Supporting Information for

A Fluorescence Turn-On Sensor for the Detection of Palladium Ions that Operates Through *In-Situ* Generation of Palladium Nanoparticles

DonghoKeum, Sungwoo Kim and Youngmi Kim*

Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University, 126 Jukjeon-dong, Yongin-si, Gyeonggi-do, 448-701, Korea

youngmi@dankook.ac.kr Tel: +8231-8005-3156 Fax: +8231-8005-3148

Table of Contents:

- 1. Studies on Formation of PdNPs and TEM Images of PdNPs
- 2. Photophysical Properties of iodo-BODIPY and H-BODIPY
- 3. Fluorescence Turn-on Response
- 4. Identification of Fluorescent Reaction Product
- 5. Control Experiments
- 6. Selectivity Studies
- 7. Kinetic Studies
- 8. Determination of Detection Limit
- 9. Fluorescence Turn-on Response of 1 with Various Palladium Species
- 10. Determination of Palladium Contents in Chemical Products
- 11. References

Experimentals

General methods, materials, instrumentation and measurements

Iodo-BODIPY **1** and H-BODIPY **2** were prepared according to literature procedures.¹ Aqueous solutions were freshly prepared with deionized water from a water purification system (Human Corp. Korea). All metal ions were used as chloride salts except for AgNO₃. UV-Vis absorption spectra were obtained on a Shimadzu UV-2501 spectrophotometer. Fluorescence measurements were recorded on a Hitachi F-7000 fluorescence spectrophotometer at 25 °C using 10 mm quartz cuvettes with a path length of 1 cm. Fluorescence quantum yields were determined by standard methods, using rhodamine 6G ($\Phi_F = 0.95$ in EtOH)² for iodo-BODIPY **1** and fluorescein ($\Phi_F = 0.95$ in 0.1 M NaOH)³ for H-BODIPY **2** as standards, respectively. Fluorometric assays with various metal analytes were measured by monitoring changes in fluorescence intensity using a Synergy Mx Microplate Reader (BioTek, USA).

1. Studies on Formation of PdNPs and TEM Images of PdNPs

(a) Time-dependent absorption spectra of Pd^{2+} in ethanol-water (1:4, v/v) at 25 °C

Figure S1. Time-dependent UV-Vis absorption spectra of $PdCl_2$ (50 μ M) in ethanol-water (1:4, v/v) at 25 °C.

(b) Determination of conversion yield of Pd^{2+} in ethanol-water (1:4, v/v) to PdNPs at 25 °C

In order to determine the correlation of absorbance and concentration of $PdCl_2$, UV-Vis absorption spectra of $PdCl_2$ at various concentrations in water was measured. The extinction coefficient of absorbance at 208 nm and concentration of $PdCl_2$ was calculated from the slope of a plot of the absorbance at 208 nm versus concentration of $PdCl_2$ in water. The calculated coefficient was used in determining the conversion yield of $PdCl_2$ in ethanol-water (1:4, v/v) to PdNPs. For example, the conversion yield was determined by measuring absorbance at 208 nm of supernatant after centrifugation of the suspended PdNPs that are readily generated by mixing $PdCl_2$ in aqueous ethanol, and comparing it with an absorbance vs. concentration calibration curve ($\lambda_{abs} = 208$ nm) for $PdCl_2$ in water. $PdCl_2$ (50 µM) was converted to PdNPs in aqueous ethanol in *ca*. 90% yield.

Figure S2. (A) UV-Vis absorption spectra of $PdCl_2$ (10-100 μ M) in water at 25 °C. (B) A plot of absorbance at 208 nm vs [PdCl_2] in water at 25 °C. UV-Vis absorption spectra (red line) of the supernatant after centrifugation of the suspended PdNPs that were obtained 30 min after mixing $PdCl_2$ (50 μ M) in aqueous ethanol, were shown in Figure S2(A).

(c) Transmission electron microscopy (TEM) analysis

Figure S3. TEM image (A) and size distribution (B) of *in-situ* generated PdNPs from a solution of PdCl₂ (50 μ M) in ethanol-water (1:4, v/v) at 25 °C. Average diameter of PdNPs is 4.2 ± 0.2 nm.

