-2.39(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.59$ (m, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 211.6,143.4,136.0,135.4,134.0,129.7,127.4,55.1$, 50.0, 49.2, 35.7, 29.9, 29.0, 24.7, 21.4, 20.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3055,2931,2869,1689(\mathrm{C}=\mathrm{O}), 1596$, $1458 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $333\left(\mathrm{M}^{+}, 1\right), 295$ (1), 253 (1), 241 (1), 198 (24), 185 (12), 178 (12), 155 (39), 120 (9); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$333.1393, Found 333.1382.

Table 2, entry 4:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 b}(0.2781 \mathrm{~g}$, $1.004 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 75% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 b} \mathbf{b}$ and $\boldsymbol{\beta} \mathbf{- 4 b a}(0.2183 \mathrm{~g}, \quad 94 \%$ yield, $52: 48)$. $\mathrm{N}-\left(\left(\left(1 R^{*}, 2 S^{*}, 5 R^{*}\right)\right.\right.$-3-Oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)methanesulfonamide (α-4ba): White solid; mp: $108-111{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.39$ (70% EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 6.38 (dd, $J=6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dt, $J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=13.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dd}, \mathrm{J}=13.6,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=15.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 207.7,136.1,132.8,80.4,79.5,58.4,46.4,40.6,39.7 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3352(\mathrm{NH}), 3058$, 2968, 1708 (C=O), 1423, $1406 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 231 ($\mathrm{M}^{+}, 2$), 163 (11), 150 (35), 136 (60), 108 (24), 95 (23), 81 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$231.0560, Found 231.0554.

$\mathrm{N}-\left(\left(\left(1 S^{*}, 2 S^{*}, 5 S^{*}\right)-3-\mathrm{Oxo-8}-\mathrm{oxabicyclo}[3.2 .1]\right.\right.$ oct-6-en-2-yl)methyl)methanesulfonamide ($\boldsymbol{\beta}-\mathbf{4 b a}$):

 White solid; mp: 136-138 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.26$ (70% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $6.35(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=6.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H})$, 4.48 (dd, $J=13.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (dd, $J=13.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 (s, 3H), 2.80 (dd, $J=16.6,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 208.4, 135.6, 133.9, 79.8, 78.9, 57.9, 46.2, 43.9, 40.2 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3375(\mathrm{NH}), 3066,3051$, 2966, 1714 (C=O), 1425, $1407 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 231 ($\mathrm{M}^{+}, 1$), 163 (6), 150 (31), 148 (11),Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

136 (45), 124 (17), 108 (20); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 231.0560$, Found 231.0564.

Table 2, entry 5:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 c}(0.3816 \mathrm{~g}$, $1.002 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 30% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 c a}$ and $\boldsymbol{\beta}-\mathbf{4 c a}(0.3781 \mathrm{~g}, \quad 85 \%$ yield, 57:43).

2,4,6-Trimethyl-N-(($\left.\left.\left(1 R^{*}, 2 S^{*}, 5 R^{*}\right)-3-o x o-8-o x a b i c y c l o[3.2 .1] o c t-6-e n-2-y l\right) m e t h y l\right)-$

benzenesulfonamide ($\boldsymbol{\alpha}-\mathbf{4 c a}$): White solid; mp: $125-127^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.34$ (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95$ (s, 2H), 6.25 (dd, $\left.J=6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.21(\mathrm{dd}, J=6.1,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{dd}, J=7.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.93$ $(\mathrm{m}, 1 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J=15.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H}), 2.61-2.25(\mathrm{~m}, 4 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.3,142.2,138.8,134.5,133.3,132.0,131.8,79.5,77.8$, $56.6,45.5,39.4,22.7,20.8 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3633(\mathrm{NH}), 3062,2970,1705(\mathrm{C}=\mathrm{O}), 1566,1404 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 335 (M ${ }^{+}$, 1), 267 (6), 199 (16), 183 (18), 165 (10), 152 (18), 149 (13); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} \quad\left(\mathrm{M}^{+}\right) \quad$ 335.1186, Found 335.1194.

2,4,6-Trimethyl-N-(($\left(1 S^{*}, 2 S^{*}, 5 S^{*}\right)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzene-

 sulfonamide ($\boldsymbol{\beta}-\mathbf{4 c a}$): White solid; mp: $188-191{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.26\left(35 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.29(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=6.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (dd, $J=8.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.29(\mathrm{~m}, 1 \mathrm{H})$, 3.16-3.11 (m, 1H), 2.67-2.63 (m, 1H), 2.62 (s, 6H), $2.37(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 4 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.4,142.4,139.2,134.5,132.9,132.7,132.0,79.4,77.2$, 54.3, 45.1, 43.2, 22.9, 20.9 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3381(\mathrm{NH}), 3057,2989,2941,1716(\mathrm{C}=\mathrm{O}), 1458 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 335 (M^{+}, 3), 267 (2), 212 (19), 183 (37), 153 (19), 136 (39); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$335.1186, Found 335.1185.Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

Table 2, entry 6:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 d}(0.4498 \mathrm{~g}$, $0.9673 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using $25 \% \mathrm{EtOAc}$ in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 d a}$ and $\boldsymbol{\beta}$ - $\mathbf{4 d a}(0.3405 \mathrm{~g}, 84 \%$ yield, $57: 43$) and aziridinyl ketone $\mathbf{3 d}\left(0.0493 \mathrm{~g}, 15 \%\right.$ yield). 2,4,6-Triisopropyl-N-(($\left(1 \boldsymbol{R}^{*}, \mathbf{2} \mathbf{S}^{*}, \mathbf{5} \boldsymbol{R}^{*}\right)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\alpha}$-4da): White solid; mp: 129-132 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.51$ (35\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.21(\mathrm{~s}, 2 \mathrm{H}), 5.67(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (dd, $J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.32 (dd, $J=8.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.51 (septet, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.46 (dd, $J=$ $4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=15.5$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.09(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 207.0, 153.1, 151.0, 134.7, 134.4, 132.2, 124.4, 80.0, $78.1,57.3,45.8,40.6,34.7,30.5,25.5,24.0 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3685(\mathrm{NH}), 2964,2929,2869,1708$ (C=O), 1600, $1564 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 419 ($\mathrm{M}^{+}, 1$), 282 (3), 267 (37), 266 (18), 251 (35), 232 (2); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$419.2125, Found 419.2123. 2,4,6-Triisopropyl-N-(($\left(1 S^{*}, 2 S^{*} 5 S^{*}\right)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\beta}$-4da): White solid; mp: $175-178{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.50$ (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~s}, 2 \mathrm{H}), 6.31(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=6.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dd, $J=8.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (septet, $J=6.7 \mathrm{~Hz}$, 2H), 3.42-3.36 (m, 1H), 3.26-3.22 (m, 1H), 2.89 (septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (dd, $J=17.0,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.24(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.3,152.9,150.4,134.6,132.7,131.6,123.8,79.5,77.3,54.3,45.3,43.4,34.1$, 29.6, 24.9, 24.8, 23.5 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3685(\mathrm{NH}), 2964,2929,2869,1714(\mathrm{C}=\mathrm{O}), 1600 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 419 ($\mathrm{M}^{+}, 1$), 267 (83), 251 (36), 216 (26), 187 (100), 161 (15), 159 (51), 117 (31), 91 (35), 85 (40); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 419.2125$; Found 419.2124.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

Table 2, entry 7:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $1 \mathrm{e}(0.1499 \mathrm{~g}$, $0.5005 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with furan $(0.180 \mathrm{~mL}, 2.47 \mathrm{mmol})$ and TFA ($0.045 \mathrm{~mL}, 0.59 \mathrm{mmol}$) at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 25% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$-4ea and $\boldsymbol{\beta}-4 \mathbf{e a}(0.0674 \mathrm{~g}, 53 \%$ yield, $53: 47$). tert-Butyl (($\left(1 R^{*}, 2 S^{*}, 5 R^{*}\right)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate (α-4ea): White solid; mp: 92-95 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.59$ (50% EtOAc in hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.28(\mathrm{~d}, J=6.2,1.2$ Hz, 1H), 6.25 (dd, $J=6.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03-5.02 (m, 1H), 4.99-4.97 (m, 2H), 3.35-3.29 (m, 1H), 3.21-3.16 (m, 1H), 2.90 (ddd, $J=6.1,4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dd, $J=15.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.43 ($\mathrm{s}, 9 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.2,156.0,134.4,132.2,79.9,79.5,77.6$, $58.2,45.6,37.0,28.4 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3451(\mathrm{NH}), 3067,3044,2992,2980,1711(\mathrm{C}=\mathrm{O}), 1506,1368$, 1269, $1171 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 253 ($\mathrm{M}^{+}, 1$), 197 (5), 185 (18), 153 (30), 137 (39), 129 (59), 124 (100), 107 (23), 95 (28), 85 (44), 81 (46), 70 (39); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}$ $\left(\mathrm{M}^{+}\right)$253.1314, Found 253.1299. tert-Butyl ($\left(\left(1 \boldsymbol{S}^{*}, \mathbf{2} \mathbf{S}^{*}, \mathbf{5} \mathbf{S}^{*}\right) \mathbf{3 - 0 x o - 8} \mathbf{- o x a b i c y c l o [3 . 2 . 1] o c t - 6 - e n -}\right.$ 2-yl)methyl)carbamate ($\boldsymbol{\beta}-4 \mathrm{ea}$): White solid; mp: $91-94{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.46$ ($50 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.30(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.01(\mathrm{~m}$, 1 H), 4.83-4.81 (m, 2H), 3.58-3.48 (m, 2H), 2.85 (dd, $J=16.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=7.4,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.8,155.8,134.3$, 132.9, 79.7, 79.4, 78.1, 56.0, 45.1, 41.2, 28.4 ppm; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3347$ (NH), 3069, 3044, 2992, 2980, 1713 (C=O), 1506, 1368, 1337, 1244, $1167 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV m/z $253\left(\mathrm{M}^{+}, 1\right), 197$ (8), 180 (7), 153 (20), 137 (37), 124 (87), 95 (100), 81 (50), 70 (21); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}$ $\left(\mathrm{M}^{+}\right) 253.1314$, Found 253.1311

