Supporting Information

Converting Oxazoles into Imidazoles: New Opportunities for Diversity-Oriented Synthesis

Thibaut Alzieu, Johannes Lehmann, Ajay B. Naidu, Rainer E. Martin,*
and Robert Britton*

Table of Contents

1. General Information on Analytical Compound Characterization				
2. Experimental Procedures for Reactions and Characterization Data	3			
3. ¹ H. ¹³ C and ¹⁹ F NMR Spectra for All New Compounds	44			

1. General Information on Analytical Compound Characterization

¹H Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker Avance III 600 MHz spectrometer. In the ¹H NMR spectra, signal positions (δ) are given in parts per million (ppm) from tetramethylsilane (δ = 0) and were measured relative to the signal of CDCl₃ (δ = 7.26 ppm). Resonances in the ¹H NMR spectra are reported to the nearest 0.01 ppm. ¹³C NMR spectra were recorded using the same spectrometer (150 MHz), and signal positions (δ) are given in parts per million (ppm) from tetramethylsilane (δ = 0) and were measured relative to the signal of CDCl₃ (δ = 77.16 ppm) and reported to the nearest 0.1 ppm. ¹⁹F NMR resonances are reported in ppm and the chemical shift of the lock solvent (CDCl₃) was used as an internal reference. The multiplicities of signals are given as s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broadened and combinations thereof. Coupling constants (J) are reported to the nearest 0.1 Hz.

High resolution mass spectrometry (HRMS) was performed on a Finnigan LTQ FT MS or a Agilent 6520 spectrometer using time of flight (TOF) with positive ESI at 70 eV within a tolerance of \pm 5 ppm of the theoretical value.

IR spectra were recorded using attenuated total reflectance (ATR) on a Nicolet 6700 from Thermo Scientific.

All compounds in this study have been isolated by MPLC (medium pressure liquid chromatography, CombiFlash Companion, Isco Inc.) for the purpose of analytical characterization.

2. Experimental Procedures for Reactions and Characterization Data

1-(Cyclopent-3-en-1-yl)-5-phenyl-1*H*-imidazole (9)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and *tert*-butyl cyclopent-3-enylcarbamate (1.26 g, 6.89 mmol, 10 equiv) in *o*-dichlorobenzene (5 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 180 °C and maintained at this temperature for 2 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown oil (79 mg, 55%).

¹H NMR (600 MHz, CDCl₃): δ 2.62 – 2.65 (m, 2H), 2.88 – 2.93 (m, 2H), 4.82 (tt, J = 8.2, 3.4 Hz, 1H), 5.84 – 5.87 (m, 2H), 7.03 (s, 1H), 7.35 – 7.37 (m, 2H), 7.38 – 7.41 (m, 1H), 7.43 – 7.46 (m, 2H), 7.65 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 42.1 (2C), 53.4, 127.5, 128.2, 128.9 (2C), 129.1 (2C), 129.5 (2C), 130.4, 133.1, 135.1 ppm. IR (ATR): ν 3108, 3058, 2920, 2849, 1605, 1575, 1550, 1486, 1471, 761, 698 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₄N₂ 210.1157, found 210.1157.

1-Cyclopentyl-5-phenyl-1*H*-imidazole (14)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and cyclopentylamine (118 mg, 136 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was

heated by microwave irradiation to 200 °C and maintained at this temperature for 2 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (116 mg, 79%).

¹H NMR (600 MHz, CDCl₃): δ 1.65 – 1.69 (m, 2H), 1.81 – 1.89 (m, 4H), 2.08 – 2.13 (m, 2H), 4.49 (quin, J = 7.2 Hz, 1H), 7.03 (d, J = 0.9 Hz, 1H), 7.35 – 7.40 (m, 3H), 7.43 – 7.45 (m, 2H), 7.66 (d, J = 0.9 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.3 (2C), 34.5 (2C), 56.4, 128.0, 128.1, 128.8 (2C), 129.4 (2C), 130.7, 133.5, 135.1 ppm. IR (ATR): ν 3110, 3060, 2956, 2871, 1605, 1575, 1551, 1487, 1473, 760, 699 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₆N₂ 212.1313, found 212.1324.

1-(3-Methyl-butyl)-5-phenyl-1*H*-imidazole (15)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and 3-methyl-butylamine (120 mg, 161 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (46 mg, 31%).

¹H NMR (600 MHz, CDCl₃): δ 0.82 (d, J = 6.5 Hz, 6H), 1.44 – 1.50 (m, 1H), 1.51 – 1.54 (m, 2H), 3.97 (m, 2H), 7.05 (s, 1H), 7.35 – 7.39 (m, 3H), 7.42 – 7.45 (m, 2H), 7.55 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 22.3 (2C), 25.6, 40.0, 43.8, 128.1, 128.3, 128.8 (2C), 128.9

(2C), 130.4, 133.1, 138.1 ppm. IR (ATR): ν 2955, 2870, 1605, 1551, 1481, 1366, 762, 698 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₈N₂ 214.1469, found 214.1481.

1-(3,3-Dimethyl-butyl)-5-phenyl-1*H*-imidazole (16)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and 3,3-dimethyl-butylamine (140 mg, 186 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (58 mg, 37%).

¹H NMR (600 MHz, CDCl₃): δ 0.85 (s, 9H), 1.55 – 1.57 (m, 2H), 3.95 – 3.98 (m, 2H), 7.05 (d, J = 1.1 Hz, 1H), 7.36 – 7.39 (m, 3H), 7.42 – 7.45 (m, 2H), 7.55 (d, J = 1.1 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 29.2 (3C), 30.0, 41.1, 45.0, 128.1, 128.3, 128.8 (2C), 128.9 (2C), 130.3, 133.0, 138.1 ppm. IR (ATR): ν 3117, 3099, 3076, 2998, 2953, 2867, 1605, 1552, 1489, 1476, 1363, 761, 699 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₅H₂₀N₂ 228.1626, found 228.1631.

1-Pentyl-5-phenyl-1*H*-imidazole (17)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and pentylamine (120 mg, 160 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (77 mg, 52%).

¹H NMR (600 MHz, CDCl₃): δ 0.82 (t, J = 7.1 Hz, 3H), 1.15 – 1.26 (m, 4H), 1.62 (quin, J = 7.4 Hz, 2H), 3.95 (m, 2H), 7.05 (s, 1H), 7.35 – 7.39 (m, 3H), 7.42 – 7.45 (m, 2H), 7.55 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 13.9, 22.2, 28.7, 30.7, 45.5, 128.1, 128.3, 128.8 (2C), 128.9 (2C), 130.4, 133.1, 138.2 ppm. IR (ATR): ν 2928, 2859, 1605, 1551, 1481, 1364, 762, 699 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₈N₂ 214.1469, found 214.1479.

1-(2-Methoxy-ethyl)-5-phenyl-1*H*-imidazole (18)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and 2-methoxy-ethylamine (104 mg, 119 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture

was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (98 mg, 70%).

¹H NMR (600 MHz, CDCl₃): δ 3.29 (s, 3H), 3.53 (t, J = 5.4 Hz, 2H), 4.11 (t, J = 5.4 Hz, 2H), 7.06 (s, 1H), 7.37 – 7.39 (m, 3H), 7.42 – 7.45 (m, 2H), 7.67 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 45.1, 59.1, 71.6, 128.1, 128.2, 128.9 (2C), 129.2 (2C), 130.1, 133.0, 138.9 ppm. IR (ATR): ν 3114, 3057, 2989, 2928, 2900, 2828, 1605, 1576, 1553, 1480, 1112, 763, 698 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₂H₁₄N₂O 202.1106, found 202.1109.

1-(2,2-Dimethyl-propyl)-5-phenyl-1*H*-imidazole (19)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and 2,2-dimethyl-propylamine (120 mg, 163 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 1.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow solid (67 mg, 45%).

¹H NMR (600 MHz, CDCl₃): δ 0.73 (s, 9H), 3.85 (s, 2H), 7.03 (d, J = 1.0 Hz, 1H), 7.32 – 7.38 (m, 3H), 7.41 – 7.44 (m, 2H), 7.55 (d, J = 1.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 27.8 (3C), 33.5, 56.3, 128.0, 128.3, 128.8 (2C), 129.6 (2C), 131.0, 133.8, 139.3

ppm. IR (ATR): v 3114, 2961, 2865, 1606, 1555, 1477, 1368, 769, 701 cm⁻¹. HRMS ESI+ (m/z): $[M]^+$ calcd for $C_{14}H_{18}N_2$ 214.1469, found 214.1478.

1-Allyl-5-phenyl-1*H*-imidazole (20)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and allylamine (79 mg, 106 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (42 mg, 33%).

¹H NMR (600 MHz, CDCl₃): δ 4.57 (dt, J = 5.1, 1.7 Hz, 2H), 5.04 (ddt, J = 17.1, 1.0, 0.9 Hz, 1H), 5.25 (ddt, J = 10.4, 1.3, 0.9 Hz, 1H), 5.91 – 5.97 (m, 1H), 7.12 (s, 1H), 7.36 – 7.39 (m, 3H), 7.41 – 7.44 (m, 2H), 7.59 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 47.6, 118.2, 128.0, 128.2, 128.8 (2C), 128.9 (2C), 129.8, 133.3, 133.4, 138.5 ppm. IR (ATR): ν 3082, 2923, 2847, 1644, 1605, 1577, 1552, 1490, 911, 766, 699 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₂H₁₂N₂ 184.1000, found 184.1004.

5-Phenyl-1-(2-trifluoromethyl-benzyl)-1*H*-imidazole (21)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and 2-trifluoromethyl-benzylamine (242 mg, 193 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (88 mg, 42%).

¹H NMR (600 MHz, CDCl₃): δ 5.39 (s, 2H), 6.78 (d, J = 7.7 Hz, 1H), 7.22 (d, J = 1.1 Hz, 1H), 7.24 – 7.25 (m, 2H), 7.31 – 7.35 (m, 3H), 7.39 (t, J = 7.7 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 1.1 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 45.4 (q, J_{CF} = 3.5 Hz), 124.2 (q, J_{CF} = 272.6 Hz), 126.4 (q, J_{CF} = 8.3 Hz), 127.1 (q, J_{CF} = 31.1 Hz), 127.5, 128.1, 128.4, 128.68, 128.70 (2C), 128.9 (2C), 129.3, 132.8, 133.7, 135.8, 139.2 ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -60.8 ppm. IR (ATR): ν 3066, 1585, 1553, 1493, 1479, 1458, 1310, 1159, 762, 754, 698 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₇H₁₃F₃N₂ 302.1031, found 302.1043.

1-But-3-enyl-5-phenyl-1*H*-imidazole (22)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and but-3-enylamine (98 mg, 129 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced

pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (78 mg, 57%).

¹H NMR (600 MHz, CDCl₃): δ 2.35 (qt, J = 7.3, 1.4 Hz, 2H), 4.04 (t, J = 7.3 Hz, 2H), 4.99 (dq, J = 17.1, 1.4 Hz, 1H), 5.03 (dq, J = 10.2, 1.4 Hz, 1H), 5.59 – 5.66 (m, 1H), 7.06 (d, J = 1.0 Hz, 1H), 7.36 – 7.40 (m, 3H), 7.43 – 7.45 (m, 2H), 7.55 (d, J = 1.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 35.1, 44.9, 118.2, 128.2, 128.5, 128.9 (2C), 129.0 (2C), 130.3, 133.0, 133.6, 138.3 ppm. IR (ATR): ν 3077, 2977, 2921, 2855, 1640, 1606, 1576, 1552, 1401, 1480, 914, 763, 699 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₃H₁₄N₂ 198.1157, found 198.1163.

5-(3-Fluoro-4-trifluoromethyl-phenyl)-oxazole

$$F_3C$$

A solution of 3-fluoro-4-trifluoromethyl-benzaldehyde (1.40 g, 7.07 mmol, 1 equiv; CAS[204339-72-0]) and *p*-toluene-sulfonylmethyl-isocyanide (1.53 g, 7.68 mmol, 1 equiv; TosMIC) in MeOH (100 mL) was treated with potassium carbonate (1.97 g, 14.14 mmol, 2 equiv) and the suspension heated to reflux for 14 h. After being cooled to room temperature, the solvent was removed under reduced pressure and the crude product triturated with water at 0°C (2 x 25 mL). The slightly orange precipitate was collected by filtration and dried under vacuum (4.46 g, 92%).

¹H NMR (600 MHz, CDCl₃): δ 7.48 – 7.50 (m, 2H), 7.53 (d, J = 8.2 Hz, 1H), 7.67 (t, J = 7.7 Hz, 1H), 7.99 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 112.7 (d, J_{CF} = 23.7 Hz), 118.2 (dd, J_{CF} = 33.1, 12.6 Hz), 119.8 (d, J_{CF} = 3.6 Hz), 122.5 (qd, J_{CF} = 272.4, 1.0 Hz), 124.3, 128.2 (qd, J_{CF} = 4.7, 2.1 Hz), 133.4 (dd, J_{CF} = 9.0, 0.9 Hz), 149.3 (d, J_{CF} = 2.6 Hz), 151.7, 160.3 (dq, J_{CF} = 257.0, 2.2 Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -61.3, -113.0 ppm. IR (ATR): ν 3158, 3130, 3039, 1628, 1595, 1574, 1510, 1318, 1118 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₀H₅F₄N₂O 231.0307, found 231.0291.

1-(Cyclopent-3-en-1-yl)-5-(3-fluoro-4-(trifluoromethyl)phenyl)-1*H*-imidazole (23)

To a solution of 5-(3-fluoro-4-trifluoromethyl-phenyl)-oxazole (50 mg, 0.22 mmol, 1 equiv) and tert-butyl cyclopent-3-enylcarbamate (79 mg, 0.43 mmol, 2 equiv) in o-dichlorobenzene (3 mL) was added trifluoroacetic acid (49 mg, 33 µL, 0.43 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 2 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (24 mg, 38%). ¹H NMR (600 MHz, CDCl₃): δ 2.61 – 2.67 (m, 2H), 2.96 (dd, J = 16.0, 8.1 Hz, 2H), 4.79 – 4.83 (m, 1H), 5.86 - 5.90 (m, 2H), 7.11 (s, 1H), 7.21 (d, J = 11.2 Hz, 1H), 7.24 (d, J = 8.2 Hz, J = 1.2 Hz1H), 7.68 (t, J = 7.6 Hz, 1H), 7.68 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 42.1 (2C), 53.7, 117.2 (d, $J_{CF} = 22.0 \text{ Hz}$), 117.8 (dd, $J_{CF} = 34.1$, 11.9 Hz), 122.6 (qd, $J_{CF} = 272.6$, 1.0 Hz), 124.5 (d, $J_{CF} = 3.6$ Hz), 127.8 (qd, $J_{CF} = 3.6$, 2.2 Hz), 129.0 (2C), 129.1, 130.5 (d, J_{CF} = 1.7 Hz), 136.4, 136.5 (d, J_{CF} = 8.8 Hz), 159.7 (dq, J_{CF} = 257.6, 2.1 Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -61.3, -113.3 ppm. IR (ATR): ν 3110, 3060, 2956, 2871, 1605, 1575, 1551, 1487, 1473, 760, 699 cm⁻¹. HRMS ESI+ (m/z): $[M]^+$ calcd for $C_{15}H_{12}F_4N_2$ 296.0937, found 297.1018.

1-Cyclohexyl-5-phenyl-1*H*-imidazole (24)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and cyclohexylamine (137 mg, 158 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (64 mg, 41%).