2. Photophysical Properties of iodo-BODIPY and H-BODIPY

Compounds	$\lambda_{abs.\ max},nm$	ϵ , M ⁻¹ cm ⁻¹	$\lambda_{\rm em.\ max}, \ {\rm nm}^b$	${\Phi_{ extsf{FL}}}^c$
iodo-BODIPY 1	535	51964	555	0.017
H-BODIPY 2	501	90298	512	0.55

Table S1. Photophysical properties of iodo-BODIPY 1 and H-BODIPY 2^{a}

^{*a*}Data were obtained in ethanol-water (1:4, v/v) at 25 °C. ^{*b*}Excited at 465 nm ^{*c*}Quantum yields vs. rhodamine 6G in EtOH ($\Phi_F = 0.95$) for iodo-BODIPY **1**² and fluorescein in 0.1 N NaOH ($\Phi_F = 0.95$) for H-BODIPY **2**.³

3. Fluorescence Turn-on Response

Preparation of stock solution and general procedure: $PdCl_2$ dissolved in deionized water (0.5 mM, 20 µL) was mixed with a mixture solution of ethanol and water (1:7, v/v, 160 µL). To the solution was added iodo-BODIPY **1** (0.05 mM in EtOH, 20 µL) to have final concentration of 5 µM iodo-BODIPY **1** and 50 µM $PdCl_2$ in ethanol and water (1:4, v/v), respectively. The reactions were monitored at 25 °C for 30 minutes. The fluorescence signal for each well was measured at 510 nm ($\lambda_{ex} = 465$ nm).

(a) Fluorescence turn-on response of 1 in the presence of $PdCl_2$ in ethanol-water

Figure S4. (left) Absortion and (right) fluorescence emission spectra of iodo-BODIPY **1** (5 μ M) without (black) and with (red) addition of Pd²⁺ (50 μ M) in ethanol-water (1:4, v/v) at 25 °C. The spectra were acquired 30 min after the addition of **1** to the solution of Pd²⁺ in ethanol-water (1:4, v/v). Excited at 465 nm.

(b) Time-dependent fluorescence turn-on response of 1 in the presence of different concentrations of Pd²⁺ in ethanol-water

Figure S5. (left) Time-dependent fluorescence intensity at 510 nm of **1** (5 μ M) in the presence of different concentrations of Pd²⁺ in ethanol–water (1:4, v/v) at 25 °C. [Pd²⁺] = 0, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 μ M. Excited at 465 nm. The values were obtained every 2 min (0 – 30 min). (right) A plot of the relative fluorescence intensity at 510 nm as a function of [Pd²⁺]. Incubation time = 30 min. F₀ and F correspond to the fluorescence intensity of iodo-BODIPY **1** in the absence and the presence of PdCl₂ in ethanol-water (1:4, v/v), respectively.

4. Identification of Fluorescent Reaction Product

Figure S6. HPLC chromatograms of **1** before (top); after addition of Pd^{2+} (50 µM) in ethanol–water (1:4, v/v) at 25 °C (middle); **2** only (bottom).The samples were analyzed by using HPLC-MS with a linear gradient elution (eluent A/B =20/80, A: deionized water, B: Methanol with 5 mM ammonium formate, flow rate 0.3 mL/min, UV: 500 nm). [**1**] = [**2**] = 5 µM, [Pd²⁺] = 50 µM.

Figure S7. ESI-MS spectra of the peak of retention time at 12.0 min (a) and 4.5 min (b). The MW of the material eluting with a retention time of 12.0 min is 918.2, which corresponds to $[M+NH_4]^+$ for iodo-BODIPY **1** and the MW of the substance with a retention time of 4.5 min is 666.4, which corresponds to $[M+NH_4]^+$ for **2**.

5. Control Experiments

(a) Fluorescence turn-on response of 1 in the presence of $PdCl_2$ in various aqueous media

Figure S8. (left) Time-dependent fluorescence intensity at 510 nm of **1** upon addition of Pd^{2+} in water containing different organic solvents (20%) as a cosolvent at 25 °C. (right) Fluorescence emission spectra of iodo-BODIPY **1** upon addition of Pd^{2+} in water containing different organic solvents (20%) as a cosolvent at 25 °C. The spectra were acquired 30 min after the addition of **1** to the solution of Pd^{2+} in aqueous media. Excited at 465 nm. [**1**] = 5 μ M, [PdCl₂] = 50 μ M

(b) Effect of reducing agent (NaBH₄) on the iodo-BODIPY 1

Figure S9. Fluorescence emission spectra of iodo-BODIPY **1** upon addition of NaBH₄ (500 μ M) in ethanol–water (1:4, v/v) at 25 °C. Excited at 465 nm.