Table 2, entry 8:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $1 \mathrm{e}(0.1497 \mathrm{~g}$, $0.4987 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene
$(0.210 \mathrm{~mL}, 2.54 \mathrm{mmol})$ and TFA $(0.045 \mathrm{~mL}, 0.59 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 20% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $4 \mathbf{e b}$ and $\boldsymbol{\beta}-4 \mathbf{e b}(0.0938 \mathrm{~g}$, 75% yield, $59: 41$). Analytically pure samples of $\boldsymbol{\alpha}-\mathbf{4} \mathbf{e b}$ and $\boldsymbol{\beta}$-4eb were obtained by further careful column chromatography using 1% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. tert-Butyl (($\left(1 R^{*}, 2 R^{*}, 5 R^{*}\right)$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate ($\alpha-4 \mathrm{eb}$): Colourless oil; $\mathrm{R}_{f}=$ $0.63\left(30 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.04(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96$ (dd, $J=5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.29(\mathrm{ddd}, J=13.8,8.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{ddd}, J=13.6,7.9,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=15.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=15.9,2.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 211.8,156.0,136.9,133.7,79.1,57.3,45.9,43.6,43.2,40.5,39.4,28.4 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3451 (NH), 3067, 3044, 2992, 2980, 1705 (C=O), 1504, 1456, 1368, 1269, 1242, $1171 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $251\left(\mathrm{M}^{+}, 2\right), 195(21), 178$ (6), 134 (27), 129 (34), 122 (100), 107 (28), 91 (23), 79 (36), 77 (31); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$251.1521, Found 251.1518. tert-Butyl (($\left(1 S^{*}, 2 R^{*}, 5 S^{*}\right)$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate ($\beta-4 \mathrm{eb}$): White solid; mp: $80-83{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.54\left(50 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.07(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.03(\mathrm{dd}, J=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.42-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.76(\mathrm{~m}$, $1 \mathrm{H}), 2.49(\mathrm{dd}, J=17.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.2,155.9,136.9,135.8,79.5,54.8,45.0,42.0,41.2,38.0,36.9,28.4 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3447(\mathrm{NH}), 3069,3044,2992,2980,1707(\mathrm{C}=\mathrm{O}), 1504,1368,1242,1169 \mathrm{~cm}^{-1} ;$ LRMS (EI, $20 \mathrm{eV}) \mathrm{m} / \mathrm{z} 251\left(\mathrm{M}^{+}, 6\right), 195(42), 178$ (8), 151 (17), 134 (41), 129 (100), 122 (69), 107 (18), 91 (32), 79 (34), 70 (28); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$251.1521, Found 251.1519.

Table 2, entry 9:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 e}(0.1090 \mathrm{~g}$, $0.3640 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(3.6 \mathrm{~mL})$ was subjected to reaction with spiro[2,4]hepta-4,6-diene (0.185 $\mathrm{mL}, 1.85 \mathrm{mmol})$ and TFA ($0.035 \mathrm{~mL}, 0.46 \mathrm{mmol}$) at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 20% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$-4ee and $\boldsymbol{\beta}$-4ee $(0.0701 \mathrm{~g}, 69 \%$ yield, 83:17). tert-Butyl (($\left.1 R^{*}, 2 R^{*}, 5 R^{*}\right)$-3-oxospiro[bicyclo[3.2.1]oct[6]ene-8,1'-cyclopropan]-

2-yl)methyl)carbamate (α-4ee): White solid; mp: $138-141{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.49$ ($20 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.16(\mathrm{dd}, J=5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.29 (ddd, $J=12.9,8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (ddd, $J=12.8,7.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (ddd, $J=7.6,3.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=15.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (dd, $J=15.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}$, 9H), 0.74-0.64 (m, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.0,156.0,137.3,134.7,79.1,57.0$, 49.9, 46.1, 45.4, 40.1, 36.8, 28.4, 13.7, 7.7 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3449(\mathrm{NH}), 3068,2980,2934,1705$ (C=O), 1506, 1368, 1244, $1167 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $277\left(\mathrm{M}^{+}, 3\right), 221$ (24), 177 (16), 160 (58), 129 (43), 120 (58), 104 (54), 91 (100), 85 (75), 70 (77); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}$ $\left(\mathrm{M}^{+}\right)$277.1678, Found 277.1670. tert-Butyl (($\left(1 S^{*}, \mathbf{2} R^{*}, \mathbf{5} S^{*}\right)$-3-oxospiro[bicyclo[3.2.1]-oct[6]ene-8,1'-cyclopropan]-2-yl)methyl)carbamate ($\boldsymbol{\beta}-\mathbf{4 e e}$): Colourless oil; $\mathrm{R}_{f}=0.43$ (20\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.19-6.17(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.45$ (ddd, $J=13.5,9.5$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ (ddd, $J=13.2,11.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 2 \mathrm{H})$, $2.19(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.02-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.80-0.76(\mathrm{~m}, 1 \mathrm{H}), 0.51-0.48(\mathrm{~m}, 2 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.5,155.8,137.0,136.8,79.7,56.1,47.8,45.6,44.3,41.1,32.1$, 28.4, 10.9, $8.1 \mathrm{ppm} ;$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3445(\mathrm{NH}), 3067,2992,2980,1705(\mathrm{C}=\mathrm{O}), 1506,1244,1169 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 221 (52), $220\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 5\right.$), 206 (7), 178 (30), 160 (38), 148 (30), 134 (52), 117 (69), 105 (50), 92 (100), 91 (51), 77 (27); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 220.0974$, Found 220.0966.

Table 2, entry 10:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 f}(0.0723 \mathrm{~g}$, $0.217 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(2.2 \mathrm{~mL})$ was subjected to reaction with furan $(0.080 \mathrm{~mL}, 1.10 \mathrm{mmol})$ and TFA $(0.020 \mathrm{~mL}, 0.26 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 25% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 f a}$ and $\boldsymbol{\beta}-4 \mathbf{f a}(0.0393 \mathrm{~g}, 54 \%$ yield, $51: 49)$. Benzyl (($\left(1 R^{*}, 2 S^{*}, 5 R^{*}\right)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate ($\alpha-4 \mathrm{fa}$): Colourless oil; $\mathrm{R}_{f}=0.56\left(50 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.27(\mathrm{dd}, J=6.0$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=6.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.02(\mathrm{ddd}, J=5.0,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=4.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=13.8,7.7,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{ddd}, J=13.8,6.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$
(dd, $J=15.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.2, 156.4, 136.5, 134.6, 132.0, 128.6, 128.2, 128.1, 79.8, 78.0, 66.8, 57.9, 45.6, 37.6 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3445(\mathrm{NH}), 3069,3044,2992$, 2967, 1719 (C=O), 1512, 1244, $1225 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 287 ($\mathrm{M}^{+}, 1$), 219 (9), 176 (4), 136 (9), 107 (16), 91 (100), 81 (22), 79 (13), 70 (11); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$ 287.1158, Found 287.1158. Benzyl $\quad\left(\left(1 S^{*}, \mathbf{2} S^{*}, \mathbf{5} S^{*}\right)\right.$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2$\mathbf{y l}) m e t h y l)$ carbamate ($\boldsymbol{\beta}-4 \mathbf{f a}$): White solid; mp: 101-102 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.42$ (50% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.30(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=6.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J$ $=16.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.7,156.3,136.4,134.3,132.8,128.5,128.5,128.2,79.4,77.4,66.9,55.7,45.1,41.6 \mathrm{ppm} ;$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3445(\mathrm{NH}), 3044,2959,1721(\mathrm{C}=\mathrm{O}), 1607,1514,1337,1242,1219 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $287\left(\mathrm{M}^{+}, 2\right), 219(3), 185(10), 176$ (3), 136 (14), 108 (22), 91 (100), 81 (23), 79 (17), 70 (11); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$287.1158, Found 287.1152.