¹H NMR (600 MHz, CDCl₃): δ 1.19 – 1.32 (m, 3H), 1.62 – 1.71 (m, 3H), 1.84 – 1.87 (m, 2H), 2.04 – 2.06 (m, 2H), 3.94 (tt, J = 12.0, 3.7 Hz, 1H), 7.02 (d, J = 0.8 Hz, 1H), 7.32 – 7.34 (m, 2H), 7.37 – 7.40 (m, 1H), 7.43 – 7.46 (m, 2H), 7.66 (d, J = 0.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 25.3, 25.9 (2C), 35.0 (2C), 54.7, 127.8, 128.1, 128.8 (2C), 129.3 (2C), 130.6, 132.7, 135.2 ppm. IR (ATR): ν 2930, 2855, 1575, 1488, 1472, 1450, 1360, 763, 699 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₅H₁₈N₂ 226.1469, found 226.1474.

1-Cycloheptyl-5-phenyl-1*H*-imidazole (25)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and cycloheptylamine (156 mg, 182 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting

with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown oil (135 mg, 81%).

¹H NMR (600 MHz, CDCl₃): δ 1.38 – 1.44 (m, 2H), 1.56 – 1.64 (m, 4H), 1.73 – 1.79 (m, 2H), 1.86 – 1.92 (m, 2H), 2.05 – 2.09 (m, 2H), 4.11 – 4.16 (m, 1H), 7.01 (s, 1H), 7.32 – 7.34 (m, 2H), 7.39 (tt, J = 7.4, 1.6 Hz, 1H), 7.45 (tt, J = 7.4, 1.6 Hz, 2H), 7.67 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.7 (2C), 27.5 (2C), 36.9 (2C), 56.6, 127.5, 128.0, 128.7 (2C), 129.2 (2C), 130.5, 132.5, 135.3 ppm. IR (ATR): ν 3029, 2924, 2855, 1604, 1575, 1548, 762, 699 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₆H₂₀N₂ 240.1626, found 240.1646.

4-(2,5-Dimethoxy-phenyl)-oxazole

2-Bromo-1-(2,5-dimethoxy-phenyl)-ethanone (1.0 g, 3.86 mmol, 1 equiv; CAS [1204-21-3]) and formamide (17.4 g, 15.4 mL, 386.0 mmol, 100 equiv) were heated by microwave irradiation to 110 °C and maintained at this temperature for 2 h. After being cooled to room temperature, the crude reaction mixture was poured into a sat. solution of NaHCO₃ (15 mL) and water (10 mL), stirred for 15 min and then extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane / ethyl acetate (0 to 50%). The title compound was isolated as white solid (0.60 g, 76%).

¹H NMR (600 MHz, CDCl₃): δ 3.86 (s, 3H), 3.92 (s, 3H), 6.85 (dd, J = 8.8, 3.0 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 3.1 Hz, 1H), 7.92 (d, J = 1.0 Hz, 1H), 8.22 (d, J = 1.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 56.0, 56.1, 111.9, 112.4, 114.7, 120.5, 135.7, 137.7, 150.1, 150.9, 154.0 ppm. IR (ATR): ν 3192, 3132, 3078, 2922, 2853, 1620, 1570, 1523, 1498, 1273, 1239, 1181, 1151 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₁H₁₁NO₃ 205.0739, found 205.0745.

1-Cyclopentyl-4-(2,5-dimethoxy-phenyl)-1*H*-imidazole (26)

To a solution of 4-(2,5-dimethoxy-phenyl)-oxazole (142 mg, 0.69 mmol, 1 equiv) and cyclopentylamine (118 mg, 136 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 1 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (131 mg, 70%).

¹H NMR (600 MHz, CDCl₃): δ 1.74 – 1.77 (m, 2H), 1.87 – 1.96 (m, 4H), 2.21 – 2.26 (m, 2H), 3.85 (s, 3H), 3.90 (s, 3H), 4.49 (quin, J = 7.1 Hz, 1H), 6.76 (dd, J = 8.9, 3.2 Hz, 1H), 6.88 (d, J = 8.9 Hz, 1H), 7.57 – 7.58 (m, 2H), 7.79 (d, J = 3.2 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.0 (2C), 33.8 (2C), 56.0, 56.1, 58.7, 111.4, 112.4, 113.6, 118.2, 123.9, 135.0, 137.4, 150.3, 154.1 ppm. IR (ATR): ν 3175, 3108, 3045, 3003, 2965, 2951, 2873, 2843, 1611, 1587, 1552, 1540, 1502, 1275, 1162, 1021 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₆H₂₀N₂O₂ 272.1525, found 272.1534.

1-(1-Methyl-cyclobutyl)-5-phenyl-1*H*-imidazole (27)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and 1-methyl-cyclobutylamine (118 mg, 134 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 14 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow solid (53 mg, 36%).

¹H NMR (600 MHz, CDCl₃): δ 1.63 (s, 3H), 1.76 – 1.90 (m, 2H), 1.97 – 2.02 (m, 2H), 2.45 – 2.50 (m, 2H), 6.94 (d, J = 1.3 Hz, 1H), 7.34 – 7.38 (m, 5H), 7.48 (d, J = 1.3 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 15.6, 28.6, 36.1, 58.0, 128.1 (2C), 128.3 (2C), 129.1, 130.5 (2C), 131.4, 132.4, 135.4 ppm. IR (ATR): ν 3109, 3050, 2983, 2939, 2858, 1650, 1603, 1576, 1546, 1489, 1469, 762, 700 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₆N₂ 212.1313, found 212.1320.

1-(1-Methyl-cyclobutyl)-4-phenyl-1*H*-imidazole (28)

To a solution of 4-phenyloxazole (155 mg, 0.69 mmol, 1 equiv; CAS [20662-89-9]) and 1-methyl-cyclobutylamine (118 mg, 134 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C. After 1 h, another 2 equiv of 1-methylcyclobutanamine were added and heating continued for 2 h. The reaction mixture was allowed to cool to room temperature, poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product

purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (117 mg, 80%).

¹H NMR (600 MHz, CDCl₃): δ 1.69 (s, 3H), 1.96 – 2.06 (m, 2H), 2.26 – 2.30 (m, 2H), 2.56 – 2.61 (m, 2H), 7.21 – 7.24 (m, 1H), 7.23 (d, J = 1.4 Hz, 1H), 7.35 – 7.38 (m, 2H), 7.56 (d, J = 1.4 Hz, 1H), 7.77 – 7.79 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 14.5, 28.1, 35.1 (2C), 57.6, 112.1, 124.8 (2C), 126.8, 128.7 (2C), 134.5, 134.7, 142.2 ppm. IR (ATR): ν 3117, 3084, 3055, 2974, 2966, 2873, 2857, 1605, 1581, 1552, 1494, 1480, 767, 694 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₆N₂ 212.1313, found 212.1321.

1-Cyclopentyl-4-phenyl-1*H*-imidazole (29)

To a solution of 4-phenyloxazole (155 mg, 0.69 mmol, 1 equiv; CAS [20662-89-9]) and cyclopentylamine (118 mg, 136 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 1 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (135 mg, 93%).

¹H NMR (600 MHz, CDCl₃): δ 1.74 – 1.78 (m, 2H), 1.88 – 1.93 (m, 4H), 2.21 – 2.25 (m, 2H), 4.48 (quin, J = 7.0 Hz, 1H), 7.21 – 7.23 (m, 1H), 7.24 (d, J = 1.3 Hz, 1H), 7.35 – 7.38 (m, 2H), 7.56 (d, J = 1.3 Hz, 1H), 7.76 – 7.78 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.0 (2C), 33.8 (2C), 56.7, 113.4, 124.8 (2C), 126.7, 128.7 (2C), 134.5, 136.3, 142.3 ppm. IR

(ATR): v 3112, 3083, 2961, 2909, 2867, 1656, 1606, 1582, 1550, 1491, 1443, 758, 691 cm⁻¹. HRMS ESI+ (m/z): $[M]^+$ calcd for $C_{14}H_{16}N_2$ 213.1313, found 212.1321.

1-Cyclopentyl-4-(4-nitro-phenyl)-1*H*-imidazole (30)

To a solution of 4-(4-nitro-phenyl)-oxazole (132 mg, 0.69 mmol, 1 equiv; CAS [13382-61-1]) and cyclopentylamine (118 mg, 136 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 1 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as dark green solid (146 mg, 82%).

¹H NMR (600 MHz, CDCl₃): δ 1.77 – 1.81 (m, 2H), 1.89 – 1.94 (m, 4H), 2.24 – 2.29 (m, 2H), 4.51 (quin, J = 7.0 Hz, 1H), 7.40 (d, J = 1.3 Hz, 1H), 7.62 (d, J = 1.3 Hz, 1H), 7.90 (dt, J = 9.2, 2.2 Hz, 2H), 8.23 (dt, J = 9.3, 2.2 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.0 (2C), 33.9 (2C), 59.0, 116.0, 124.4 (2C), 125.0 (2C), 137.3, 140.2, 140.9, 146.4 ppm. IR (ATR): ν 3123, 2952, 2873, 1598, 1553, 1510, 1336, 853 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₅N₃O₂ 257.1177, found 257.1164.

1-Cyclopentyl-4-(4-fluoro-phenyl)-1*H*-imidazole (31)

To a solution of 4-(4-fluoro-phenyl)-oxazole (113 mg, 0.69 mmol, 1 equiv; CAS [620633-04-7]) and cyclopentylamine (118 mg, 136 µL, 1.38 mmol, 2 equiv) in o-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (125 mg, 79%). ¹H NMR (600 MHz, CDCl₃): δ 1.74 – 1.79 (m, 2H), 1.86 – 1.93 (m, 4H), 2.21 – 2.25 (m, 2H), 4.47 (quin, J = 7.0 Hz, 1H), 7.03 - 7.07 (m, 2H), 7.18 (d, J = 1.3 Hz, 1H), 7.55 (d, J = 1.3 Hz, 1H), 7.71 - 7.74 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.0 (2C), 33.8 (2C), 58.7, 113.1, 115.5 (d, $J_{CF} = 21.5 \text{ Hz}$, 2C), 126.3 (d, $J_{CF} = 7.8 \text{ Hz}$, 2C), 130.8 (d, $J_{CF} = 2.7 \text{ Hz}$), 136.3, 141.5, 162.0 (d, $J_{CF} = 245.7 \text{ Hz}$) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -116.3 ppm. IR (ATR): v3135, 3110, 3067, 3038, 2922, 2855, 1656, 1604, 1595, 1555, 1492, 1219, 844 cm⁻¹. HRMS ESI+ (m/z): $[M]^+$ calcd for $C_{14}H_{15}FN_2$ 230.1219, found 230.1228.

4-(4-Difluoromethoxy-phenyl)-oxazole

2-Bromo-1-(4-difluoromethoxy-phenyl)-ethanone (0.97 g, 3.66 mmol, 1 equiv; CAS [141134-24-9]) and formamide (16.5 g, 14.6 mL, 366.0 mmol, 100 equiv) were heated by microwave irradiation to 110 °C and maintained at this temperature for 5 h. After being cooled to room temperature, the crude reaction mixture was poured into a sat. solution of NaHCO₃ (15 mL) and water (10 mL), stirred for 15 min and then extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane / ethyl acetate (0 to 50%). The title compound was isolated as white solid (0.22 g, 28%).

¹H NMR (600 MHz, CDCl₃): δ 6.54 (t, J_{HF} = 73.8 Hz, 1H), 7.16 – 7.19 (m, 2H), 7.75 (dt, J = 9.3, 2.4 Hz, 2H), 7.92 – 7.95 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 116.0 (t, J_{CF} = 259.4 Hz), 120.0 (2C), 127.2 (2C), 128.3, 133.8, 139.7, 151.1 (t, J_{CF} = 2.9 Hz), 151.6 ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -80.9 ppm. IR (ATR): ν 3163, 3147, 3007, 1618, 1601, 1576, 1540, 1515, 1502, 1410, 1226, 1114, 1104, 1023, 1014, 839 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₀H₇F₂NO₂ 211.0445, found 211.0444.

1-Cyclopentyl-4-(4-difluoromethoxy-phenyl)-1*H*-imidazole (32)

To a solution of 4-(4-difluoromethoxy-phenyl)-oxazole (146 mg, 0.69 mmol, 1 equiv) and cyclopentylamine (118 mg, 136 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting

with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (148 mg, 77%).

¹H NMR (600 MHz, CDCl₃): δ 1.74 – 1.80 (m, 2H), 1.86 – 1.93 (m, 4H), 2.20 – 2.26 (m, 2H), 4.48 (quin, J = 7.0 Hz, 1H), 6.51 (t, $J_{\rm HF}$ = 74.2 Hz, 1H), 7.10 – 7.13 (m, 2H), 7.20 (d, J = 1.3 Hz, 1H), 7.56 (d, J = 1.3 Hz, 1H), 7.75 (dt, J = 9.2, 2.5 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.0 (2C), 33.8 (2C), 58.7, 113.4, 116.3 (t, $J_{\rm CF}$ = 257.8 Hz), 119.8 (2C), 126.2 (2C), 132.1, 136.4, 141.3, 150.1 (t, $J_{\rm CF}$ = 2.8 Hz) ppm. ¹⁹F NMR (375 Hz, CDCl₃): δ -80.4 ppm. IR (ATR): ν 3122, 2973, 2874, 1651, 1591, 1557, 1501, 1399, 1218, 1111, 1028, 845 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₅H₁₆F₂N₂O 278.1231, found 278.1244.

1-Cyclopentyl-4-(4-trifluoromethyl-phenyl)-1*H*-imidazole (33)

To a solution of 4-(4-trifluoromethyl-phenyl)-oxazole (147 mg, 0.69 mmol, 1 equiv; CAS [1126636-40-5]) and cyclopentylamine (118 mg, 136 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as white solid (153 mg, 79%).

¹H NMR (600 MHz, CDCl₃): δ 1.76 – 1.81 (m, 2H), 1.87 – 1.94 (m, 4H), 2.21 – 2.28 (m, 2H), 4.50 (quin, J = 7.0 Hz, 1H), 7.32 (d, J = 1.2 Hz, 1H), 7.59 (d, J = 1.2 Hz, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.0 (2C), 33.9 (2C), 58.8, 114.6, 124.8 (2C), 125.5, 125.7 (q, J_{CF} = 3.8 Hz), 128.5 (q, J_{CF} = 33.2 Hz), 136.8 (2C),

138.0, 140.9 ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -62.3 ppm. IR (ATR): ν 3127, 2970, 2876, 1616, 1562, 1505, 1491, 1413, 1371, 1319, 1125, 843 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₅H₁₅F₃N₂ 280.1187, found 280.1198.

5-(4-Chloro-phenyl)-1-cyclopentyl-1*H*-imidazole (34)

To a solution of 5-(4-chloro-phenyl)-oxazole (124 mg, 0.69 mmol, 1 equiv; CAS [1008-94-2]) and cyclopentylamine (118 mg, 136 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 1 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (127 mg, 75%).

¹H NMR (600 MHz, CDCl₃): δ 1.66 – 1.71 (m, 2H), 1.81 – 191 (m, 4H), 2.07 – 2.12 (m, 2H), 4.43 (quin, J = 7.3 Hz, 1H), 7.02 (d, J = 1.0 Hz, 1H), 7.30 (dt, J = 8.9, 2.3 Hz, 2H), 7.41 (dt, J = 8.9, 2.3 Hz, 2H), 7.66 (d, J = 1.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.2 (2C), 34.5 (2C), 56.5, 128.3, 129.1 (2C), 129.2, 130.7 (2C), 132.3, 134.3, 135.4 ppm. IR (ATR): ν 3109, 2950, 2863, 1599, 1542, 1485, 1470, 808 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₅ClN₂ 246.0924, found 246.0932.