(c) Stability of deiodinated product, H-BODIPY 2 in the presence of Pd^{2+}

Figure S10. Fluorescence emission spectra of H-BODIPY **2** (5 μ M) upon addition of Pd²⁺ (50 μ M) in ethanol–water (1:4, v/v) at 25 °C. The spectra were obtained 30 min after the addition of Pd²⁺ to the solution of H-BODIPY **2**. Excited at 465 nm.

(d) Photostability of iodo-BODIPY 1

We have investigated photostability of **1** in ethanol–water (1:4, v/v) at 25 $^{\circ}$ C. The photooxidation studies were performed by continuous visible light irradiation using a 150 W steady-state Xe lamp as the irradiation source under aerobic conditions. The photostability was quantified by monitoring the change of fluorescence intensity of **1** after photoirradiation for 2.5 hours.

Figure S11. Fluorescence emission spectra of iodo-BODIPY **1** (5 μ M) in ethanol–water (1:4, v/v) at 25 °C before and after photoirradiation (λ_{ex} =465 nm) for 2.5 h.

6. Selectivity Studies

Figure S12. Relative fluorescence intensities of iodo-BODIPY **1** toward various metal ions (as their chloride salts except for AgNO₃) in ethanol–water (1:4, v/v), measured 30 minutes after addition of each metal ion at 25 °C. 1, iodo-BODIPY **1** only; 2, Pd²⁺; 3, Al³⁺; 4, Ca²⁺; 5, Cd²⁺; 6, Cu²⁺; 7, Co²⁺; 8, Cr²⁺; 9, Fe²⁺; 10, Fe³⁺; 11, Pb²⁺; 12, Zn²⁺; 13, Mg²⁺; 14, Hg²⁺; 15, Ni²⁺; 16, Mn²⁺; 17, K⁺; 18, Ag⁺; 19, Na⁺; 20, Au⁺; 21, Au³⁺; 22, Pt²⁺ [**1**] = 5 μ M, [metal ion] = 20 μ M for Pd²⁺ and 50 μ M for all other metal ions. Excited at 465 nm.

Figure S13. Photographs of probe **1** upon addition of various metal ions under (top) ambient light and (bottom) UV irradiation (365 nm). 1, iodo-BODIPY **1** only; 2, Pd²+; 3, Al³⁺; 4, Ca²⁺; 5, Cd²⁺; 6, Cu²⁺; 7, Co²⁺; 8, Cr²⁺; 9, Fe²⁺; 10, Fe³⁺; 11, Pb²⁺; 12, Zn²⁺; 13, Mg²⁺; 14, Hg²⁺; 15, Ni²⁺; 16, Mn²⁺; 17, K⁺; 18, Ag⁺; 19, Na⁺; 20, Au⁺; 21, Au³⁺; 22, Pt²⁺ [**1**] = 5 μ M, [metal ion] = 20 μ M for Pd²⁺ and 50 μ M for all other metal ions.

7. Kinetic Studies

Standard fluorescence curve: In order to determine the correlation of fluorescence intensity and concentration of dehalogenation product **2**, fluorescence intensities of various concentrations of **2** at 510 nm were measured. The extinction coefficient of fluorescence intensity and concentration of **2** was calculated from the slope of a plot of the fluorescence intensity versus concentration of **2**. The calculated coefficient was used in determining kinetic constants of the conversion of iodo-BODIPY **1** to H-BODIPY **2** by Pd²⁺ in ethanol-water (1:4, v/v) at 25 °C.

Figure S14. Standard fluorescence curve of H-BODIPY **2** in ethanol-water (1:4, v/v) at 25 °C. Fluorescence intensity at 510 nm was measured. Excited at 465 nm.

Determination of kinetic constant: To determine kinetic constant, iodo-BODIPY **1** (5 μ M) was added to the solution of Pd²⁺ (50 μ M) in ethanol-water (1:4, v/v) at 25 °C.

Figure S15. Kinetics for the fluorescence response of iodo-BODIPY **1** (5 μ M) with Pd²⁺ (50 μ M) in ethanol-water (1:4, v/v) at 25 °C. Fluorescence intensity was measured at 510 nm. Excited at 465 nm.

Figure S16. Kinetics for the fluorescence response of iodo-BODIPY **1** (5 μ M) with Pd²⁺ (50 μ M) in water containing different % ethanol (5-30%) as a cosolvent at 25 °C. Fluorescence intensity was measured at 510 nm. Excited at 465 nm.