Table 2, entry 11:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 f}(0.0728 \mathrm{~g}$, $0.218 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(2.2 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene $(0.090 \mathrm{~mL}, 1.1 \mathrm{mmol})$ and TFA $(0.020 \mathrm{~mL}, 0.26 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 20% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha} \mathbf{- 4 f b}$ and $\boldsymbol{\beta}-\mathbf{4 f b}(0.0494 \mathrm{~g}, 79 \%$ yield, $58: 42$). Analytically pure samples of $\boldsymbol{\alpha}-\mathbf{4 f b}$ and $\boldsymbol{\beta}-\mathbf{4 f b}$ were obtained by further careful column chromatography using 1% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Benzyl (($\left.\mathbf{1} \mathbf{R}^{*}, \mathbf{2} \boldsymbol{R}^{*}, \mathbf{5} \boldsymbol{R}^{*}\right)$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate ($\boldsymbol{\alpha}-\mathbf{4 f b}$): Colourless oi; $\mathrm{R}_{f}=0.60(30 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.05(\mathrm{dd}, J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=$ $5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (ddd, $J=$ $13.9,8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (ddd, $J=13.9,8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.88$ (m, 2H), 2.63 (ddd, $J=7.5,3.8$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (dd, $J=16.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=16.0,2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 1 \mathrm{H})$, $1.86(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.7,156.5,137.1,136.6,133.5,128.5$, 128.1, 128.0, 66.6, 57.1, 45.9, 43.6, 43.2, 41.1, 39.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3445(\mathrm{NH}), 3069,3044,2953$, 1719 (C=O), 1510, $1225 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 285 ($\mathrm{M}^{+}, 5$), 219 (8), 194 (19), 150 (5), 134 (6),

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

122 (7), 114 (15), 108 (23), 91 (100), 79 (36), 77 (11); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ $\left(\mathrm{M}^{+}\right)$285.1365, Found 285.1366. Benzyl (($\left(S^{*}, \mathbf{2} R^{*}, \mathbf{5} S^{*}\right)$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate ($\boldsymbol{\beta}-\mathbf{4 f b}$): Colourless oil; $\mathrm{R}_{f}=0.51$ (30% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.09(\mathrm{dd}, J=5.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=5.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (s, 3H), 3.48 (ddd, $J=13.6,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (ddd, $J=13.6,8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (s, 1H), 2.77 (s, $1 \mathrm{H}), 2.49$ (dd, $J=17.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (s, $2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.1,156.4,137.0,136.5,135.7,128.5,128.1,128.1,66.8$, 54.6, 45.0, 42.4, 41.1, 38.0, 36.9 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3443(\mathrm{NH}), 3069,3044,2992,2980,1719(\mathrm{C}=\mathrm{O})$, 1699, 1508, $1223 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 285 ($\mathrm{M}^{+}, 4$), 219 (3), 194 (12), 150 (5), 134 (8), 122 (27), 108 (25), 91 (100), 79 (39), 77 (18); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$ 285.1365, Found 285.1359.

Table 2, entry 12:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $1 \mathrm{~g}(0.1419 \mathrm{~g}$, $0.5006 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with furan $(0.180 \mathrm{~mL}, 2.47 \mathrm{mmol})$ and TFA $(0.045 \mathrm{~mL}, 0.59 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 40% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 g a}(0.0225 \mathrm{~g}, 14 \%$ yield) and $\boldsymbol{\beta}-\mathbf{4 g a}(0.0238 \mathrm{~g}, 20 \%$ yield) and alkylation product $\mathbf{S 1 7}(0.0475 \mathrm{~g}, 27 \%$ yield) and $\mathbf{S 1 8}$ ($0.0169 \mathrm{~g}, 14 \%$ yield). N -(($\left(1 R^{*}, 2 S^{*}, 5 R^{*}\right)$-3-Oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)pivalamide (α-4ga): White solid; mp: $128-130{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (50% EtOAc in hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31$ (br s, $1 \mathrm{H}), 6.29(\mathrm{dd}, J=6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=6.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{ddd}, J=5.0,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.95 (dd, $J=4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (ddd, $J=13.8,7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (ddd, $J=13.8,7.3,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88$ (ddd, $J=7.4,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.17$ (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 207.9,178.4,134.5,132.3,79.9,78.0,57.8,45.7,38.7$, 36.0, 27.5 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3464(\mathrm{NH}), 3069,3044,2992$, 2967, $1709(\mathrm{C}=\mathrm{O}), 1657(\mathrm{C}=\mathrm{O}), 1514$, 1481, 1366, $1200 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 237 ($\mathrm{M}^{+}, 5$), 208 (54), 169 (98), 156 (31), 136 (100), 126 (25), 114 (29), 102 (30), 94 (24), 85 (63), 70 (22); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$ $\left(\mathrm{M}^{+}\right)$237.1365, Found 237.1361. $\mathrm{N}-\left(\left(\left(\mathbf{1} \boldsymbol{S}^{*}, \mathbf{2} \mathbf{S}^{*}, \mathbf{5} \mathbf{S}^{*}\right) \mathbf{3} \mathbf{3 - O x o - 8 - o x a b i c y c l o [3 . 2 . 1] o c t - 6 - e n - 2 -}\right.\right.$
$\mathbf{y l})$ methyl)pivalamide ($\boldsymbol{\beta}-\mathbf{4 g a}$): White solid; mp: 173-176 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.18$ (50\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.30(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 5.02 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.67$ (ddd, $J=13.8,6.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{ddd}, J=13.8,9.3,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=16.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=9.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.17$ (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0,178.6,134.3,132.9,79.8,77.4,55.1,45.1,40.1$, 38.7, 27.5 ppm ; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3466(\mathrm{NH}), 3067,3046,2992$, 2967, $1711(\mathrm{C}=\mathrm{O}), 1663(\mathrm{C}=\mathrm{O}), 1516$, 1366, 1337, $1180 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 237 ($\mathrm{M}^{+}, 4$), 208 (32), 169 (44), 136 (100), 124 (53), 107 (43), 94 (46), 85 (53), 77 (64), 70 (24); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$ 237.1365, Found 237.1374. N-(2-(Furan-2-yl)-3-(triethylsilyloxy)but-3-en-1-yl)pivalamide (S17): Colourless oil; $\mathrm{R}_{f}=0.58$ (20% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.33-3.32(\mathrm{~m}, 1 \mathrm{H})$, 6.30 (dd, $J=3.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.13 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (br s, 1 H), 4.18 (d, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (d, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.5,156.6,153.6,141.4,110.4,106.6,91.3,45.7,40.1,38.8$, 27.6, 6.7, 4.8 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3468(\mathrm{NH}), 3061,2961,2913,2787,1659(\mathrm{C}=\mathrm{O}), 1481,1460,1364$, 1225, 1200, $1011 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 351 ($\mathrm{M}^{+}, 59$), 308 (8), 250 (44), 221 (42), 136 (81), 124 (100), 94 (36); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right)$351.2230, Found 351.2226. $\mathbf{N - (2 - (F u r a n - 2 - y l) - 3 - o x o b u t y l) p i v a l a m i d e ~ (S 1 8) : ~ W h i t e ~ s o l i d ; ~ m p : ~ 7 1 - 7 4 ~}{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.59$ (50\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.47 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (br s, 1H), 4.36 (dd, $J=7.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.83(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, 1.88 (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.0,178.8,149.9,142.8,110.9,108.6,52.0,39.2$, 38.8, 29.1, 27.6 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3468(\mathrm{NH}), 3067,3044,2965,2936,1717(\mathrm{C}=\mathrm{O}), 1659(\mathrm{C}=\mathrm{O})$, 1514, 1364, 1200, 1165, $1011 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 237 (M^{+}, 13), 195 (18), 136 (61), 124 (100), 94 (47); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$237.1365, Found 237.1364.

Table 2, entry 13:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 g}(0.1418 \mathrm{~g}$, $0.5002 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene $(0.210 \mathrm{~mL}, 2.54 \mathrm{mmol})$ and TFA $(0.045 \mathrm{~mL}, 0.59 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 30% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 g b}$ and $\boldsymbol{\beta} \mathbf{- 4 g b}(0.0843 \mathrm{~g}$,
72% yield, $58: 42)$. $\quad \mathbf{N}-\left(\left(\left(1 R^{*}, 2 R^{*}, 5 R^{*}\right)\right.\right.$-3-Oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)pivalamide ($\boldsymbol{\alpha}-\mathbf{4 g b}$): White solid; mp: $106-109{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.47$ (50% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddd}, J=13.4,8.3$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (ddd, $J=13.6,8.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.58$ (ddd, $J=$ $8.8,3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=16.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (ddd, $J=16.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}$, $1 \mathrm{H}), 1.85(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.5,178.3,137.0$, 133.7, 56.9, 46.0, 43.5, 43.4, 39.7, 39.3, 38.6, 27.5 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3464(\mathrm{NH}), 3067,3044,2992$, 2959, 1701 (C=O), 1655 (C=O), 1514, 1481, 1418, 1356, 1269, $1198 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 235 $\left(\mathrm{M}^{+}, 11\right), 206$ (5), 192 (5), 169 (27), 134 (100), 102 (26), 91 (22), 85 (20); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2} \quad\left(\mathrm{M}^{+}\right)$235.1572, Found 235.1567. $\mathbf{N}-\left(\left(\left(1 S^{*}, \mathbf{2} \mathbf{R}^{*}, \mathbf{5} S^{*}\right) \mathbf{- 3}\right.\right.$ -Oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)pivalamide ($\boldsymbol{\beta}-\mathbf{4 g b}$): White solid; $\mathrm{mp}: 175-177{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=$ $0.41\left(50 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=5.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04(\mathrm{dd}, J=5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{ddd}, J=13.6,6.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{ddd}, J=13.6,10.5,4.1$ Hz, 1H), 2.88-2.86 (m, 1H), 2.75-2.73 (m, 1H), 2.52 (dd, $J=18.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 2 \mathrm{H})$, 1.97-1.94 (m, 2H), 1.18 (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.8,178.6,136.9,135.8,54.1$, 45.1, 41.6, 40.9, 38.7, 38.1, 37.1, 27.5 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3464(\mathrm{NH}), 3067,3044,2992,2980,1701$ (C=O), 1659 (C=O), 1516, $1200 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $235\left(\mathrm{M}^{+}, 8\right), 206$ (6), 192 (5), 169 (16), 134 (100), 122 (51), 102 (33), 91 (41), 85 (36); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$ 235.1572, Found 235.1566.