5-(4-Bromo-phenyl)-1-cyclopentyl-1*H*-imidazole (35)

To a solution of 5-(4-bromo-phenyl)-oxazole (155 mg, 0.69 mmol, 1 equiv; CAS [72571-06-3]) and cyclopentylamine (118 mg, 136 µL, 1.38 mmol, 2 equiv) in o-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 1 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (117 mg, 58%). ¹H NMR (600 MHz, CDCl₃): δ 1.67 – 1.71 (m, 2H), 1.80 – 1.90 (m, 4H), 2.07 – 2.12 (m, 2H), 4.43 (quin, J = 7.3 Hz, 1H), 7.03 (d, J = 0.9 Hz, 1H), 7.23 (dt, J = 8.8, 2.2 Hz, 2H), 7.57 (dt, J = 8.8, 2H) = 8.8, 2.2 Hz, 2H), 7.66 (d, J = 0.9 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.3 (2C), 34.5 (2C), 56.6, 122.4, 128.3, 129.6 (2C), 130.9 (2C), 132.0, 132.3, 135.5 ppm. IR (ATR): v 3110, 2948, 2864, 1594, 1539, 807 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₅BrN₂ 290.0419, found 290.0424.

4-(3-Cyclopentyl-3*H*-imidazol-4-yl)-benzonitrile (36)

To a solution of 4-oxazol-5-yl-benzonitrile (117 mg, 0.69 mmol, 1 equiv; CAS [87150-13-8]) and cyclopentylamine (118 mg, 136 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 1 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting

with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (131 mg, 80%).

¹H NMR (600 MHz, CDCl₃): δ 1.70 – 1.75 (m, 2H), 1.83 – 1.93 (m, 4H), 2.11 – 2.16 (m, 2H), 4.49 (quint, J = 7.2 Hz, 1H), 7.12 (d, J = 1.0 Hz, 1H), 7.49 (dt, J = 8.4, 1.8 Hz, 2H), 7.72 (d, J = 1.0 Hz, 1H), 7.73 (dt, J = 8.4, 1.8 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.3 (2C), 34.6 (2C), 56.9, 111.6, 118.7, 129.4 (2C), 129.6, 131.8, 132.7 (2C), 135.3, 136.5 ppm. IR (ATR): ν 3109, 2949, 2876, 2224, 1606, 1560, 1544, 1493, 1470, 815 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₅H₁₅N₃ 237.1266, found 237.1274.

1-Cyclopentyl-5-(4-trifluoromethyl-phenyl)-1*H*-imidazole (37)

To a solution of 5-(4-trifluoromethyl-phenyl)-oxazole (147 mg, 0.69 mmol, 1 equiv; CAS [87150-14-9]) and cyclopentylamine (118 mg, 136 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (151 mg, 78%).

¹H NMR (600 MHz, CDCl₃): δ 1.67 – 1.73 (m, 2H), 1.83 – 1.93 (m, 4H), 2.10 – 2.14 (m, 2H), 4.48 (quin, J = 7.2 Hz, 1H), 7.09 (d, J = 1.0 Hz, 1H), 7.49 – 7.50 (m, 2H), 7.69 – 7.71 (m, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.3 (2C), 34.6 (2C), 56.7, 124.2 (q, J_{CF} = 271.4 Hz), 125.8 (q, J_{CF} = 3.6 Hz), 129.0 (2C), 129.4 (2C), 130.1 (q, J_{CF} = 33.2 Hz), 132.1, 134.3, 135.9 ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -62.6 ppm. IR (ATR): ν 2944, 2875, 1618, 1553, 1322, 1102, 1067, 844 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₅H₁₅F₃N₂ 280.1187, found 280.1196.

1-Cyclopentyl-5-(3-trifluoromethyl-phenyl)-1*H*-imidazole (38)

To a solution of 5-(3-trifluoromethyl-phenyl)-oxazole (147 mg, 0.69 mmol, 1 equiv; CAS [175205-48-8]) and cyclopentylamine (118 mg, 136 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 2 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown solid (133 mg, 69%).

¹H NMR (600 MHz, CDCl₃): δ 1.68 – 1.73 (m, 2H), 1.83 – 1.92 (m, 4H), 2.10 – 2.16 (m, 2H), 4.44 (quin, J = 7.1 Hz, 1H), 7.09 (d, J = 1.0 Hz, 1H), 7.55 – 7.59 (m, 2H), 7.63 – 7.66 (m, 2H), 7.70 (d, J = 1.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 24.3 (2C), 34.6 (2C), 56.7, 123.1, 124.9 (q, J_{CF} = 3.9 Hz), 126.0 (q, J_{CF} = 3.9 Hz), 128.8, 129.4, 131.4 (q, J_{CF} = 32.4 Hz), 131.5, 132.0, 132.5 (d, J_{CF} = 1.1 Hz), 135.7 ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -62.7 ppm. IR (ATR): ν 3114, 2960, 2874, 1616, 1601, 1550, 1325, 1119, 903, 802, 701 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₅H₁₅F₃N₂ 280.1187, found 280.1196.

1-[2-(4-Fluoro-phenyl)-ethyl]-5-phenyl-1*H*-imidazole (39)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and 2-(4-fluoro-phenyl)-ethylamine (192 mg, 181 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (101 mg, 55%).

¹H NMR (600 MHz, CDCl₃): δ 2.81 (t, J = 7.2 Hz, 2H), 4.18 (t, J = 7.2 Hz, 2H), 6.83 – 6.86 (m, 2H), 6.88 – 6.92 (m, 2H), 7.04 (d, J = 1.0 Hz 1H), 7.29 – 7.30 (m, 2H), 7.37 (d, J = 1.0 Hz, 1H), 7.39 (m, 1H), 7.42 – 7.44 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 36.7, 46.0, 115.7 (d, J = 2.15 Hz, 2C), 128.2, 128.5, 128.0 (4C), 120.2 (d, J = 8.1 Hz, 2C)

(III, 2H), 6.88 - 6.92 (III, 2H), 7.04 (d, J - 1.0 Hz 1H), 7.29 - 7.30 (III, 2H), 7.37 (d, J - 1.0 Hz, 1H), 7.39 (m, 1H), 7.42 - 7.44 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 36.7, 46.9, 115.7 (d, $J_{CF} = 21.5$ Hz, 2C), 128.2, 128.5, 128.9 (4C), 130.2 (d, $J_{CF} = 8.1$ Hz, 2C), 130.2, 132.9, 133.0 (d, $J_{CF} = 3.3$ Hz), 138.2, 162.0 (d, $J_{CF} = 245.0$ Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -115.8 ppm. IR (ATR): ν 3037, 2929, 2860, 1602, 1492, 1480, 1440, 1358, 1219, 822, 761, 699 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₇H₁₅FN₂ 266.1219, found 266.1230.

1-[2-(4-Fluoro-phenyl)-ethyl]-5-(3-fluoro-4-trifluoromethyl-phenyl)-1*H*-imidazole (40)

To a solution of 5-(3-fluoro-4-trifluoromethyl-phenyl)-oxazole (160 mg, 0.69 mmol, 1 equiv) and 2-(4-fluoro-phenyl)-ethylamine (192 mg, 181 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C. After 1 h, another 2 equiv of 2-(4-fluoro-phenyl)-ethylamine were added and heating continued for 2 h. The

reaction mixture was allowed to cool to room temperature, poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (201 mg, 83%).

¹H NMR (600 MHz, CDCl₃): δ 2.87 (t, J = 6.8 Hz, 2H), 4.23 (t, J = 6.9 Hz, 2H), 6.82 – 6.85 (m, 2H), 6.89 – 6.92 (m, 2H), 7.04 (d, J = 11.0 Hz, 1H), 7.11 – 7.13 (m, 2H), 7.45 (d, J = 0.8 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 36.9, 47.1, 115.6, 115.8 (d, J_{CF} = 22.4 Hz, 2C), 116.5 (d, J_{CF} = 22.2 Hz), 123.9 (d, J_{CF} = 3.6 Hz), 127.8 (dq, J_{CF} = 4.5, 2.2 Hz), 130.1, 130.2 (d, J_{CF} = 8.1 Hz, 2C), 130.3 (d, J_{CF} = 8.1 Hz), 130.6, 132.5 (d, J_{CF} = 3.0 Hz), 136.3, 139.6, 161.2, 162.0 (d, J_{CF} = 245.0 Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -61.3, -113.2, -115.3 ppm. IR (ATR): ν 3040, 2933, 2863, 1628, 1601, 1576, 1510, 1321, 1122, 822 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₈H₁₃F₅N₂ 352.0999, found 352.1005.

1-[2-(4-Fluoro-phenyl)-ethyl]-5-(4-trifluoromethyl-phenyl)-1*H*-imidazole (41)

To a solution of 5-(4-trifluoromethyl-phenyl)-oxazole (147 mg, 0.69 mmol, 1 equiv; CAS [87150-14-9]) and 2-(4-fluoro-phenyl)-ethylamine (192 mg, 181 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C for 2 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown oil (94 mg, 41%).

¹H NMR (600 MHz, CDCl₃): δ 2.84 (t, J = 7.0 Hz, 2H), 4.22 (t, J = 7.0 Hz, 2H), 6.81 – 6.84 (m, 2H), 6.89 (tt, J = 7.8, 3.1 Hz, 2H), 7.10 (d, J = 0.8 Hz, 1H), 7.36 – 7.38 (m, 2H), 7.44 (d, J = 0.8 Hz, 1H), 7.66 – 7.68 ppm (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 36.9, 47.0, 115.8 (d, J_{CF} = 21.8 Hz, 2C), 124.1 (q, J_{CF} = 273.4 Hz), 125.9 (q, J_{CF} = 3.7 Hz, 2C), 128.8 (2C), 129.5, 130.12 (q, J_{CF} = 32.8 Hz), 130.15 (d, J_{CF} = 8.1 Hz, 2C), 131.7, 132.7 (d, J_{CF} = 3.3 Hz), 133.8 (d, J_{CF} = 1.0 Hz), 139.1, 162.1 (d, J_{CF} = 245.1 Hz) ppm. ¹⁹F NMR: (375 MHz, CDCl₃): δ -62.7, -115.5 ppm. IR (ATR): ν 3106, 3040, 2935, 1619, 1510, 1482, 1323, 1107, 823 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₈H₁₄F₄N₂ 334.1093, found 334.1102.

1-[2-(4-Fluoro-phenyl)-ethyl]-5-(3-trifluoromethyl-phenyl)-1*H*-imidazole (42)

To a solution of 5-(3-trifluoromethyl-phenyl)-oxazole (147 mg, 0.69 mmol, 1 equiv; CAS [175205-48-8]) and 2-(4-fluoro-phenyl)-ethylamine (192 mg, 181 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C. After 1 h, another 2 equiv of 2-(4-fluoro-phenyl)-ethylamine were added and heating continued for 2 h. The reaction mixture was allowed to cool to room temperature, poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (119 mg, 52%).

¹H NMR (600 MHz, CDCl₃): δ 2.85 (t, J = 7.0 Hz, 2H), 4.19 (t, J = 7.0 Hz, 2H), 6.81 – 6.84 (m, 2H), 6.89 (tt, J = 8.9, 2.4 Hz, 2H), 7.08 (d, J = 1.1 Hz, 1H), 7.41 – 7.43 (m, 1H), 7.47 (br s, 2H), 7.54 (t, J = 7.8 Hz, 1H), 7.62 – 7.64 (m, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 37.0, 46.9, 115.8 (d, J_{CF} = 21.5 Hz, 2C), 123.1, 124.9 (q, J_{CF} = 3.7 Hz), 125.4 (q, J_{CF} = 3.7 Hz), 129.3, 129.5, 130.2 (d, J_{CF} = 8.1 Hz, 2C), 131.0, 131.4 (q, J_{CF} = 32.8 Hz), 131.7,

132.1, 132.7 (d, $J_{\text{CF}} = 3.2 \text{ Hz}$), 138.8, 162.1 (d, $J_{\text{CF}} = 245.8 \text{ Hz}$) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -62.7, -115.5 ppm. IR (ATR): ν 3042, 2945, 1601, 1553, 1510, 1326, 1119, 802 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₈H₁₄F₄N₂ 334.1093, found 334.1102.

5-(4-Chloro-phenyl)-1-[2-(4-fluoro-phenyl)-ethyl]-1*H*-imidazole (43)

To a solution of 5-(4-chloro-phenyl)-oxazole (124 mg, 0.69 mmol, 1 equiv; CAS [1008-94-2]) and 2-(4-fluoro-phenyl)-ethylamine (192 mg, 181 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C. After 1 h, another 2 equiv of 2-(4-fluoro-phenyl)-ethylamine were added and heating continued for 2 h. The reaction mixture was allowed to cool to room temperature, poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (156 mg, 75%).

¹H NMR (600 MHz, CDCl₃): δ 2.82 (t, J = 7.0 Hz, 2H), 4.16 (t, J = 7.0 Hz, 2H), 6.83 – 6.86 (m, 2H), 6.91 (tt, J = 8.2, 3.1 Hz, 2H), 7.03 (d, J = 0.9 Hz, 1H), 7.19 (dt, J = 8.9, 2.3 Hz, 2H), 7.38 – 7.40 (m, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 39.8, 46.9, 115.8 (d, J_{CF} = 21.4 Hz, 2C), 128.6, 128.9, 129.2 (2C), 130.1 (2C), 130.2 (d, J_{CF} = 8.1 Hz, 2C), 131.8, 132.9 (d, J_{CF} = 3.5 Hz), 134.3, 138.5, 162.0 (d, J_{CF} = 245.8 Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -115.6 ppm. IR (ATR): ν 3083, 2930, 2860, 1601, 1550, 1508, 1476, 1218, 1092, 817 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₇H₁₄ClFN₂ 300.0830, found 300.0835.

5-(4-Bromo-phenyl)-1-[2-(4-fluoro-phenyl)-ethyl]-1*H*-imidazole (44)

To a solution of 5-(4-bromo-phenyl)-oxazole (155 mg, 0.69 mmol, 1 equiv; CAS [72571-06-3]) and 2-(4-fluoro-phenyl)-ethylamine (192 mg, 181 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (148 mg, 62%).

¹H NMR (600 MHz, CDCl₃): δ 2.82 (t, J = 7.0 Hz, 2H), 4.17 (t, J = 7.0 Hz, 2H), 6.83 – 6.86 (m, 2H), 6.89 – 6.92 (m, 2H), 7.03 (d, J = 1.0 Hz, 1H), 7.12 (dt, J = 8.8, 2.2 Hz, 2H), 7.40 (d, J = 1.0 Hz, 1H), 7.55 (dt, J = 8.8, 2.2 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 36.8, 46.9, 115.7 (d, J_{CF} = 21.3 Hz, 2C), 122.5, 128.8, 129.0, 130.2 (d, J_{CF} = 8.1 Hz, 2C), 130.4 (2C), 131.8, 132.1 (2C), 132.8 (d, J_{CF} = 3.5 Hz), 138.6, 162.0 (d, J_{CF} = 245.8 Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -115.6 ppm. IR (ATR): ν 3038, 2931, 2859, 1675, 1601, 1549, 1509, 1478, 1221, 1007, 823 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₇H₁₄BrFN₂ 344.0324, found 344.0330.

4-{3-[2-(4-Fluoro-phenyl)-ethyl]-3*H*-imidazol-4-yl}-benzonitrile (45)

To a solution of 4-oxazol-5-yl-benzonitrile (117 mg, 0.69 mmol, 1 equiv; CAS [87150-13-8]) and 2-(4-fluoro-phenyl)-ethylamine (192 mg, 181 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C. After 1 h, another 2 equiv of 2-(4-fluoro-phenyl)-ethylamine were added and heating continued for 2 h. The reaction mixture was allowed to cool to room temperature, poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (127 mg, 63%).