(b) Several factors to improve kinetics: temperature

Figure S17. Kinetics for the fluorescence response of iodo-BODIPY **1** (5 μ M) with Pd²⁺ (50 μ M) in ethanol-water (1:4, v/v) at 50 °C. Fluorescence intensity was measured at 510 nm. Excited at 465 nm.

(c) Several factors to improve kinetics: additional reducing agent, NaBH₄

Figure S18. Time-dependent fluorescence intensity at 510 nm of **1** (5 μ M) upon addition of Pd²⁺ (50 μ M) in the presence of NaBH₄ (0.5 mM) in ethanol–water (1:4, v/v) at 25 °C. Excited at 465 nm.

8. Determination of Detection Limit

Figure S19. A plot of relative fluorescence intensity at 510 nm of iodo-BODIPY **1** (5 μ M) as a function of [Pd²⁺]. Fluorescence spectra of iodo-BODIPY **1** (5 μ M) were measured 30 min after addition of Pd²⁺ in ethanol–water (1:4, v/v, 0.5 mM NaBH₄) at 25 °C. Excited at 465 nm. F₀ and F correspond to the fluorescence intensity of iodo-BODIPY **1** in the absence and the presence of PdCl₂ in ethanol-water (1:4, v/v, 0.5 mM NaBH₄), respectively. [Pd²⁺] = 0-0.1 μ M

9. Fluorescence Turn-on Response of 1 with Various Palladium Species

Figure S20. Relative fluorescence intensities at 510 nm of iodo-BODIPY **1** (5 μ M) toward various different palladium species (50 μ M) in ethanol–H₂O (1:4, v/v, 0.5 mM NaBH₄), measured 30 minutes after addition of each analyte at 25 °C. 1, Pd(NO₃)₂; 2, Pd(OAc)₂; 3, PdCl₂; 4, Na₂PdCl₄; 5, Pd(PPh₃)₄; 6, PdCl₂(PPh₃)₂; 7, PdCl₂(dppf)₂. Excited at 465 nm.

10. Determination of Palladium Contents in Chemical Products

Biphenyl derivative **3** was synthesized by a Suzuki-Miyaura cross coupling reaction of an arylboronate (210 mg, 1.10 mmol) and an aryl halide (300 mg, 1.36 mmol) in the presence of Pd(PPh₃)₄ (81 mg, 0.07 mmol) and purified by using column chromatography (Scheme S1). Standard curve was obtained by measuring fluorescence intensity at 510 nm of iodo-BODIPY **1** (5 μ M) 30 min after the addition of Pd(PPh₃)₄ at various concentrations (1-50 μ M) in ethanol–H₂O (1:4, v/v, 0.5 mM NaBH₄) at 25 °C. For the determination of amount of Pd in the synthesized **3**, biphenyl derivative **3** (1.9 mg) was dissolved in ethanol (1 mL). An aliquot of this solution (20 μ L) was mixed with a solution of NaBH₄ in water (160 μ L, final [NaBH₄] = 0.5 mM). To the solution was added a solution of iodo-BODIPY **1** in EtOH (20 μ L, [**1**] = 0.05 mM) to result in an assay solution nominally 5 μ M in **1**. The reactions were monitored at 25 °C for 30 minutes in a microplate reader, during which the fluorescence signal for each well was measured at 510 nm ($\lambda_{ex} = 465$ nm). Comparison of the fluorescence signals from analysis of **3** (38 μ g), obtained using sensing system comprised of iodo-BODIPY **1** (5 μ M) in ethanol–H₂O (1:4, v/v, 0.5 mM NaBH₄), at 25 °C, with those from a standard curve show that that the purified biphenyl derivative **3** (38 μ g) contains 2 ± 0.1 ppm of Pd.

Scheme S1. Synthesis of compound 3.

Figure S21. Determination of residual palladium contents in biphenyl derivative **3** (38 μ g). Comparison of the fluorescence signals from analysis of **3** (red circle), obtained using sensing system comprised of iodo-BODIPY **1** (5 μ M) in ethanol–H₂O (1:4, v/v, 0.5 mM NaBH₄, 25 °C), with those from a standard curve (black circle). Excited at 465 nm. The measured [Pd] in **3** was determined from the average of 4 independent measurements to be 2 ± 0.1 ppm

11. References

- 1 J. Park, S. Choi, T.-I. Kim and Y. Kim, *Analyst*, 2012, 137, 4411.
- 2 R. F. Kubin and A. N. Fletcher, *J. Luminescence*, 1982, **27**, 455.
- 3 A. T. R. Williams, S. A. Winfield and J. N. Miller, *Analyst*, 1983, **108**, 1067.