$(4+3)$ Cycloaddition of aziridinyl enolsilanes $1 \mathrm{~h}-\mathrm{m}$ with dienes (Table 3)

Table 3, entry 1:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 h}(0.2107 \mathrm{~g}$, $0.4973 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene $(0.210 \mathrm{~mL}, 2.54 \mathrm{mmol})$ and TFA $(0.190 \mathrm{~mL}, 2.48 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3}
was added and the reaction was worked up. The crude product was purified by flash column chromatography using 20% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 h} \mathbf{h}, \boldsymbol{\alpha}^{\prime} \mathbf{- 4 h b}, \boldsymbol{\beta}-\mathbf{4 h b}$ and $\boldsymbol{\beta}^{\prime}-\mathbf{4 h b}(0.1139 \mathrm{~g}, 61 \%$ yield, $54: 4: 38: 4)$ and desilyation product $\mathbf{3 i}$ and $\mathbf{S 9}(0.0363 \mathrm{~g}, 24 \%$ yield, 14.4:1).

4-Methyl-N-(($\left.R^{*}\right)-1-\left(\left(1 R^{*}, 2 R^{*}, 5 R^{*}\right)\right.$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)hexyl)benzenesulfonamide

 ($\boldsymbol{\alpha}$-4hb): Colourless oil; $\mathrm{R}_{f}=0.53\left(90 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=5.7,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dddd, $J=14.0,8.4,5.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.97(\mathrm{~m}, 1 \mathrm{H})$, $2.88-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{ddd}, J=15.5,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dddd, $J=10.4,5.1$, $5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.83(\mathrm{~m}, 7 \mathrm{H}), 0.71(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.1,143.2,138.3,135.3,135.3,129.6,127.0,60.8,55.2$, $45.6,45.2,43.1,39.6,34.0,31.2,26.2,22.4,21.4,13.8 \mathrm{ppm}$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3379(\mathrm{NH}), 3073,2990$, 2957, 2932, 2872, 1703 (C=O), 1599, 1420, 1348, 1329, 1281, 1159, $1093 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $375\left(\mathrm{M}^{+}, 1\right), 304$ (11), 254 (13), 204 (13), 155 (52), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S} \quad\left(\mathrm{M}^{+}\right) \quad 375.1868, \quad$ Found 375.1860.4-Methyl-N-(($\left.R^{*}\right)$-1-(($\left.1 S^{*}, 2 S^{*}, 5 S^{*}\right)$-3-oxobicyclo[3.2.1]oct-6- en-2-yl)hexyl)benzenesulfonamide ($\boldsymbol{\alpha}^{\prime}-\mathbf{4 h b}$): White solid; mp: $79-80{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.31\left(70 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in hexane); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.02-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, 1 H), 3.28 (dddd, $J=14.0,9.7,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=4.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=16.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{ddd}, J=16.0,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dddd}, J=$ $10.6,5.1,5.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 1 \mathrm{H})$, 1.15-1.01 (m, 5H), 0.93-0.83(m, 1H), $0.75(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $210.6,143.1,138.5,136.5,134.4,129.5,127.1,61.4,55.5,45.5,45.2,42.7,39.3,32.3,31.4,26.0$, 22.5, 21.5, $13.9 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3376(\mathrm{NH}), 3069,2957,2932,2872,1701(\mathrm{C}=\mathrm{O}), 1599,1418$, 1159, $1092 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 375 ($\mathrm{M}^{+}, 1$), 304 (2), 254 (27), 155 (43), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S} \quad\left(\mathrm{M}^{+}\right)$375.1868, Found 375.1862. 4-Methyl-N-(($\left.R^{*}\right)-1-\left(\left(1 S^{*}, 2 R^{*}, 5 S^{*}\right)\right.$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)hexyl)benzenesulfonamide ($\boldsymbol{\beta}-\mathbf{4 h b}$): White solid; mp: 131-133 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.28\left(90 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in hexane); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}$, $J=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dddd}, J=13.1,10.1,6.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.72$ (m, 2H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 3 \mathrm{H})$, $1.67-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.05(\mathrm{~m}, 6 \mathrm{H}), 0.80(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.8,143.3,137.5,137.5,135.2,129.5,127.4,57.1,54.1,45.3,40.3,38.2$,
36.7, 33.2, 31.6, 23.2, 22.5, 21.5, 13.9 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3370(\mathrm{NH}), 3073,2957,2932,2861,1697$ (C=O), 1599, 1418, 1348, 1163, $1094 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 375 ($\mathrm{M}^{+}, 1$), 304 (3), 254 (57), 155 (66), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$375.1868, Found 375.1867.

4-Methyl-N-(($\left.R^{*}\right)-1-\left(\left(1 R^{*}, 2 S^{*}, 5 R^{*}\right)\right.$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)hexyl)benzenesulfonamide

 ($\boldsymbol{\beta}^{\prime}-\mathbf{4 h b}$): Colourless oil; $\mathrm{R}_{f}=0.17\left(70 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (d , $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{dd}, J=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=5.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.87(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dddd}, J=13.7,9.3,6.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 2.34(\mathrm{dd}, J=17.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=17.4,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.01(\mathrm{~m}$, $4 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.3,143.4$, 138.2, 137.2, 136.2, 129.6, 127.1, 58.1, 55.4, 46.0, 40.2, 37.9, 37.4, 33.8, 31.4, 25.0, 22.4, 21.5, 13.9 ppm; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $3376(\mathrm{NH}), 3071,2957$, 2932, 2861, 1701 (C=O), 1599, 1425, 1418, 1336, 1279, 1161, $1092 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 375 ($\mathrm{M}^{+}, ~ 1$), 304 (1), 254 (60), 155 (63), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 375.1868$, Found 375.1862.
Table 3, entry 2:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $1 \mathbf{i}(0.1847 \mathrm{~g}$, $0.4997 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene $(0.210 \mathrm{~mL}, 2.54 \mathrm{mmol})$ and TFA $(0.045 \mathrm{~mL}, 0.59 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 10% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$-4ib and $\boldsymbol{\beta}$-4ib $(0.1603 \mathrm{~g}$, 100% yield, 60:40). tert-Butyl (($\left.\boldsymbol{R}^{*}\right)$-1-(($\left.1 R^{*}, \mathbf{2} \boldsymbol{R}^{*}, \mathbf{5} R^{*}\right)$-3-oxobicyclo[3.2.1]oct-6-en-2$\mathbf{y l})$ hexyl)carbamate (α-4ib): Colourless oil; $\mathrm{R}_{f}=0.62\left(20 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.96-5.93(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dddd}, J=10.2,10.0,4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91-2.89 (m, 1H), 2.86-2.84 (m, 1H), $2.68(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=15.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=$ $15.4,2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.43(\mathrm{~m}$, $1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $210.8,155.7,135.1,134.8,78.7,61.2,52.8,46.0,45.6,45.1,39.7,35.8,31.5,28.5,26.4,22.6,14.0$ ppm; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3443(\mathrm{NH}), 3067,3048,2988,2957,2934,1705(\mathrm{C}=\mathrm{O}), 1605,1499,1422,1281$, $1171 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 321 ($\mathrm{M}^{+}, 2$), 265 (7), 250 (8), 204 (23), 194 (47), 144 (33), 100
(100), 79 (25), 70 (79); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right) 321.2304$, Found 321.2302. tert-Butyl (($\left.R^{*}\right)-1-\left(\left(1 S^{*}, 2 R^{*}, 5 S^{*}\right)\right.$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)hexyl)carbamate ($\boldsymbol{\beta}$-4ib): White solid; mp: $138-142{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.57\left(20 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.05(\mathrm{dd}, J=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (dddd, $J=9.3,9.3,9.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86-2.83 (m, 1H), 2.80-2078 (m, 1H), 2.68 (dd, $J=16.3,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=16.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 7 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.3,155.7,137.2,135.0,79.4,30.1,51.5,45.6,41.6,38.8$, 36.6, 33.9, 31.6, 28.3, 24.9, 22.5, 14.0 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3435(\mathrm{NH}), 3069,2959,2934,1707(\mathrm{C}=\mathrm{O})$, 1606, 1505, 1422, 1368, $1173 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $321\left(\mathrm{M}^{+}, 1\right), 265$ (1), 205 (16), 144 (57), 122 (33), 100 (100), 79 (34), 70 (17); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$321.2304, Found 321.2295.