¹H NMR (600 MHz, CDCl₃): δ 2.84 (t, J = 7.0 Hz, 2H), 4.23 (t, J = 7.0 Hz, 2H), 6.80 – 6.83 (m, 2H), 6.90 (tt, J = 8.9, 2.4 Hz, 2H), 7.12 (d, J = 1.0 Hz, 1H), 7.35 (dt, J = 8.4, 1.8 Hz, 2H), 7.46 (d, J = 1.0 Hz, 1H), 7.70 (dt, J = 8.3 , 1.8 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 36.9, 47.2, 111.7, 115.8 (d, J_{CF} = 21.8 Hz, 2C), 118.6, 128.8 (2C), 130.0, 130.1 (d, J_{CF} = 8.1 Hz, 2C), 131.3, 132.7 (d, J_{CF} = 3.4 Hz), 132.7 (2C), 134.8, 139.6, 162.1 (d, J_{CF} = 245.8 Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -115.3 ppm. IR (ATR): ν 3041, 2929, 2226, 1608, 1563, 1546, 1509, 1219, 822 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₈H₁₄FN₃ 291.1172, found 291.1183.

1-Cyclopropylmethyl-5-phenyl-1*H*-imidazole (46)

To a solution of 5-phenyloxazole (100 mg, 0.69 mmol, 1 equiv; CAS[1006-68-4]) and cyclopropyl-methylamine (98 mg, 120 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown oil (111 mg, 81%).

¹H NMR (600 MHz, CDCl₃): δ 0.19 – 0.26 (m, 2H), 0.54 – 0.62 (m, 2H), 1.05 – 1.12 (m, 1H), 3.80 (d, J = 7.0 Hz, 2H), 7.08 (d, J = 1.1 Hz, 1H), 7.36 – 7.39 (m, 3H), 7.42 – 7.45 (m, 2H), 7.71 (d, J = 1.1 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 4.4 (2C), 11.7, 50.2, 128.1, 128.2, 128.8 (2C), 129.1 (2C), 130.4, 133.0, 137.8 ppm. IR (ATR): ν 3080, 3002, 2874, 1605, 1576, 1552, 1480, 1364, 916, 762, 698 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₃H₁₄N₂ 198.1157, found 198.1166.

1-Cyclopropylmethyl-5-(3-fluoro-4-trifluoromethyl-phenyl)-1*H*-imidazole (47)

To a solution of 5-(3-fluoro-4-trifluoromethyl-phenyl)-oxazole (160 mg, 0.69 mmol, 1 equiv) and cyclopropyl-methylamine (98 mg, 120 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for

0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (133 mg, 68%).

¹H NMR (600 MHz, CDCl₃): δ 0.27 – 0.30 (m, 2H), 0.64 – 0.67 (m, 2H), 1.07 – 1.14 (m, 1H), 3.85 (d, J = 7.0 Hz, 2H), 7.19 (d, J = 1.0 Hz, 1H), 7.24 (dd, J = 10.9, 0.9 Hz, 1H), 7.27 – 7.28 (m, 1H), 7.67 (t, J = 7.8 Hz, 1H), 7.76 (d, J = 1.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 4.5 (2C), 11.6, 50.6, 116.7 (d, J_{CF} = 21.6 Hz), 117.5 (d, J_{CF} = 13.8 Hz), 122.6 (q, J_{CF} = 272.4 Hz), 124.0 (d, J_{CF} = 3.1 Hz), 127.8 (q, J_{CF} = 2.4 Hz), 130.0, 130.6, 136.6 (d, J_{CF} = 8.7 Hz), 139.2, 159.9 (dq, J_{CF} = 256.8, 2.1 Hz) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -61.3, -113.3 ppm. IR (ATR): ν 3086, 1627, 1575, 1499, 1321, 1121, 926, 826 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₂F₄N₂ 284.0937, found 284.0946.

1-Cyclopropylmethyl-5-(4-trifluoromethyl-phenyl)-1*H*-imidazole (48)

To a solution of 5-(4-trifluoromethyl-phenyl)-oxazole (147 mg, 0.69 mmol, 1 equiv; CAS [87150-14-9]) and cyclopropyl-methylamine (98 mg, 120 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown oil (125 mg, 68%).

¹H NMR (600 MHz, CDCl₃): δ 0.22 – 0.29 (m, 2H), 0.58 – 0.66 (m, 2H), 1.06 – 1.12 (m, 1H), 3.83 (d, J = 2.0 Hz, 2H), 7.15 (d, J = 1.1 Hz, 1H), 7.50 – 7.52 (m, 2H), 7.69 – 7.71 (m, 2H), 7.75 (d, J = 1.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 4.5 (2C), 11.7, 50.5, 124.2 (q, J_{CF} = 273.4 Hz), 125.9 (q, J_{CF} = 3.6 Hz), 129.0 (2C), 129.3, 130.1 (d, J_{CF} = 32.8 Hz), 131.7, 134.0 (d, J_{CF} = 1.3 Hz), 138.7 (2C) ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -62.2 ppm. IR (ATR): ν 3080, 3008, 2936, 2877, 1618, 1576, 1556, 1483, 1322, 1106, 826 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₃F₃N₂ 266.1030, found 266.1037.

1-Cyclopropylmethyl-5-(3-trifluoromethyl-phenyl)-1*H*-imidazole (49)

To a solution of 5-(3-trifluoromethyl-phenyl)-oxazole (147 mg, 0.69 mmol, 1 equiv; CAS [175205-48-8]) and cyclopropyl-methylamine (98 mg, 120 μL, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 4 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light brown oil (96 mg, 52%).

¹H NMR (600 MHz, CDCl₃): δ 0.21 – 0.28 (m, 2H), 0.58 – 0.66 (m, 2H), 1.05 – 1.12 (m, 1H), 3.80 (d, J = 7.0 Hz, 2H), 7.14 (d, J = 1.1 Hz, 1H), 7.56 – 7.59 (m, 2H), 7.63 – 7.65 (m, 2H), 7.75 (d, J = 1.1 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 4.5 (2C), 11.7, 50.4, 123.1, 124.8 (q, J_{CF} = 3.8 Hz), 125.7 (q, J_{CF} = 3.9 Hz), 129.1, 129.4, 131.3, 131.4 (q, J_{CF} = 32.4 Hz), 131.6, 132.2 (d, J_{CF} = 1.1 Hz), 138.5 ppm. ¹⁹F NMR (375 MHz, CDCl₃): δ -62.7 ppm. IR (ATR): ν 3084, 3008, 1617, 1592, 1551, 1491, 1326, 1119, 903, 802 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₃F₃N₂ 266.1030, found 266.1041.

5-(4-Chloro-phenyl)-1-cyclopropylmethyl-1*H*-imidazole (50)

To a solution of 5-(4-chloro-phenyl)-oxazole (124 mg, 0.69 mmol, 1 equiv; CAS [1008-94-2]) and cyclopropyl-methylamine (98 mg, 120 µL, 1.38 mmol, 2 equiv) in o-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 uL, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (132 mg, 86%). ¹H NMR (600 MHz, CDCl₃): δ 0.22 – 0.25 (m, 2H), 0.58 – 0.62 (m, 2H), 1.04 – 1.10 (m, 1H), 3.78 (d, J = 7.0 Hz, 2H), 7.08 (d, J = 1.0 Hz, 1H), 7.31 (dt, J = 8.9, 2.3 Hz, 2H), 7.41 (dt, J =8.9, 2.3 Hz, 2H), 7.71 (d, J = 1.0 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 4.4 (2C), 11.7, 50.3, 128.6, 128.9, 129.1 (2C), 130.3 (2C), 131.9, 134.2, 138.1 ppm. IR (ATR): v 3084, 3004, 2873, 1600, 1569, 1549, 1091, 915, 817 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₃H₁₃ClN₂ 232.0767, found 232.0775.

5-(4-Bromo-phenyl)-1-cyclopropylmethyl-1*H*-imidazole (51)

To a solution of 5-(4-bromo-phenyl)-oxazole (155 mg, 0.69 mmol, 1 equiv; CAS [72571-06-3]) and cyclopropyl-methylamine (98 mg, 120 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this

temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (102 mg, 53%).

¹H NMR (600 MHz, CDCl₃): δ 0.22 – 0.25 (m, 2H), 0.59 – 0.62 (m, 2H), 1.04 – 1.10 (m, 1H), 3.78 (d, J = 7.1 Hz, 2H), 7.08 (d, J = 1.1 Hz, 1H), 7.25 (dt, J = 8.8, 2.2 Hz, 2H), 7.57 (dt, J = 8.8, 2.2 Hz, 2H), 7.71 (d, J = 1.1 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 4.4 (2C), 11.7, 50.3, 122.3, 128.6, 129.3, 130.6 (2C), 131.9 (2C), 132.1, 138.2 ppm. IR (ATR): ν 3080, 3007, 1598, 1545, 1007, 933, 818 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for C₁₃H₁₃BrN₂ 276.0262, found 276.0270.

4-(3-Cyclopropylmethyl-3*H*-imidazol-4-yl)-benzonitrile (52)

To a solution of 4-oxazol-5-yl-benzonitrile (117 mg, 0.69 mmol, 1 equiv; CAS [87150-13-8]) and cyclopropyl-methylamine (98 mg, 120 μ L, 1.38 mmol, 2 equiv) in *o*-dichlorobenzene (10 mL) was added trifluoroacetic acid (157 mg, 106 μ L, 1.38 mmol, 2 equiv) and the reaction mixture was heated by microwave irradiation to 200 °C and maintained at this temperature for 0.5 h. After being cooled to room temperature, the crude reaction mixture was poured into a mixture of 1 M NaOH (20 mL) and a sat. solution of NaCl (40 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and the crude product purified by medium pressure liquid chromatography eluting with a gradient of heptane (containing 1% triethylamine) / ethyl acetate (0 to 60%). The title compound was isolated as light yellow oil (99 mg, 64%).

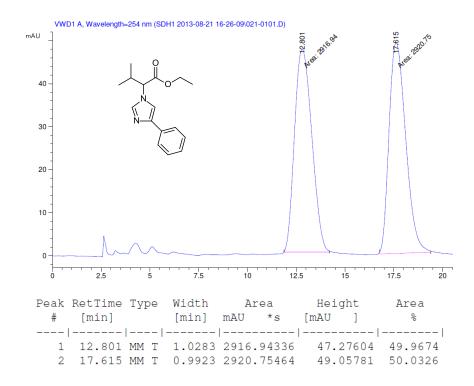
¹H NMR (600 MHz, CDCl₃): δ 0.25 – 0.28 (m, 2H), 0.60 – 0.68 (m, 2H), 1.06 – 1.12 (m, 1H), 3.84 (d, J = 7.0 Hz, 2H), 7.19 (d, J = 1.1 Hz, 1H), 7.51 (dt, J = 8.4, 1.8 Hz, 2H), 7.73 (dt, J = 8.4, 1.8 Hz, 2H), 7.77 (d, J = 1.1 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 4.5 (2C),

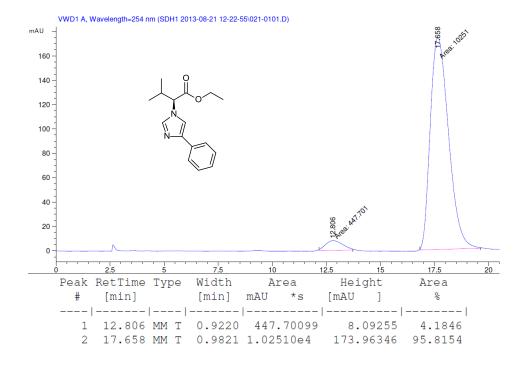
11.7, 50.7, 111.6, 118.7, 129.0 (2C), 130.0, 131.3, 132.7 (2C), 135.0, 139.2 ppm. IR (ATR): ν 3083, 3004, 2225, 1608, 1563, 1545, 1495, 1480, 828 cm⁻¹. HRMS ESI+ (m/z): [M]⁺ calcd for $C_{14}H_{13}N_3$ 223.1109, found 223.1116.

General Experimental Procedure for Coupling of Amino Acids

In a microwave reaction tube, the substituted oxazole (1 equiv), amino acid (4 equiv) and trifluoroacetic acid (2 equiv) were taken and toluene was added. The reaction mixture was heated at 100 °C for 0.5 h. The crude reaction mixture was purified on silica gel column chromatography using hexanes and ethyl acetate as eluents to afford the desired product.

Table S1. Enantiomeric purity of imidazolyl esters 54-57.

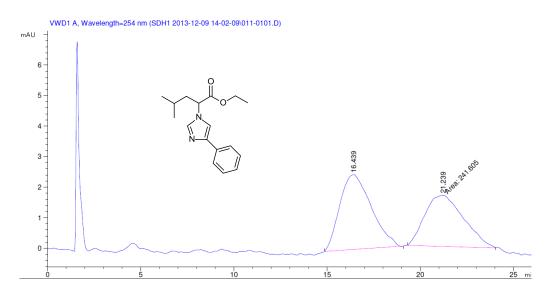

entry	product	solvent	temp (°C)	time (min)	yield	ee (%) ^a
					(%)	
1	54	o-DCB	160	45	25	0
2	54	PhCH ₃	100	30	47	92
3	55	PhCH ₃	100	30	57	40
4	55	PhCH ₃	100	10	38 ^b	89
5	56	PhCH ₃	100	30	56	68 ^c
6	57	PhCH ₃	100	30	50	32
7	57	PhCH ₃	100	10	32 ^b	58

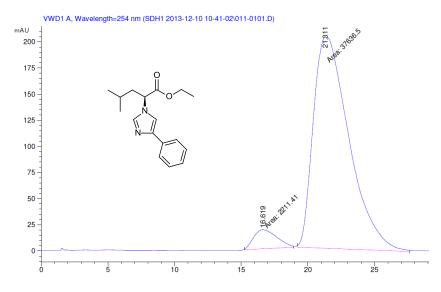

^a Determined by chiral HPLC (see chromatograms below); ^b 1 equiv of TFA used;

^c diastereomeric excess (de).

(S)-3-Methyl-2-(4-phenyl-imidazol-1-yl)-butyric acid ethyl ester (54)

The above general experimental procedure was used. A solution of 4-phenyloxazole (36.3 mg, 0.25 mmol, 1 equiv), valine ethyl ester (145 mg, 1.0 mmol, 4 equiv) and trifluoroacetic acid (57 mg, 39 µL, 0.5 mmol, 2 equiv) in toluene (1 mL) were heated by microwave irradiation to 100 °C and maintained at this temperature for 0.5 h. The crude reaction mixture was purified directly by column chromatography eluting with hexanes / ethyl acetate (6:4). The title compound was isolated as colorless oil (32 mg, 47%). The enantiomeric purity of 54 (92% ee) was determined by chiral HPLC analysis using a Chiralcel® OD column (flow rate = 1.2) ml/min, 95:5 hexanes / isopropyl alcohol). The retention time for the (R)-enantiomer was \sim 12.8 min and for the (S)-enantiomer was \sim 17.6 min. See HPLC chromatogram below. ¹H NMR (400 MHz, CDCl₃): δ 0.85 (d, J = 6.6 Hz, 3H), 1.04 (d, J = 6.6 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 2.41 - 2.50 (m, 1H), 4.19 - 4.30 (m, 3H), 7.23 (tt, J = 7.3, 1.4 Hz, 1H), 7.35 -7.39 (m, 2H), 7.40 (d, J = 1.2 Hz, 1H), 7.60 (d, J = 1.4 Hz, 1H), 7.77 – 7.80 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.1, 18.6, 19.3, 32.1, 61.9, 66.9, 114.1, 124.8 (2C), 126.9, 128.6 (2C), 134.0, 137.3, 142.4, 169.4 ppm. IR: v 2969, 2945, 1740, 1189, 750, 695 cm⁻¹. $[\alpha]_D^{20} =$ +31.9 (c = 0.1, CHCl₃). HRMS ESI+ (m/z): [M]⁺ calcd for C₁₆H₂₀N₂O₂ 272.1525, found 272.1530.




(S)-4-Methyl-2-(4-phenyl-imidazol-1-yl)-pentanoic acid ethyl ester (55)

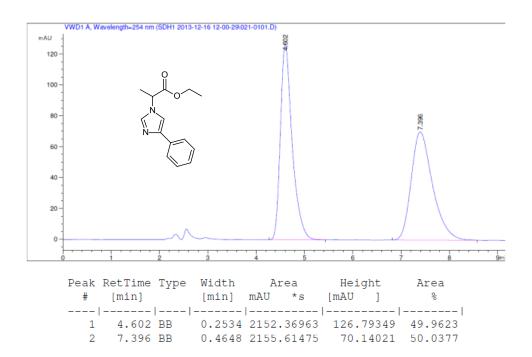
The above general experimental procedure was used. 4-Phenyloxazole (36.3 mg, 0.25 mmol, 1 equiv), leucine ethyl ester (159 mg, 1.0 mmol, 4 equiv) and trifluoroacetic acid (57 mg, 39 μ L, 0.5 mmol, 2 equiv) in toluene (1 mL) were heated by microwave irradiation to 100 °C and maintained at this temperature for 0.5 h. The crude reaction mixture was purified directly by column chromatography eluting with hexanes / ethyl acetate (6:4). The title compound was isolated as colorless oil (41 mg, 57%). The enantiomeric purity of 55 (89% ee) was determined by chiral HPLC analysis using a Chiralpak AD column (2 ml/min, 95:5 hexanes / isopropyl alcohol). The retention time for the (R)-enantiomer was ~16.5 min and for the (S)-enantiomer was ~21.3 min. See HPLC chromatogram below.

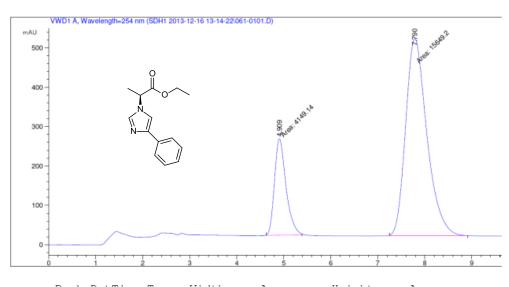
¹H NMR (400 MHz, CDCl₃): δ 0.93 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.40 – 1.51 (m, 1H), 1.95 – 2.00 (m, 2H), 4.21 (qd, J = 7.2, 0.8 Hz, 2H), 4.76 (dd, J = 9.4, 6.4 Hz, 1H), 7.22 – 7.26 (m, 1H), 7.34 – 7.39 (m, 3H), 7.64 (s, 1H), 7.77 – 7.79 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.2, 21.6, 22.8, 24.6, 41.6, 58.6, 62.2, 113.9, 124.9 (2C), 127.1, 128.7 (2C), 133.9, 137.2, 142.2, 170.0 ppm. IR: ν 2959, 2871, 1740, 1187, 746, 696 cm⁻¹. [α]_D²⁰ = +10.2 (c = 0.1, CHCl₃). HRMS ESI+ (m/z): [M]⁺ calcd for C17H22N2O2 286.1681, found 286.1698.

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU *	S	[mAU]	용	
									-
1	16.439	BB	1.3998	287.70	688	2.4	4618	54.3549)
2	21.239	MM	2.4125	241.60	500	1.6	6912	45.6451	L

P€	eak	RetTime	Type	Width	Area		Height		Area	
	#	[min]		[min]	mAU	*s	[mAU]	%	
										-
	1	16.619	MM	2.0133	2211.4	1064	18.3	30639	5.549	6
	2	21.311	MM	3.1068	3.7636	5e4	201.9	0094	94.450	4

(2S,3S)-3-Methyl-2-(4-phenyl-imidazol-1-yl)-pentanoic acid ethyl ester (56)

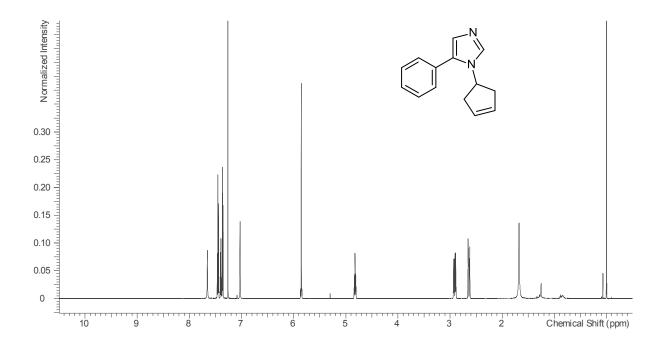

The above general experimental procedure was used. A solution of 4-phenyloxazole (36.3 mg, 0.25 mmol, 1 equiv), isoleucine ethyl ester (159 mg, 1.0 mmol, 4 equiv) and trifluoroacetic acid (57 mg, 39 μ L, 0.5 mmol, 2 equiv) in toluene (1 mL) was heated by microwave irradiation to 100 °C and maintained at this temperature for 0.5 h. The crude reaction mixture was purified directly by column chromatography eluting with hexanes / ethyl acetate (6:4). The title compound was isolated as colorless oil (40 mg, 56%). The diastereomeric purity of 56 (68% de) was determined by analysis of ¹H NMR spectra acquired on the crude reaction product. The (2*R*)- and (2*S*)-diastereomers exhibit distinct resonances for H2 at δ 4.45 and δ 4.39 ppm, respectively.

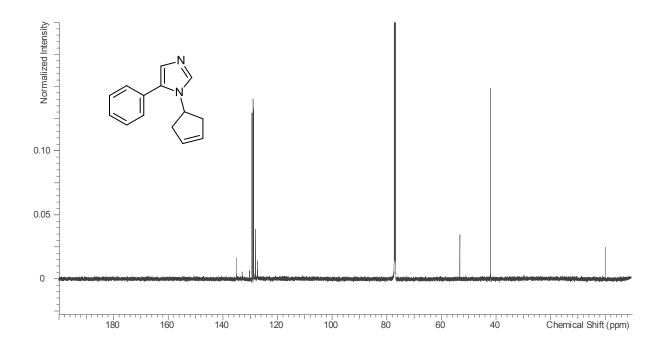

¹H NMR (400 MHz, CDCl₃): δ 0.85 (t, J = 7.2 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 1.25 – 1.30 (m, 4H), 1.42 – 1.51 (m, 1H), 2.19 – 2.23 (m, 1H), 4.18 – 4.30 (m, 2H), 4.36 (d, J = 10.2 Hz, 1H), 7.21 – 7.25 (m, 1H), 7.34 – 7.40 (m, 3H), 7.61 (s, 1H), 7.78 (dd, J = 8.2, 1.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 10.7, 14.2, 15.6, 24.9, 38.1, 62.0, 65.7, 114.3, 124.9 (2C), 127.0, 128.7 (2C), 134.0, 137.5, 142.2, 169.6 ppm. IR: ν 2966, 2877, 1738, 1185, 730, 695 cm⁻¹. [α]_D²⁰ = +21.3 (c = 0.1, CHCl₃). HRMS ESI+ (m/z): [M]⁺ calcd for C₁₇H₂₂N₂O₂ 286.1681, found 286.1704.

(S)-2-(4-Phenyl-imidazol-1-yl)-propionic acid ethyl ester (57)

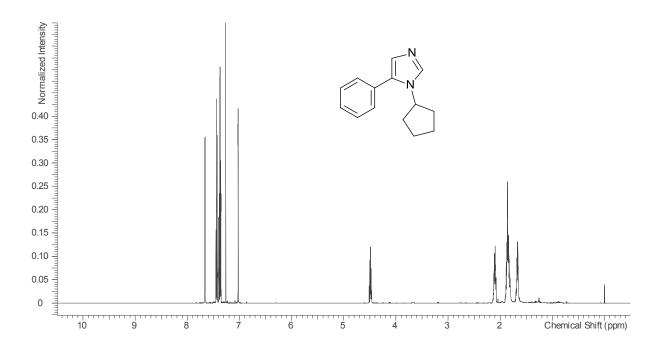
The above general experimental procedure was used. A solution of 4-phenyloxazole (36.3 mg, 0.25 mmol, 1equiv), alanine ethyl ester (116 mg, 1.0 mmol, 4 equiv) and trifluoroacetic acid (57 mg, 39 μ L, 0.5 mmol, 2 equiv) in toluene (1 mL) was heated by microwave irradiation to 100 °C and maintained at this temperature for 0.5 h. The crude reaction mixture was purified directly by column chromatography eluting with hexanes / ethyl acetate (6:4). The title compound was isolated as colorless oil (31 mg, 50%). The enantiomeric purity of **57** (58% ee) was determined by chiral HPLC analysis using a Chiralcel © OD column (flow rate = 1.5 mL/min, mobile phase = 75:25 hexanes / isopropyl alcohol). The retention time for the (*R*)-enantiomer was ~4.9 min and for the (*S*)-enantiomer was ~7.8 min. See HPLC chromatogram below.

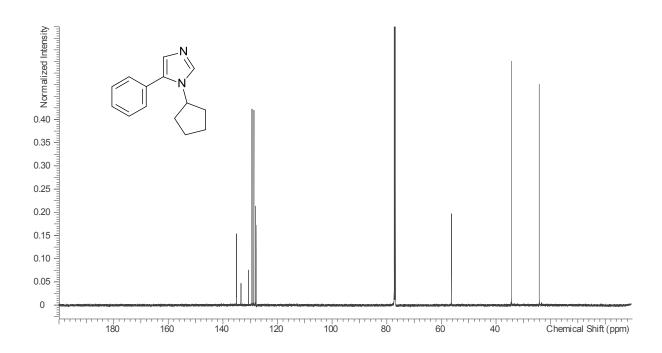
¹H NMR (400 MHz, CDCl₃): δ 1.26 (t, J = 7.2 Hz, 3H), 1.77 (d, J = 7.4 Hz, 3H), 4.21 (qd, J = 7.2, 1.2 Hz, 2H), 4.85 (q, J = 7.2 Hz, 1H), 7.21 – 7.25 (m, 1H), 7.31 (s, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.62 (s, 1H), 7.77 (d, J = 7.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.2, 18.6, 55.4, 62.3, 113.7, 124.9 (2C), 127.0, 128.7 (2C), 134.1, 136.8, 142.4, 170.1 ppm. IR: ν 2985, 2920, 1738, 1192, 1068, 745, 696 cm⁻¹. [α]_D²⁰ = +9.4 (c = 0.1, CHCl₃). HRMS ESI+ (m/z): [M]⁺ calcd for C₁₄H₁₆N₂O₂ 244.1212, found 244.1226.

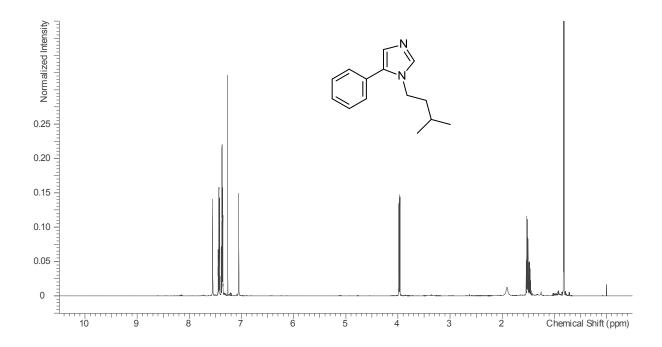


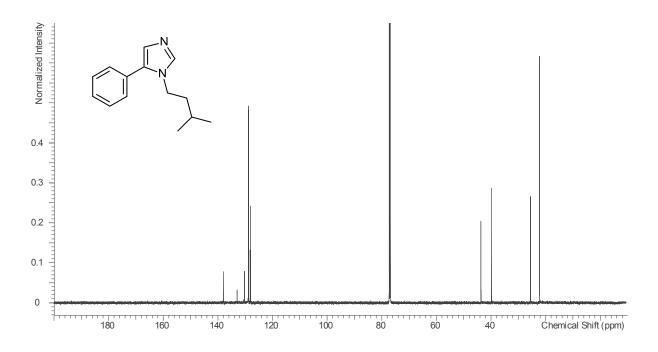


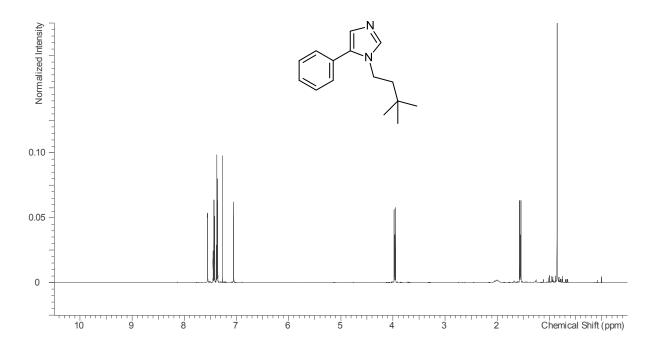
Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	용	
									ı
1	4.909	MM	0.2828	4149.	14062	244.	49332	20.9571	
2	7.790	MM	0.5226	1.564	92e4	499.	10986	79.0429	

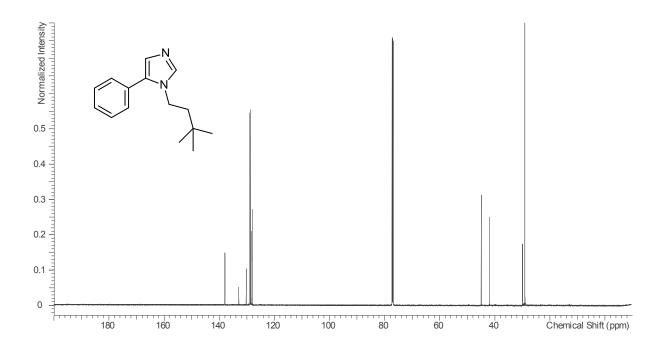

3. ¹H, ¹³C and ¹⁹F NMR Spectra for All New Compounds

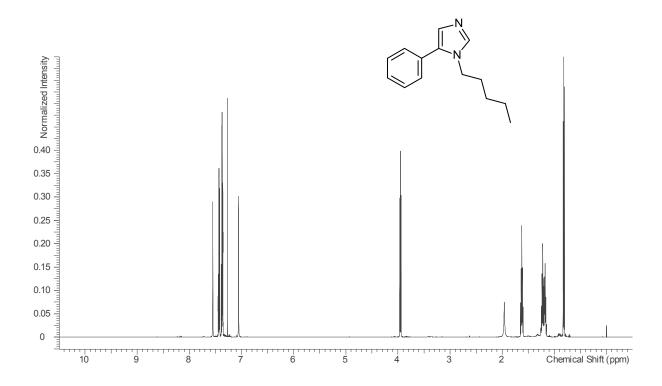

1-(Cyclopent-3-en-1-yl)-5-phenyl-1*H*-imidazole (9)