Table 3, entry 3:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 j}(0.0770 \mathrm{~g}$, $0.219 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(2.2 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene ($0.090 \mathrm{~mL}, 1.1 \mathrm{mmol}$) and TFA ($0.020 \mathrm{~mL}, 0.26 \mathrm{mmol}$) at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 20% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha} \mathbf{-} \mathbf{4 j b}$ and $\boldsymbol{\beta}-\mathbf{4 j b}(0.0574 \mathrm{~g}, 86 \%$ yield, 65:35) and rearrangement product $\mathbf{S 1 9}(0.049 \quad \mathrm{~g}, \quad 6.4 \%$ yield). N -(($\left.R^{*}\right)-1-\left(\left(1 R^{*}, 2 R^{*}, 5 R^{*}\right)\right.$-3-Oxobicyclo[3.2.1]oct-6-en-2-yl)hexyl)pivalamide (α - 4 jb$)$: White solid; mp: 92-93 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.61\left(2 \%\right.$ acetone in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.24(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, J=5.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dddd, $J=15.2$, 9.8, $5.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=$ $15.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (ddd, $J=15.4,2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (dddd, $J=13.4,10.6,5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H})$, $0.85(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.8,177.3,135.1,134.8,61.0,51.0$, $46.2,46.2,45.1,39.7,38.7,36.2,31.5,27.5,26.3,22.6,14.0 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3457(\mathrm{NH}), 3065$, 3046, 2959, 2934, 2862, 1701 (C=O), 1651 (C=O), 1510, 1283, $1275 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z
$305\left(\mathrm{M}^{+}, 9\right), 234$ (59), 220 (25), 204 (29), 184 (81), 154 (100), 102 (55), 85 (60), 70 (63); HRMS (EI, $20 \mathrm{eV}) \quad$ Calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2} \quad\left(\mathrm{M}^{+}\right)$305.2355, Found 305.2347. $\mathbf{N - (}\left(R^{*}\right)-1-\left(\left(1 S^{*}, 2 R^{*}, 5 S^{*}\right)\right.$-3-Oxobicyclo[3.2.1]oct-6-en-2-yl)hexyl)pivalamide ($\left.\beta-4 \mathrm{jb}\right)$: White solid; mp: 113-115 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.45\left(2 \%\right.$ acetone in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.07(\mathrm{dd}, J$ $=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H})$, 2.86-2.83 (m, 1H), 2.83-2.81 (m, 1H), 2.59 (dd, $J=16.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.18$ (m, 2H), 2.15 (dd, J $=10.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 7 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.3,178.0,137.4,134.9,59.8,49.2,45.6,41.6$, 38.8, 38.6, 36.7, 33.8, 31.6, 27.4, 24.9, 22.5, 14.0 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3449(\mathrm{NH}), 3063,3053,2959$, 2934, 1701 ($\mathrm{C}=\mathrm{O}$), 1655 (C=O), 1512, 1348, $1120 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $305\left(\mathrm{M}^{+}, 1\right), 234$ (3), 204 (4), 184 (100), 154 (9), 100 (20), 85 (49), 70 (11); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$ $\left(\mathrm{M}^{+}\right)$305.2355, Found 305.2346. ($\mathbf{4} \boldsymbol{R}^{*}, \mathbf{5} \boldsymbol{S}^{*}$)-2-(tert-Butyl)-4-pentyl-5-(1-(triethylsiloxy)vinyl)-4,5-dihydrooxazole (S19): Colourless oil; $\mathrm{R}_{f}=0.74$ (10% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 4.41(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dt}, J=6.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.26-1.24(\mathrm{~m}$, $4 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 172.2,157.9,89.2,85.2,71.9,37.4,33.7,32.5,28.5,26.2,23.3,14.6,7.2,5.5 \mathrm{ppm} ;$ IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 3065, 2980, 2961, 2934, 1661, 1636, 1481, 1458, 1317, $1142 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $353\left(\mathrm{M}^{+}, 12\right), 324$ (25), 296 (16), 282 (63), 252 (26), 241 (100), 223 (29), 166 (57), 157 (42), 125 (50), 110 (89), 84 (42); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right) 353.2750$, Found 353.2742 .

Table 3, entry 4:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $1 \mathrm{k}(0.1829 \mathrm{~g}$, $0.4976 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with furan $(0.180 \mathrm{~mL}, 2.47 \mathrm{mmol})$ and TFA $(0.190 \mathrm{~mL}, 2.48 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 40% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha} \mathbf{- 4 k a}$ and $\boldsymbol{\beta} \mathbf{- 4 k a}(0.1503 \mathrm{~g}, 94 \%$ yield, 87:13). 4-Methyl-N-(($\left(1 R^{*}, 2 S^{*}, 5 R^{*}\right)$-2-methyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\alpha}-\mathbf{4 k a}$): White solid; mp: 120-123 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.31$ (35% EtOAc in hexane) $;{ }^{1} \mathrm{H}$ NMR
($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=6.0,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.0,143.5,136.6,134.0,132.9,129.8,126.9,83.9,77.8,56.5,46.2$, 43.1, 21.5, 20.0 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3362(\mathrm{NH})$, 3071, 2970, 2934, $1705(\mathrm{C}=\mathrm{O}), 1599,1420,1410$, 1335, 1269, 1163, $1092 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 321 (M^{+}, 2), 240 (7), 184 (12), 155 (48), 150 (52), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$321.1035, Found 321.1033.

4-Methyl-N-((($\left.1 S^{*}, 2 S^{*}, 5 S^{*}\right)$-2-methyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzene-

 sulfonamide ($\boldsymbol{\beta}-\mathbf{4 k a}$): White solid; mp: 142-146 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{dd}, J=6.1,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.26(\mathrm{dd}, J=6.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (s, $1 \mathrm{H}), 3.18(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=16.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 0.92 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1,143.6,136.6,135.8,131.9,129.8,127.1$, 83.5, $78.2,55.5,49.6,44.5,21.5,16.3 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3360(\mathrm{NH}), 3071,2978,2940,1715(\mathrm{C}=\mathrm{O})$, 1599, 1414, 1337, $1163 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 321 ($\mathrm{M}^{+}, 4$), 240 (5), 184 (29), 155 (79), 138 (42), 109 (72), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$321.1035, Found 321.1031.
Table 3, entry 5:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 k}(0.1818 \mathrm{~g}$, $0.4946 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene $(0.210 \mathrm{~mL}, 2.54 \mathrm{mmol})$ and TFA $(0.190 \mathrm{~mL}, 2.48 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 30% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha} \mathbf{- 4 k b}$ and $\boldsymbol{\beta} \mathbf{- 4 k b}(0.1074 \mathrm{~g}$, 68% yield, 47:53). Analytically pure samples of $\boldsymbol{\alpha}-\mathbf{4} \mathbf{k b}$ and $\boldsymbol{\beta} \mathbf{- 4 \mathbf { k b }}$ were obtained by further careful column chromatography using 1% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 4-Methyl-N-(($\left(\mathbf{1} \boldsymbol{R}^{*}, \mathbf{2} \boldsymbol{R}^{*}, \mathbf{5} \boldsymbol{R}^{*}\right) \mathbf{- 2}$-methyl-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\alpha}$ - $\mathbf{4 k b}$): White solid; mp : $138-141{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.44\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.05-6.02 (m, 2H), $5.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (dd, $J=16.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (s, 3H), 2.18 (ddd, $J=16.6,2.8,2.8$
$\mathrm{Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dddd}, J=11.2,5.1,5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.5,143.2,137.2,137.1,134.8,129.7,127.0,54.0,49.3,48.2,43.5$, 38.7, 38.7, 21.5, 20.8 ppm; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $3368(\mathrm{NH}), 3071,2955,2930,1697(\mathrm{C}=\mathrm{O}), 1599,1420$, 1406, 1335, 1269, 1252, 1163, $1087 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 319 (M ${ }^{+}, 4$), 184 (5), 164 (20), 155 (52), 136 (98), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$319.1242, Found 319.1236.

4-Methyl-N-(($\left(1 S^{*}, 2 R^{*}, 5 S^{*}\right)$-2-methyl-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)benzene-

sulfonamide ($\boldsymbol{\beta}-\mathbf{4 k b}$): White solid; mp: $117-119{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.21\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{dd}, J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}$, $J=5.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=12.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=12.6,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.80-2.77 (m, 1H), 2.58 (dd, $J=4.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (s, 3 H), 2.28 (dd, $J=17.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (ddd, $J=17.8,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.8,143.6,138.0,136.7,134.7,129.8,127.1,53.6,49.2,46.1,44.0$, 38.3, 37.8, 21.5, 20.0 ppm ; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $3364(\mathrm{NH}), 3069,2953,1701(\mathrm{C}=\mathrm{O}), 1599,1418,1339$, 1271, 1163, 1094, $1067 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $319\left(\mathrm{M}^{+}, 1\right), 184$ (5), 155 (51), 136 (93), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$319.1242, Found 319.1235.