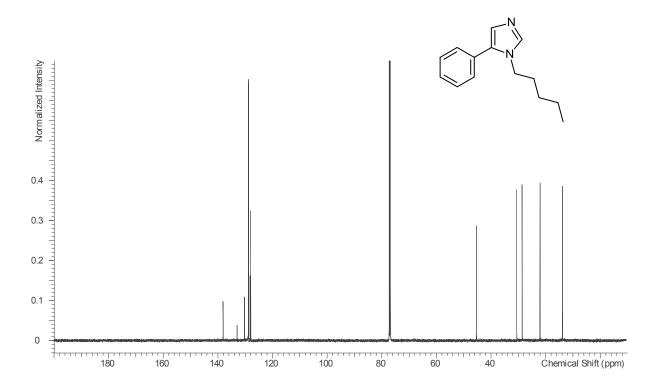


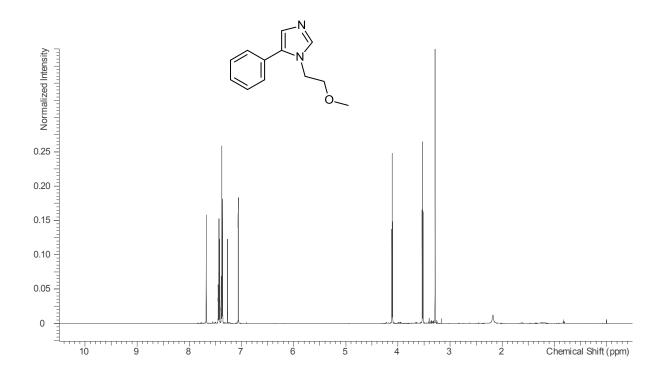

1-Cyclopentyl-5-phenyl-1*H*-imidazole (14)

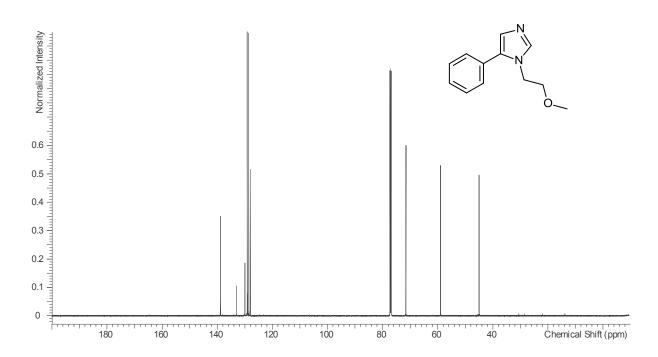


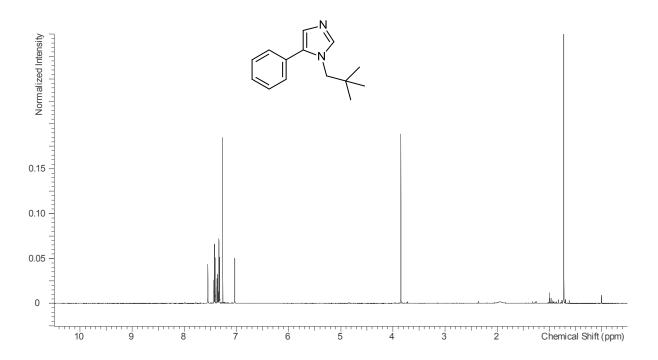

1-(3-Methyl-butyl)-5-phenyl-1*H*-imidazole (15)

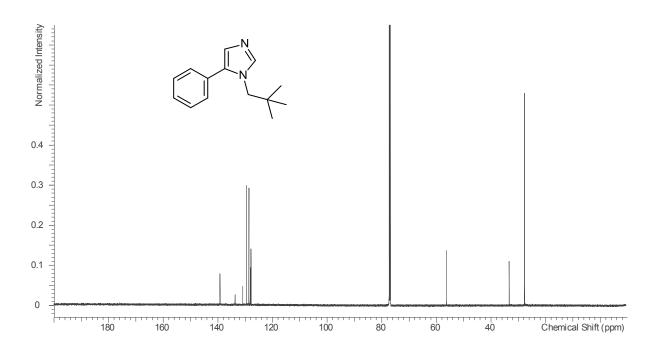


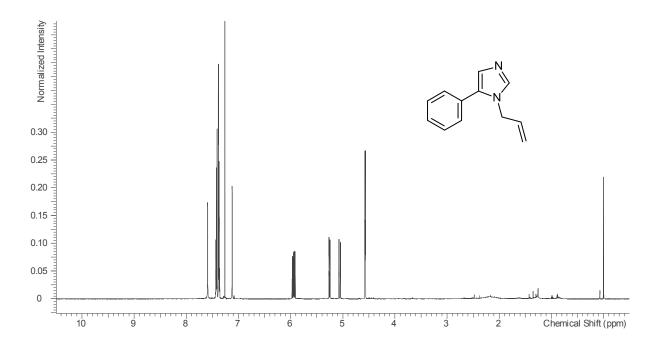

1-(3,3-Dimethyl-butyl)-5-phenyl-1*H*-imidazole (16)

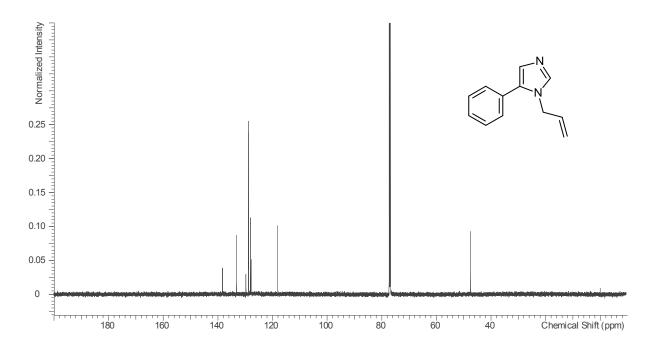


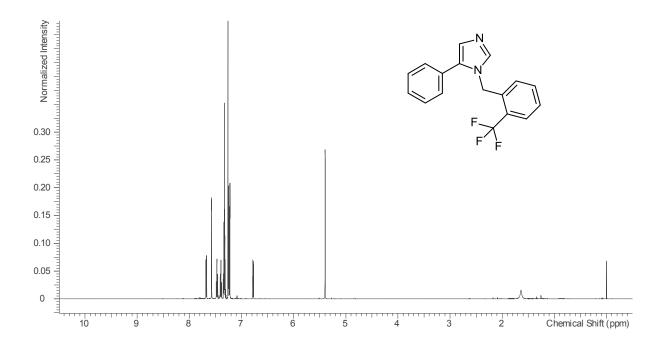

1-Pentyl-5-phenyl-1*H*-imidazole (17)

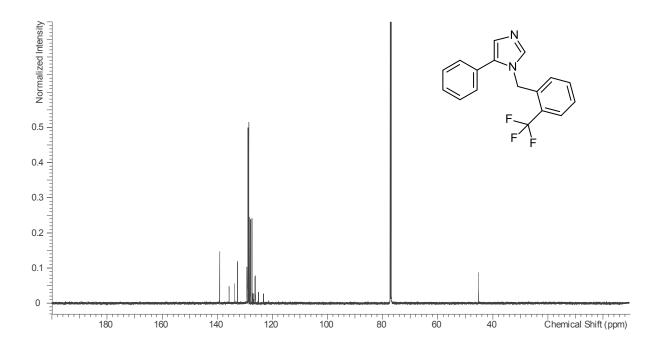


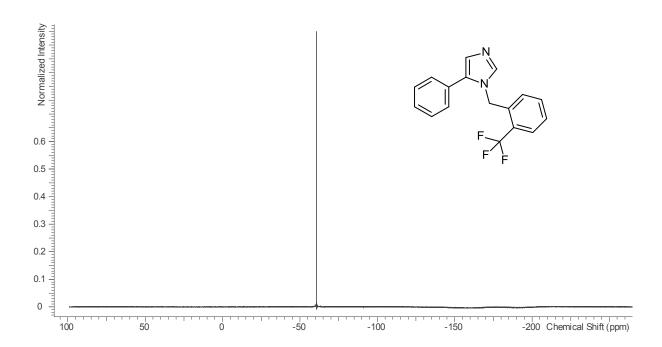

1-(2-Methoxy-ethyl)-5-phenyl-1*H*-imidazole (18)

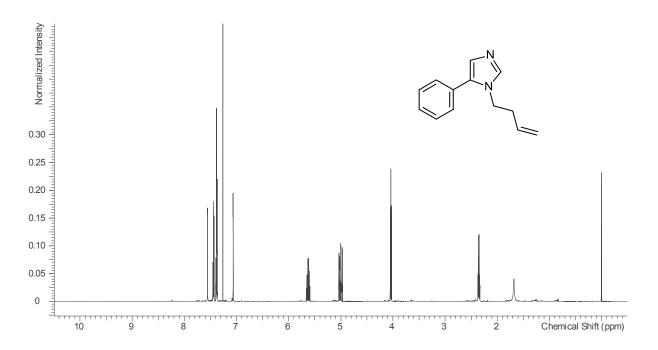


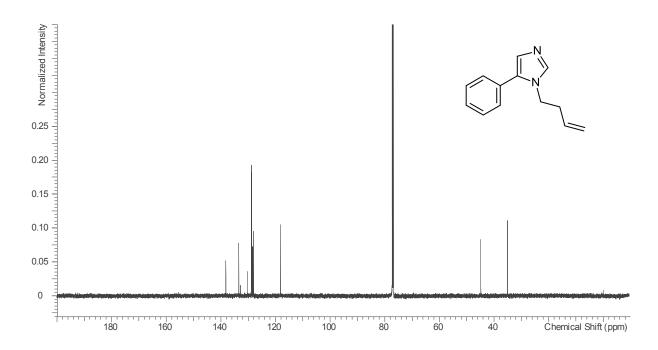

1-(2,2-Dimethyl-propyl)-5-phenyl-1*H*-imidazole (19)

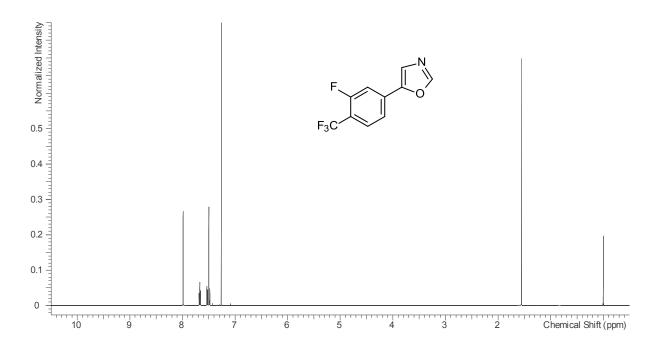


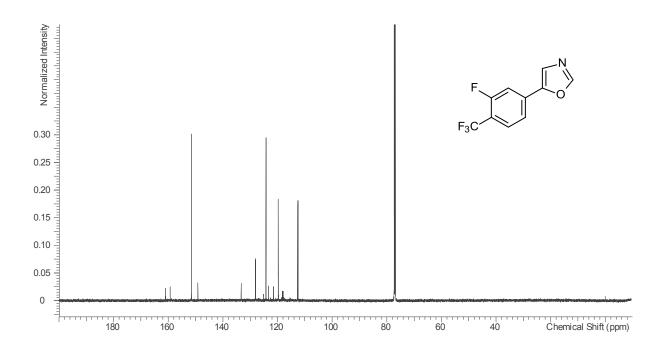

1-Allyl-5-phenyl-1*H*-imidazole (20)

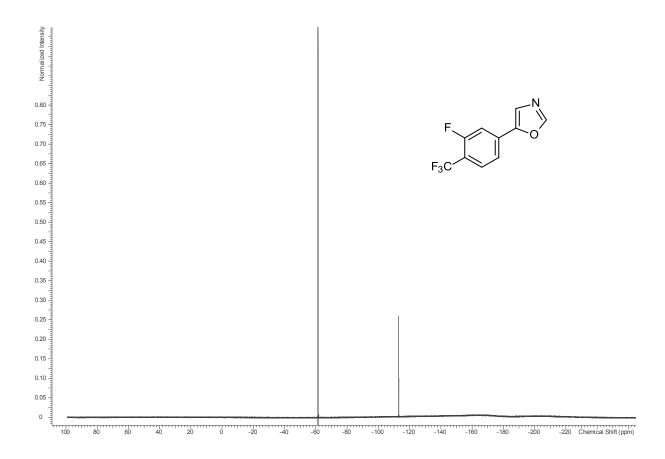


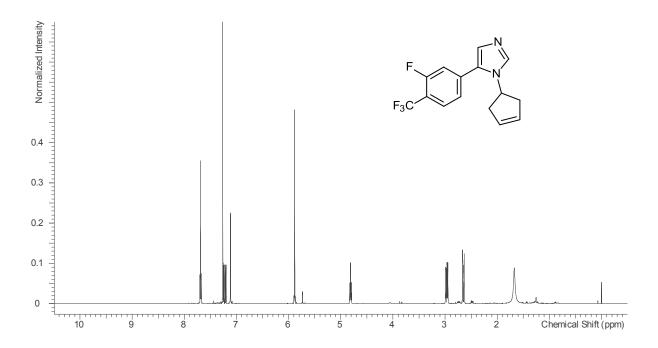

5-Phenyl-1-(2-trifluoromethyl-benzyl)-1*H*-imidazole (21)

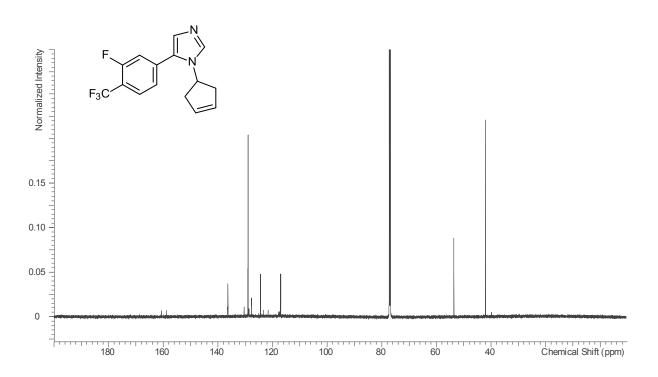


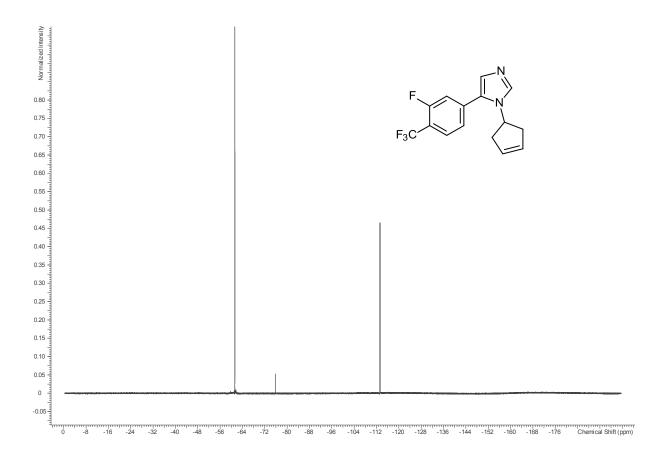


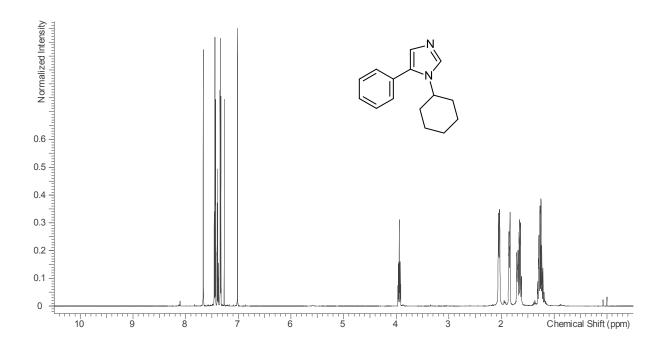

1-But-3-enyl-5-phenyl-1*H*-imidazole (22)