Table 3, entry 6:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 k}(0.1808 \mathrm{~g}$, $0.4919 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with 2-methylfuran ($0.225 \mathrm{~mL}, 2.49$ $\mathrm{mmol})$ and TFA $(0.190 \mathrm{~mL}, 2.48 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 30% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 k f}$ and $\boldsymbol{\beta}-\mathbf{4 k f}(0.1503 \mathrm{~g}, 94 \%$ yield, 87:13) and alkylation product $\mathbf{S 2 0}$ ($0.0246 \mathrm{~g}, 15 \%$ yield). N -(($\left(\mathbf{1}^{*}, \mathbf{2} \mathbf{S}^{*}, \mathbf{5} \boldsymbol{R}^{*}\right) \mathbf{- 2 , 5}$-Dimethyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methylbenzenesulfonamide ($\alpha-4 \mathrm{kf}$): White solid; mp: $120-123{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.69$ (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2 H), $7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{dd}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.11(\mathrm{~m}$, $1 \mathrm{H}), 4.54(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.5,143.5,137.1$, 136.6, 132.8, 129.8, 126.9, 84.5, 84.3, 54.7, 49.0, 46.3, 22.8, 21.5, 19.9 ppm; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3362$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013
(NH), 3071, 2980, 2934, 1703 (C=O), 1599, 1452, 1410, 1335, 1163, $1092 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $335\left(\mathrm{M}^{+}, 3\right), 254$ (5), 238 (4), 184 (10), 180 (78), 155 (71), 109 (50), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} \quad\left(\mathrm{M}^{+}\right) \quad 335.1191$, Found 335.1184. N-((($\left.1 S^{*}, 2 S^{*}, 5 S^{*}\right)$-2,5-Dimethyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methylbenzenesulfonamide ($\boldsymbol{\beta}-\mathbf{4 k} \mathbf{f}$): White solid; mp: 142-146 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.44$ (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.18 (dd, $J=6.1,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.13$ (m, 2H), $2.45(\mathrm{~d}, ~ J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.6,143.6,138.7,136.6,131.8,129.8,127.2,84.7,84.1$, 53.4, 50.3, 49.5, 22.9, 21.6, 16.4 ppm; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3360(\mathrm{NH})$, 3071, 2980, 2932, 1713 (C=O), 1599, 1414, 1383, 1337, 1163, $1084 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z $335\left(\mathrm{M}^{+}, 2\right), 184$ (18), 180 (41), 155 (56), 123 (100), 109 (33), 91 (58); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$ 335.1191,

Found

335.1188.

4-Methyl-N-(2-methyl-4-(5-methylfuran-2-yl)-3-oxobutyl)benzenesulfonamide (S20): Colourless oil; $\mathrm{R}_{f}=0.54\left(20 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.04(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, $2 \mathrm{H}), 3.04-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.3,152.1,145.4,143.5,136.9,129.8,127.0,109.4,106.6,45.2,44.8$, 41.1, 21.5, 14.5, $13.5 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3377(\mathrm{NH}), 3069,2926,2857,1712(\mathrm{C}=\mathrm{O}), 1599,1421,1381$, 1335, 1275, 1163, $1094 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 335 ($\mathrm{M}^{+}, 10$), 240 (8), 184 (38), 155 (68), 95 (100), 91 (92); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right)$335.1191, Found 335.1186.

Table 3, entry 7:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $11(0.1826 \mathrm{~g}$, $0.4968 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene $(0.210 \mathrm{~mL}, 2.54 \mathrm{mmol})$ and TFA $(0.190 \mathrm{~mL}, 2.48 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 30% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}$ - $\mathbf{4 l b}$ and $\boldsymbol{\beta}-\mathbf{4 l b}(0.1174 \mathrm{~g}, 74 \%$ yield, $51: 49$). Analytically pure samples of $\boldsymbol{\alpha}-\mathbf{4 l \mathbf { l b }}$ and $\boldsymbol{\beta} \mathbf{- 4 \mathbf { l b }}$ were obtained by further careful column chromatography using 1% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 4-Methyl-N-(($\left.\mathbf{1} \boldsymbol{R}^{*}, \mathbf{2} \boldsymbol{R}^{*}, \mathbf{4} \boldsymbol{R}^{*}, \mathbf{5} \boldsymbol{S}^{*}\right) \mathbf{- 4}$
methyl-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide (α-4lb): Colourless oil; $\mathrm{R}_{f}=$ $0.54\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.04 (dd, $J=5.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (ddd, $J=12.6,9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=12.7,8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, J=5.4,2.7,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74(\mathrm{ddd}, J=5.3,2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dddd}, J=7.7,7.7,4.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{qd}, J=6.9$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 ($\mathrm{s}, 3 \mathrm{H}$), 2.13 (ddd, $J=10.8,5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 0.97 (t, 6.9 $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.9,143.3,137.1,135.6,134.9,129.8,127.0,55.7$, 50.1, 46.4, 44.6, 44.0, 43.5, 21.5, 13.7 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3339(\mathrm{NH}), 3069,2943,2872,1701(\mathrm{C}=\mathrm{O})$, 1599, 1454, 1354, 1159, $1094 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 321 (M $\mathrm{M}^{+}, 3$), 184 (5), 171 (21), 155 (39), 136 (35), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$319.1242, Found 319.1234. 4-Methyl-N-(($\left(1 S^{*}, 2 R^{*}, 4 R^{*}, 5 R^{*}\right)$-4-methyl-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide ($\boldsymbol{\beta}-\mathbf{4 l b}$): White solid; mp: 107-109 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}$, $J=5.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=8.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=12.5,8.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (ddd, $J=12.4,8.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 2 \mathrm{H})$, 1.83-1.78 (m, 2H), $1.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.4,143.5,137.7$, 136.6, 136.1, 129.8, 127.1, 52.4, 48.3, 45.4, 43.8, 40.5, 32.5, 21.5, 18.2 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3349$ (NH), 3069, 2988, 2942, 2876, 1697 (C=O), 1599, 1454, 1305, 1290, $1155 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 319 ($\mathrm{M}^{+}, 1$), 184 (4), 171 (21), 155 (38), 136 (28), 91 (100); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$319.1242, Found 319.1231.

Table 3, entry 8:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 m}(0.3805 \mathrm{~g}$, $0.9987 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90{ }^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using $25 \% \mathrm{EtOAc}$ in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 m a}$ and $\boldsymbol{\beta}-\mathbf{4 m a}(0.2358 \mathrm{~g}, 71 \%$ yield, $93: 7)$. $\mathrm{N}-\left(\left(\left(1 R^{*}, 2 S^{*}, 5 S^{*}\right)\right.\right.$-4,4-Dimethyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methyl-
benzenesulfonamide (α - $\mathbf{4 m a}$): White solid; mp: 133-136 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.43$ (35% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=6.1,1.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.98$ (dd, $J=6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=4.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dt}, J=12.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$, $0.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 211.8,143.6,138.2,134.7,133.5,130.3,127.7,86.9$, 80.4, 53.2, 51.6, 41.0, 24.8, 21.5, 20.0 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3344(\mathrm{NH}), 3064,2968,2944,1703(\mathrm{C}=\mathrm{O})$, $1597 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 335 ($\mathrm{M}^{+}, 2$), 317 (1), 254 (5), 226 (8), 184 (10), 171 (24), 155 (46); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} \quad\left(\mathrm{M}^{+}\right) \quad$ 335.1186.

$\mathrm{N}-\left(\left(\left(1 S^{*}, 2 S^{*}, 5 R^{*}\right)\right.\right.$-4,4-Dimethyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methyl-

 benzenesulfonamide ($\boldsymbol{\beta}-\mathbf{4 m a}$): White solid; mp: 122-124 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.33$ ($35 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{dd}, J=6.1,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.75(\mathrm{dd}, J=6.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 212.2,143.3,138.2,134.4,133.6,130.1,127.9,86.1,79.4,54.5$, 52.2, 45.1, 26.0, 21.4, 20.7 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3348(\mathrm{NH}), 3061,2939,1705(\mathrm{C}=\mathrm{O}), 1598 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 335 ($\mathrm{M}^{+}, 2$), 254 (7), 226 (11), 184 (14), 171 (19), 164 (9) 155 (60); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}\right) 335.1186$, Found 335.1183.
Table 3, entry 9:

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane $\mathbf{1 m}(0.3814 \mathrm{~g}$, $1.001 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene (0.41 $\mathrm{mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 0.5% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 m b}$ and $\boldsymbol{\beta}-\mathbf{4 m b}(0.2416 \mathrm{~g}, 72 \%$ yield, 50:50).
$\mathrm{N}-\left(\left(\left(1 R^{*}, 2 R^{*}, 5 S^{*}\right)-4,4\right.\right.$-Dimethyl-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methylbenzene-
sulfonamide ($\boldsymbol{\alpha}-\mathbf{4 m b}$): Colourless oil; $\mathrm{R}_{f}=0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.82(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{dd}, J=5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.58(\mathrm{dd}, J=8.7,4.4 \mathrm{~Hz} 1 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.43(\mathrm{~m}$, $1 \mathrm{H}), 1.98(\mathrm{dd}, J=4.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.89$ (s, 3H), 0.84 ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 215.3$, 143.2, 138.7, 137.8, 134.9, 130.1, 127.7, 52.9, 51.4, 50.1, 44.2, 43.3, 39.7, 26.1, 24.3, 21.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3348(\mathrm{NH}), 3055,2931$,

2877, 1697 (C=O), 1596, $1458 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 333 (M^{+}, 9), 184 (10), 178 (29), 171 (11), 162 (14), 155 (52), 150 (49); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+)$ 333.1393, Found 333.1391. $\quad \mathbf{N}-\left(\left(\left(1 S^{*}, \mathbf{2} \boldsymbol{R}^{*}, \mathbf{5} \boldsymbol{R}^{*}\right)\right.\right.$-4,4-Dimethyl-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)-4methylbenzenesulfonamide ($\boldsymbol{\beta}-\mathbf{4 m b}$): Colourless oil; $\mathrm{R}_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{dd}, J=5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J$ $=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=7.5,4.5 \mathrm{~Hz} 1 \mathrm{H}), 3.20-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.22-2.18(\mathrm{~m}$, $1 \mathrm{H}), 1.95(\mathrm{dd}, J=5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.88$ (s, 3H), $0.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 216.8,143.3,138.4,137.4,136.8,130.1$, 127.8, 53.3, 50.8, 49.5, 46.1, 40.8, 34.4, 27.6, 25.0, 21.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3332(\mathrm{NH}), 3055,2931$, 1697 (C=O), 1596, $1465 \mathrm{~cm}^{-1}$; LRMS (EI, 20 eV) m/z 333 ($\mathrm{M}^{+}, 1$), 226 (1), 184 (11), 178 (43), 155 (59), 150 (60); HRMS (EI, 20 eV) Calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$333.1393, Found 333.1394.

Asymmetric (4+3) Cycloadditions of Aziridinyl Enolsilanes

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (-)-1e $(0.1499 \mathrm{~g}, 0.5005 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with furan $(0.180 \mathrm{~mL}$, 2.47 $\mathrm{mmol})$ and TFA $(0.045 \mathrm{~mL}, 0.59 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 25% EtOAc in hexane to afford cycloadducts (+)- $\alpha-4 \mathbf{e a}$ and (+)- $\beta-4 \mathrm{ea}(0.0674 \mathrm{~g}, 53 \%$ yield, 53:47).
tert-Butyl (($(1 R, 2 S, 5 R)-3-o x 0-8-o x a b i c y c l o[3.2 .1] o c t-6-e n-2-y l) m e t h y l) c a r b a m a t e \quad((+)-\alpha-4 e a):$ $[\alpha]_{\mathrm{D}}{ }^{20}=+37.7^{\circ}\left(\mathrm{c}=0.54, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10 \% \mathrm{IPA}$ in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=21.09 \mathrm{~min}$, $t_{R}($ minor $\left.)=24.41 \mathrm{~min}\right]$ to be 78% ee. tert-Butyl ($(\mathbf{(1 S , 2 S , 5 S})$-3-0xo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate ((+)- $\boldsymbol{\beta}-\mathbf{4 e a}): \quad[\alpha]_{\mathrm{D}}{ }^{20}=+77.1^{\circ}\left(\mathrm{c}=0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=33.96 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=25.63 \mathrm{~min}\right]$ to be 98% ee .

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (-)-1f $(0.0723 \mathrm{~g}, 0.217 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(2.2 \mathrm{~mL})$ was subjected to reaction with furan $(0.080 \mathrm{~mL}, 1.10$ mmol) and TFA ($0.020 \mathrm{~mL}, 0.26 \mathrm{mmol}$) at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 25% EtOAc in hexane to afford cycloadducts (+)- $\boldsymbol{\alpha}-\mathbf{4 f a}$ and (+)- $\boldsymbol{\beta}-\mathbf{4 f a}(0.0393 \mathrm{~g}, 54 \%$ yield, $51: 49$). Benzyl (($(1 R, 2 S, 5 R)-3-o x o-8-o x a b i c y c l o[3.2 .1] o c t-6-e n-2-y l) m e t h y l) c a r b a m a t e \quad((+)-\boldsymbol{\alpha}-\mathbf{4 f a}):$ $[\alpha]_{\mathrm{D}}{ }^{20}=+26.9^{\circ}\left(\mathrm{c}=0.61, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralcel OD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 20 \% \mathrm{IPA}$ in hexane, t_{R} (major) $=39.92 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $\left.)=36.11 \mathrm{~min}\right]$ to be 84% ee. Benzyl (($(\mathbf{1 S , 2 S , 5 S})$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate $((+)-\beta-4 f a): \quad[\alpha]_{\mathrm{D}}{ }^{20}=+58.0^{\circ}\left(\mathrm{c}=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralcel OD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 20 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=40.81 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=36.29 \mathrm{~min}\right]$ to be 93% ee.

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (-)-1g ($0.1419 \mathrm{~g}, 0.5006 \mathrm{mmol}$) in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with furan $(0.180 \mathrm{~mL}, 2.47$ $\mathrm{mmol})$ and TFA $(0.045 \mathrm{~mL}, 0.59 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 40% EtOAc in hexane to afford cycloadducts (+)- $\boldsymbol{\alpha}-\mathbf{4 g a}$ and (+)- $\boldsymbol{\beta} \mathbf{- 4 g a}(0.0463 \mathrm{~g}, 39 \%$ yield, $49: 51$) and alkylation product $\mathbf{S 1 6}(0.0475 \mathrm{~g}, 27 \%$ yield) and $\mathbf{S 1 7}(0.0169 \mathrm{~g}, 14 \%$ yield). $\mathbf{N}-(((1 R, 2 S, 5 R)-3-O x 0-8-0 x a b i c y c l o[3.2 .1] o c t-6-e n-2-y l) m e t h y l) p i v a l a m i d e \quad((+)-\alpha-4 g a): \quad[\alpha]_{\mathrm{D}}{ }^{20}$ $=+8.5^{\circ}\left(\mathrm{c}=0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10 \%$ IPA in hexane, t_{R} (major) $=26.29 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ $24.70 \mathrm{~min}]$ to be 82% ee. \mathbf{N}-(($(\mathbf{1 S , 2 S}, \mathbf{5 S})$-3-Oxo-8-oxabicyclo[3.2.1]oct-6-en-2yl)methyl)pivalamide $((+)-\beta-4 \mathbf{g a}): \quad[\alpha]_{\mathrm{D}}{ }^{20}=+49.2^{\circ}\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013
was determined by HPLC analysis [Daicel chiralpak AD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=28.74 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=22.37 \mathrm{~min}\right]$ to be 99% ee.

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (-)-1e ($0.1497 \mathrm{~g}, 0.4987 \mathrm{mmol}$) in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene ($0.210 \mathrm{~mL}, 2.54 \mathrm{mmol}$) and TFA $(0.045 \mathrm{~mL}, 0.59 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 20% EtOAc in hexane to afford cycloadducts (+)- $\boldsymbol{\alpha}-\mathbf{4 e b}$ and (+)- $\boldsymbol{\beta}-\mathbf{4 e b}(0.0938 \mathrm{~g}, 75 \%$ yield, $59: 41)$. Analytically pure samples of (+)- $\boldsymbol{\alpha}-\mathbf{4 e b}$ and (+)- $\boldsymbol{\beta} \mathbf{- 4} \mathbf{e b}$ were obtained by further careful column chromatography using 1% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. tert-Butyl $\left(\left((1 R, 2 R, 5 R)-3-o x o b i c y c l o[3.2 .1]\right.\right.$ oct-6-en-2-yl)methyl)carbamate $((+)-\alpha-4 e b): \quad[\alpha]_{\mathrm{D}}{ }^{20}=+23.8^{\circ}$ $\left(\mathrm{c}=1.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AY-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=18.14 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=16.28 \mathrm{~min}\right]$ to be 99% ee. tert-Butyl (((1S,2R,5S)-3-oxobicyclo[3.2.1]oct-6-en-2- yl)methyl)carbamate $((+)-\beta-4 \mathrm{eb}): \quad[\alpha]_{\mathrm{D}}{ }^{20}=+44.8^{\circ}\left(\mathrm{c}=0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AY-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10 \% \mathrm{IPA}$ in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=$ $16.53 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=19.83 \mathrm{~min}\right]$ to be 98% ee.

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (-)-1f $(0.0728 \mathrm{~g}, 0.218 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(2.2 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene ($0.090 \mathrm{~mL}, 1.1 \mathrm{mmol}$) and TFA $(0.020 \mathrm{~mL}, 0.26 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 20% EtOAc in hexane to afford cycloadducts $(+)-\boldsymbol{\alpha}-\mathbf{4 f b}$ and $(+)-\boldsymbol{\beta} \mathbf{- 4 f b}(0.0494 \mathrm{~g}, 79 \%$ yield, $58: 42)$. Analytically pure samples of $(+) \mathbf{\alpha}-\mathbf{4 f b}$ and $(+)-\boldsymbol{\beta}-\mathbf{4 f b}$ were obtained by further careful column chromatography using 1% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Benzyl

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013
$\left(\left((1 R, 2 R, 5 R)-3-o x o b i c y c l o[3.2 .1]\right.\right.$ oct-6-en-2-yl)methyl)carbamate $((+)-\alpha-4 \mathbf{f b}): \quad[\alpha]_{D}{ }^{20}=+24.1^{\circ}$ $\left(\mathrm{c}=0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralcel OD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 16 \% \mathrm{IPA}$ in hexane, t_{R} (major) $=31.48 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=24.78 \mathrm{~min}\right]$ to be 98% ee. Benzyl (($\mathbf{1 S , 2 R}, \mathbf{5 S})$-3-oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)carbamate $((+)-\beta-4 f b): \quad[\alpha]_{\mathrm{D}}{ }^{20}=+29.3^{\circ}\left(\mathrm{c}=0.63, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralcel OD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 16 \% \mathrm{IPA}$ in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=$ $27.70 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=26.18 \mathrm{~min}\right]$ to be 98% ee .