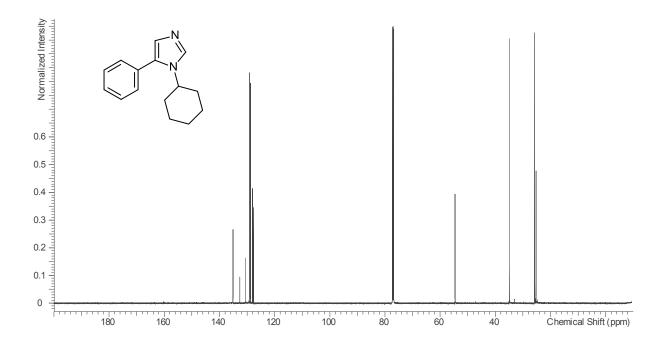


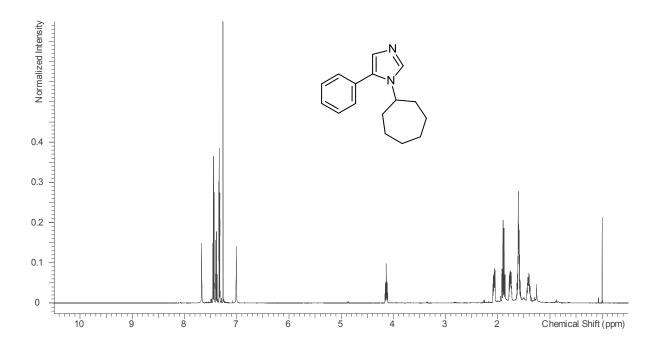

5-(3-Fluoro-4-trifluoromethyl-phenyl)-oxazole

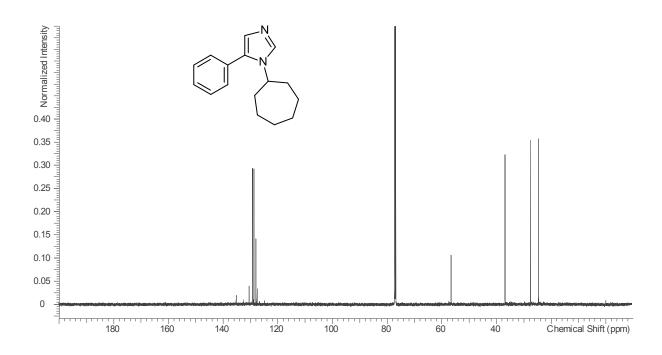


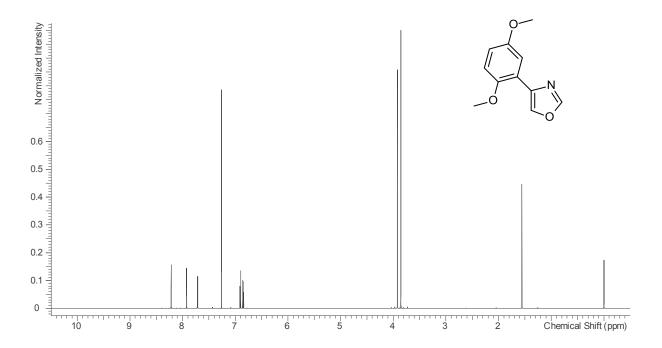


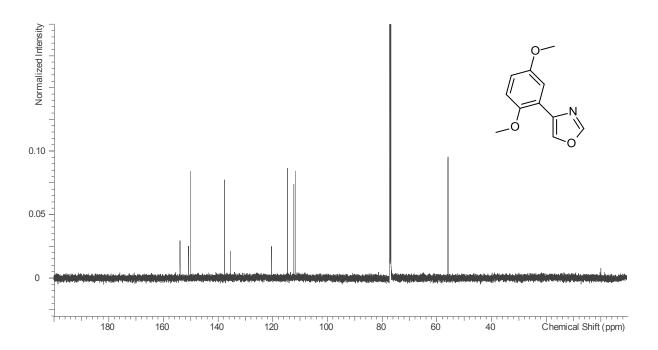

$1-(Cyclopent-3-en-1-yl)-5-(3-fluoro-4-(trifluoromethyl)phenyl)-1\\ H-imidazole~(23)$

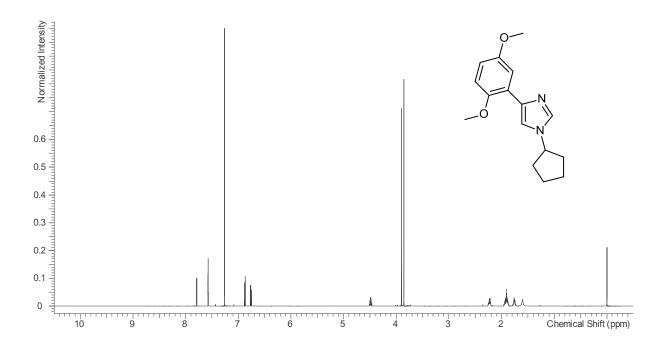


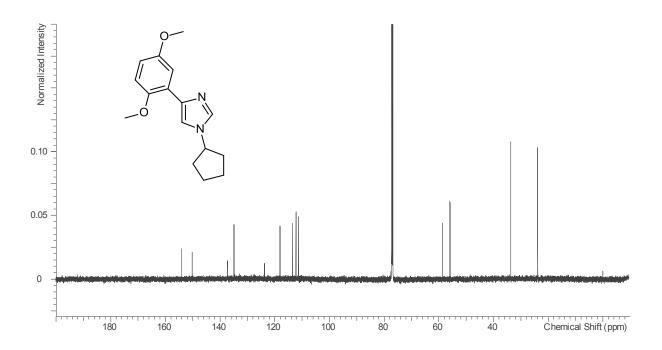


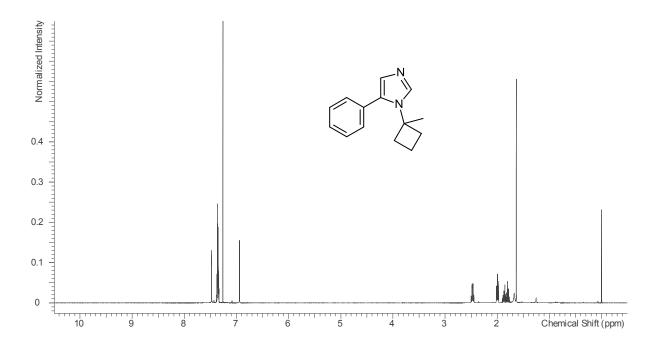

1-Cyclohexyl-5-phenyl-1*H*-imidazole (24)

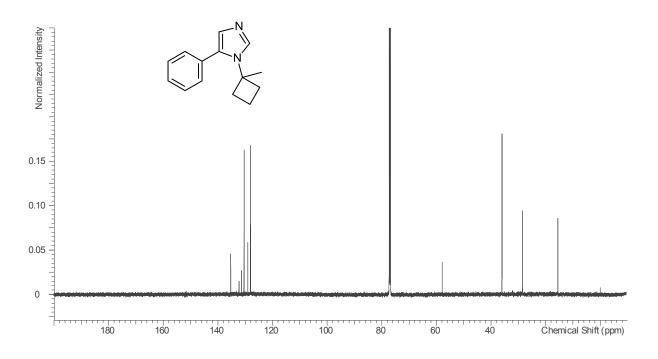


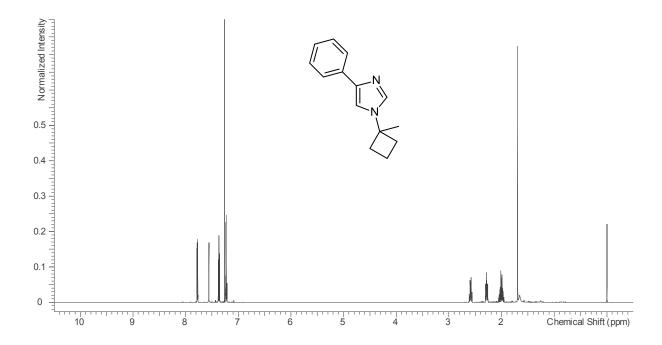

1-Cycloheptyl-5-phenyl-1*H*-imidazole (25)

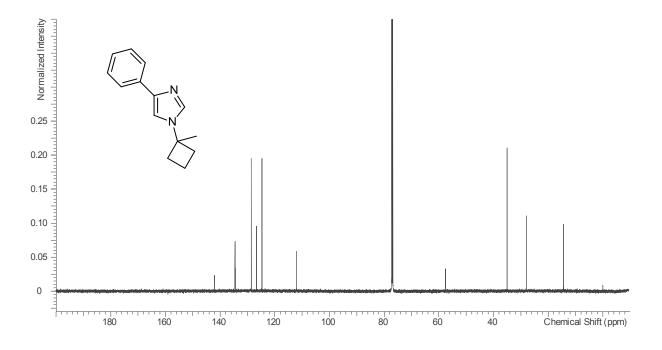


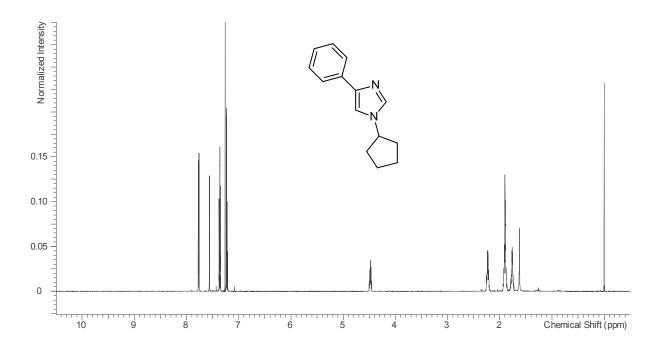

4-(2,5-Dimethoxy-phenyl)-oxazole

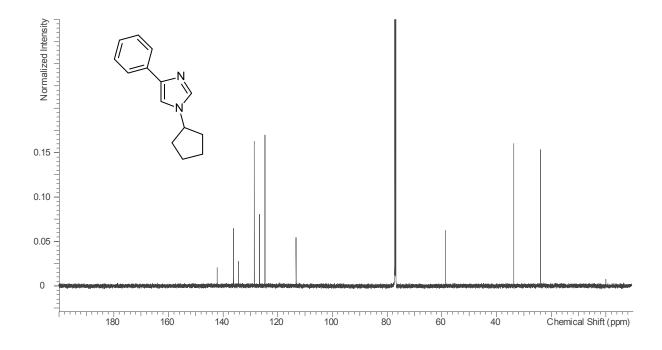


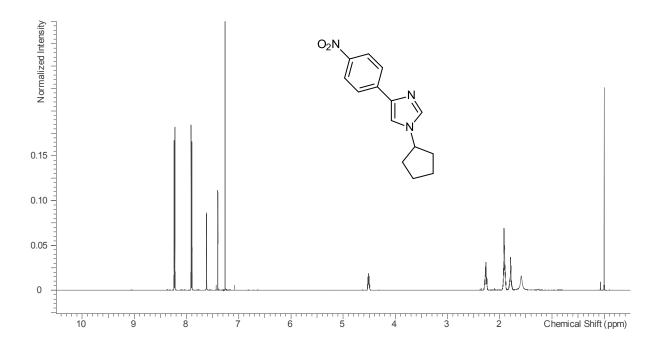

1-Cyclopentyl-4-(2,5-dimethoxy-phenyl)-1*H*-imidazole (26)

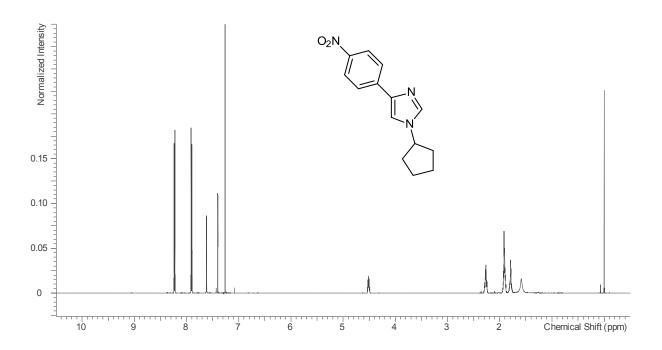


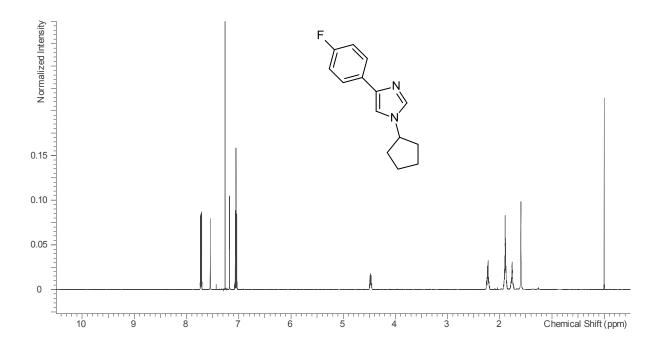

1-(1-Methyl-cyclobutyl)-5-phenyl-1*H*-imidazole (27)

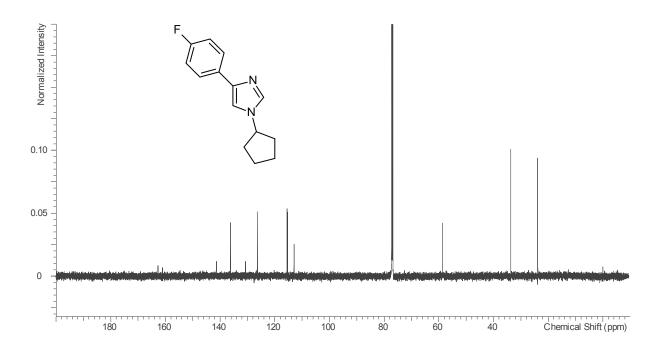


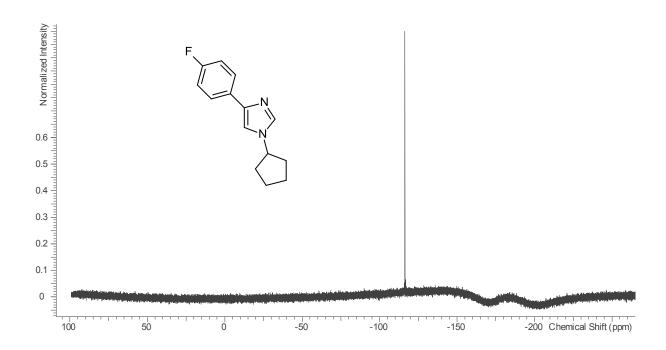

1-(1-Methyl-cyclobutyl)-4-phenyl-1*H*-imidazole (28)

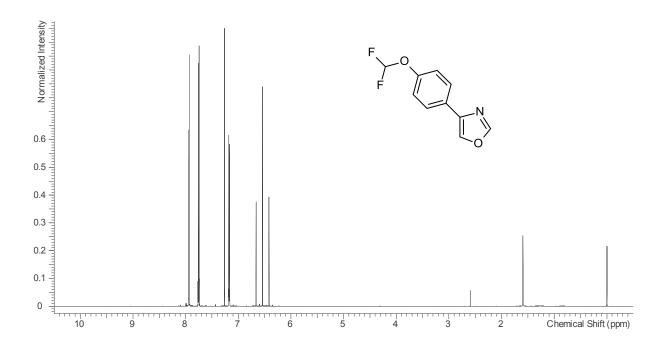


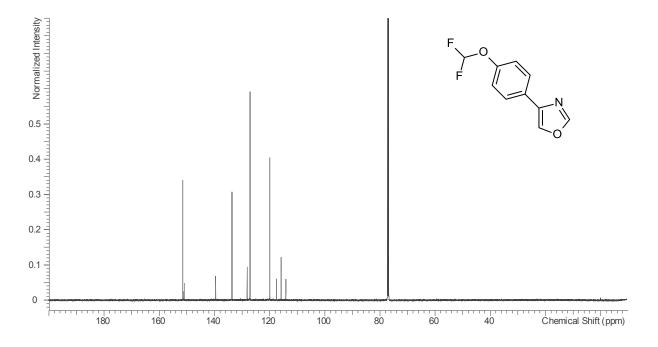

1-Cyclopentyl-4-phenyl-1*H*-imidazole (29)