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (-)-1g $(0.1418 \mathrm{~g}, 0.5002 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(5.0 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene ($0.210 \mathrm{~mL}, 2.54 \mathrm{mmol}$) and TFA $(0.045 \mathrm{~mL}, 0.59 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 30% EtOAc in hexane to afford cycloadducts $\mathbf{(+)} \mathbf{- \alpha} \mathbf{-} \mathbf{4 g b}(0.0225$ g, 14% yield) and (+)- $\boldsymbol{\beta}-\mathbf{4 g b} \quad(0.0238 \quad$ g, 20% yield). $\mathbf{N}-\left(\left((1 R, 2 R, 5 R)-3-O x o b i c y c l o[3.2 .1]\right.\right.$ oct-6-en-2- yl)methyl)pivalamide $\quad((+)-\alpha-4 g b): \quad[\alpha]_{\mathrm{D}}{ }^{20}=$ $+12.5^{\circ}\left(\mathrm{c}=0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 4 \% \mathrm{IPA}$ in hexane, t_{R} (major) $=28.57 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ $27.11 \mathrm{~min}]$ to be 99% ee. \mathbf{N}-(((1S,2R,5S)-3-Oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)pivalamide $((+)-\beta-4 g b): \quad[\alpha]_{\mathrm{D}}{ }^{20}=+25.0^{\circ}\left(\mathrm{c}=0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 6 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=$ $17.10 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=19.46 \mathrm{~min}\right]$ to be 99% ee.

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (+)-1a $(0.3539 \mathrm{~g}, 1.002 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013
was worked up. The crude product was purified by flash column chromatography using 35% EtOAc in hexane to afford cycloadducts (-)- $\boldsymbol{\alpha}$-4aa and (-)- $\boldsymbol{\beta}-\mathbf{4 a a}(0.3048 \mathrm{~g}, 99 \%$ yield, $55: 45$).

4-Methyl-N-(((1S,2R,5S)-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide

((-)-a-4aa). The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AS-3, $0.25 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 80 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=53.80 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=44.77 \mathrm{~min}\right]$ to be 67% ee. 4-Methyl-N-(($(\mathbf{1 R}, \mathbf{2 R}, 5 R)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide ((-)- $\boldsymbol{\beta - 4 a a}):$ The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AS-3, $0.25 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 80 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=77.38 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ $66.52 \mathrm{~min}]$ to be 88% ee.

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (+)-1a ($0.3521 \mathrm{~g}, 0.9975 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan ($0.36 \mathrm{~mL}, 5.0$ $\mathrm{mmol})$ and $\mathrm{TfOH}(0.100 \mathrm{~mL}, 1.13 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 35% EtOAc in hexane to afford cycloadducts (-)- $\boldsymbol{\alpha}-\mathbf{4 a a}$ and (-)- $\boldsymbol{\beta} \mathbf{- 4 a a}(0.1715 \mathrm{~g}, 56 \%$ yield, 60:40).

4-Methyl-N-(((1S,2R,5S)-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide

$((-)-\boldsymbol{\alpha}-\mathbf{4 a a}): \quad[\alpha]_{\mathrm{D}}{ }^{20}=-23.4^{\circ}\left(\mathrm{c}=1.19, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AS-3, $0.25 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 80 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=$ $53.88 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=44.48 \mathrm{~min}\right]$ to be 92% ee.

4-Methyl-N-(($1 R, 2 R, 5 R)$-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)benzenesulfonamide

$((-)-\beta-\mathbf{4 a a}): \quad[\alpha]_{\mathrm{D}}{ }^{20}=-96.7^{\circ}\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AS-3, $0.25 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 80 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=$ $77.47 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=65.45 \mathrm{~min}\right]$ to be 99% ee.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2013

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (-)-1m $(0.3805 \mathrm{~g}, 0.9987 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with furan $(0.36 \mathrm{~mL}, 5.0$ mmol) and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 25% EtOAc in hexane to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 m a}$ and $\boldsymbol{\beta}-\mathbf{4 m a}(0.2358 \mathrm{~g}, 71 \%$ yield, $93: 7$). N-(((1S,2R,5R)-4,4-Dimethyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methylbenzenesulfonamide ($\alpha-4 \mathrm{ma}$): The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak $\mathrm{AD}-\mathrm{H}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 15 \% \mathrm{IPA}$ in hexane, t_{R} (major) $=27.69 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=33.12 \mathrm{~min}\right]$ to be 6% ee. N -(((1R,2R,5S)-4,4-Dimethyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-2-yl)methyl)-4methylbenzenesulfonamide ($\beta-4 \mathrm{ma}$): The enantiomeric excess was determined by HPLC analysis [Daicel chiralcel OD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 40 \% \mathrm{IPA}$ in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=11.21 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $\left.)=12.93 \mathrm{~min}\right]$ to be 1% ee.

According to the general procedure for the cylcoaddition reaction, aziridinyl enolsilane (-)- $\mathbf{1 m}$ $(0.3814 \mathrm{~g}, 1.001 \mathrm{mmol})$ in $\mathrm{EtNO}_{2}(10 \mathrm{~mL})$ was subjected to reaction with freshly cracked cyclopentadiene $(0.41 \mathrm{~mL}, 5.0 \mathrm{mmol})$ and TFA $(0.37 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$. After 1 h , aqueous NaHCO_{3} was added and the reaction was worked up. The crude product was purified by flash column chromatography using 0.5% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford cycloadducts $\boldsymbol{\alpha}-\mathbf{4 m b}$ and $\boldsymbol{\beta}-\mathbf{4 m b}$ $(0.2416 \mathrm{~g}, 72 \%$ yield, $50: 50)$. $\mathbf{N}-(((\mathbf{1 S , 2 S}, 5 R)-4,4-D i m e t h y l-3-o x o b i c y c l o[3.2 .1]$ oct-6-en-2$\mathbf{y l}) m e t h y l)-4$-methylbenzenesulfonamide ($\alpha-\mathbf{4 m b}$): The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AD-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 30 \% \mathrm{IPA}$ in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=$ $28.68 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=21.80 \mathrm{~min}\right]$ to be 8% ee. $\mathbf{N}-((\mathbf{1 R , 2 S , 5 S}) \mathbf{- 4 , 4 - D i m e t h y l - 3 -}$ oxobicyclo[3.2.1]oct-6-en-2-yl)methyl)-4-methylbenzenesulfonamide ($\beta-4 \mathrm{mb}$): The enantiomeric excess was determined by HPLC analysis [Daicel chiralpak AY-3, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 40 \%$ IPA in hexane, $\mathrm{t}_{\mathrm{R}}($ major $)=60.89 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=30.97 \mathrm{~min}\right]$ to be 10% ee .

[^0]: ${ }^{1}$ A. B. Smith, III, D.-S. Kim, Org. Lett. 2005, 7, 3247.

[^1]: ${ }^{2}$ H. Tamamura, T. Tanaka, H. Tsutsumi, K. Nemoto, S. Mizokami, N. Ohashi, S. Oishi, N. Fujii, Tetrahedron, 2007, 63, 9243.

[^2]: ${ }^{3}$ F. Liu, J. Thomas, T. R. Bureke Jr., Synthesis, 2008, 15, 2432; A. M. King, C. Salomé, J. Dinsmore, E. Salomé-Grosjean, M. De Ryck, R. Kaminski, A. Valade, H. Kohn, J. Med. Chem., 2011, 54, 4815.

[^3]: ${ }^{4}$ J. P. Lajiness, W. M. Robertson, I. Dunwiddie, M. A. Broward, G. A. Vielhauer, S. J. Weir, D. L. Boger, J. Med. Chem., 2010, 53, 7731.

[^4]: ${ }^{5}$ S. Minakata, Y. Murakami, R. Tsuruoka, S. Kitanaka, Chem. Commun., 2008, 6363.

[^5]: ${ }^{6}$ L. Qin, Z. Zhou, J. Wei, T. Yan, H. Wen, Synth. Commun., 2010, 40, 642.

[^6]: ${ }^{7}$ Ł. Albrecht, H. Jiang, G. Dickmeiss, B. Gschwend, S. G. Hansen, K. A. Jørgensen, J. Am. Chem. Soc., 2010, 132, 9188.

[^7]: ${ }^{8}$ F. Pesciaioli, F. De Vincentiis, P. Galzerano, G. Bencivenni, G. Bartoli, A. Mazzanti, P. Melchiorre, Angew. Chem. Int. Ed., 2008, 47, 8703.

[^8]: ${ }^{9}$ B. G. M. Burgaud, D. C. Horwell, A. Padova, M. C. Pritchard, Tetrahedron, 1996, 52, 13035.

[^9]: ${ }^{10}$ D. Chen, C. Timmons, L. Guo, X. Xu, G. Li, Synthesis, 2004, 2479.