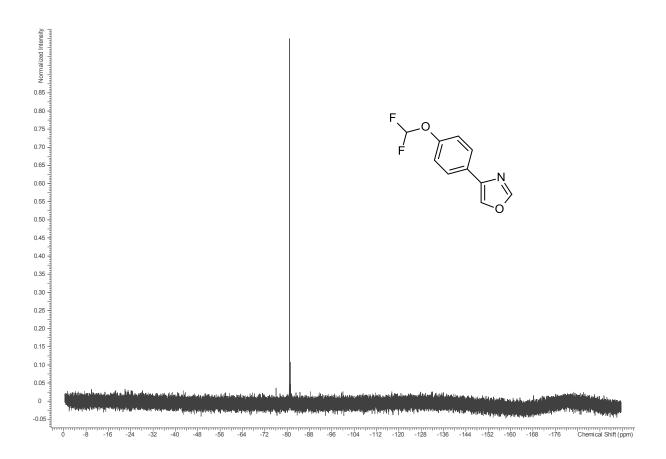


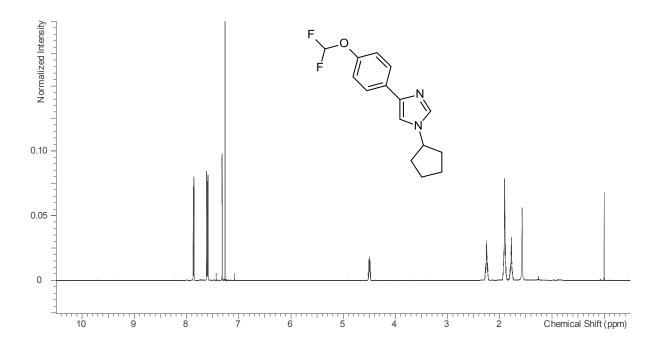

$1\hbox{-}Cyclopentyl\hbox{-}4\hbox{-}(4\hbox{-}nitro\hbox{-}phenyl)\hbox{-}1 \hbox{H-}imidazole\ (30)$

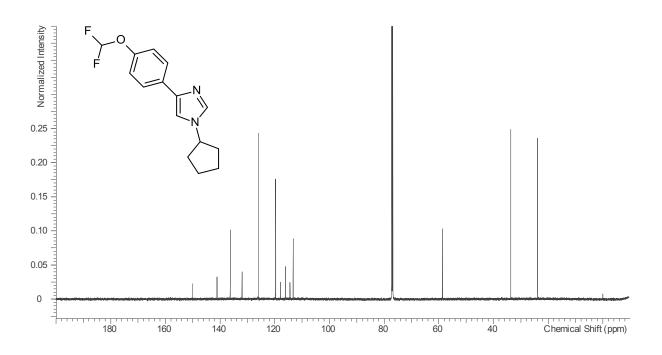


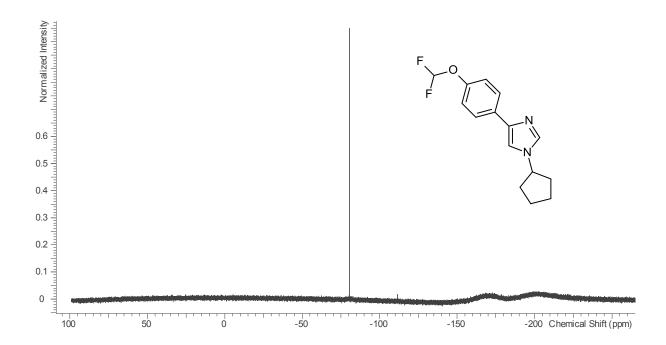

1-Cyclopentyl-4-(4-fluoro-phenyl)-1*H*-imidazole (31)

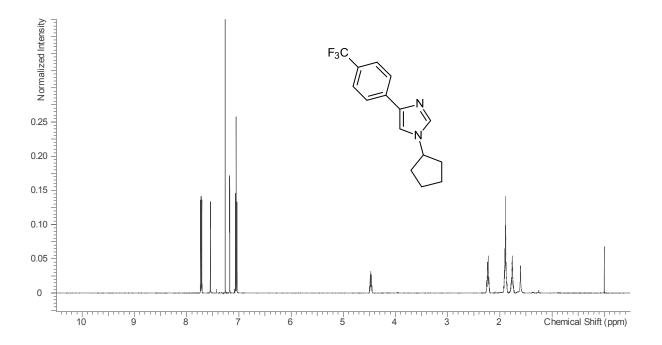


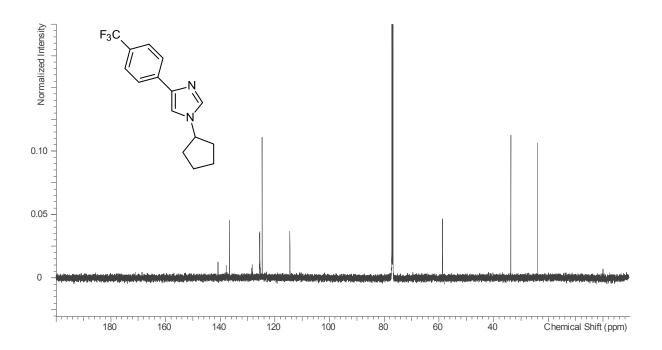


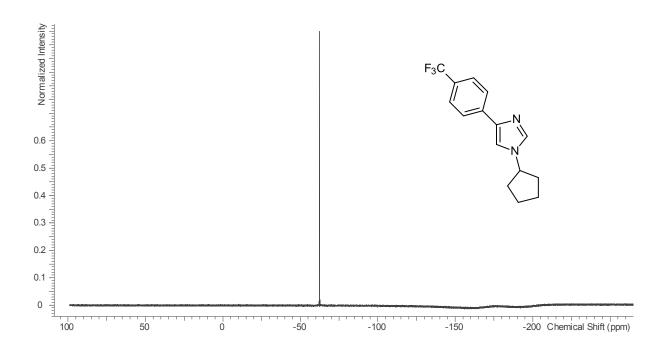

$\hbox{\it 4-(4-Difluoromethoxy-phenyl)-oxazole}$

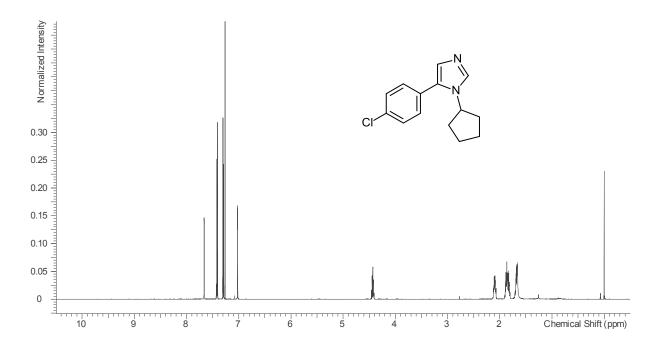


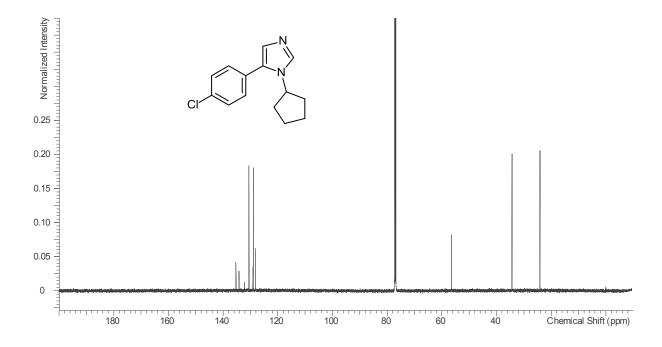


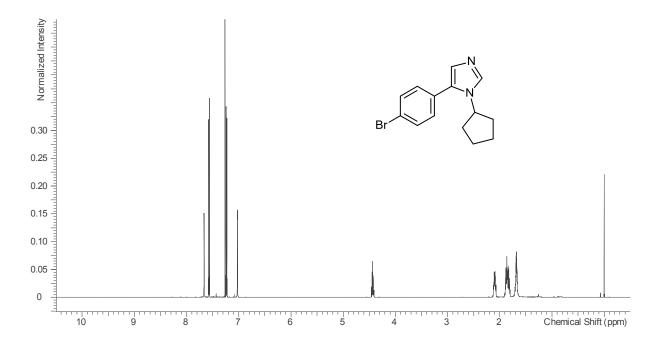

1-Cyclopentyl-4-(4-difluoromethoxy-phenyl)-1*H*-imidazole (32)

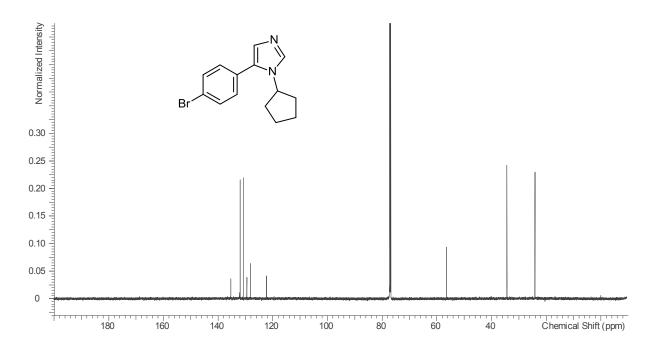


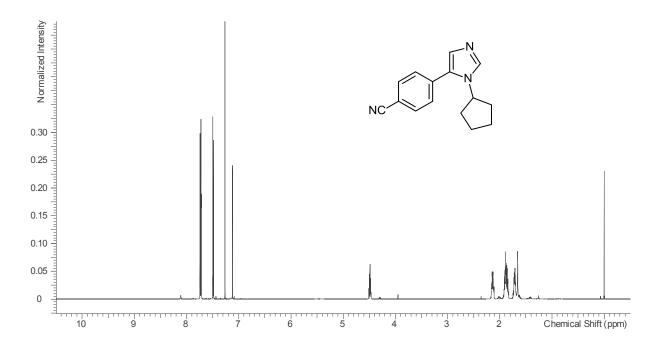


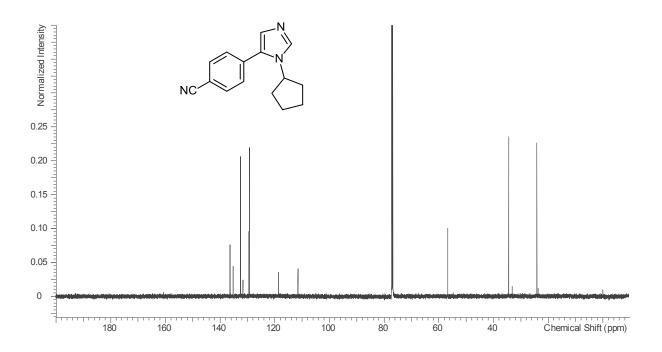

1-Cyclopentyl-4-(4-trifluoromethyl-phenyl)-1*H*-imidazole (33)

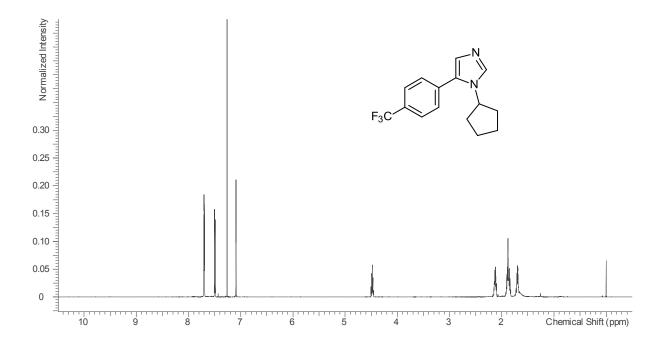


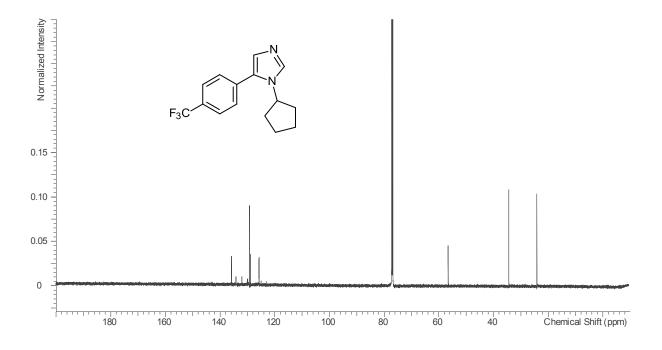


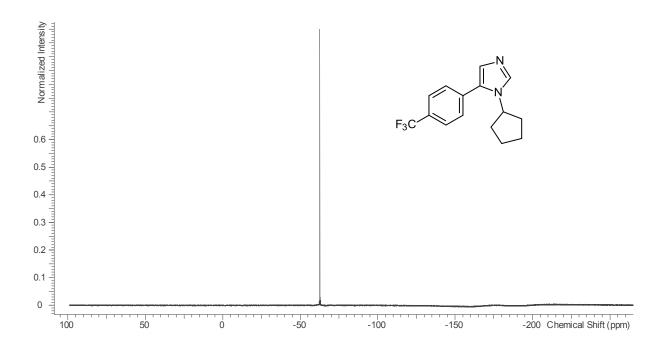

5-(4-Chloro-phenyl)-1-cyclopentyl-1*H*-imidazole (34)

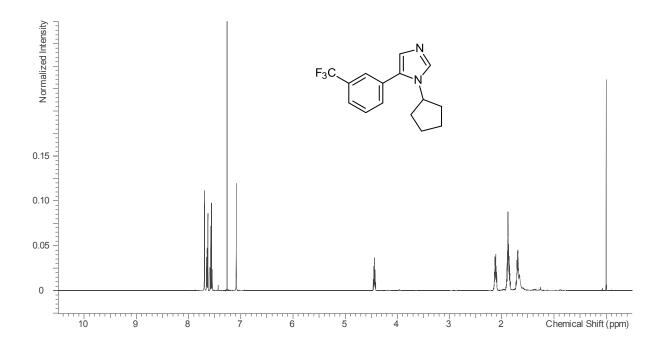


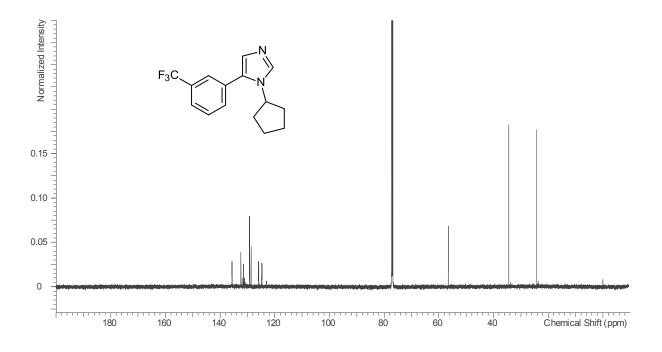

5-(4-Bromo-phenyl)-1-cyclopentyl-1*H*-imidazole (35)

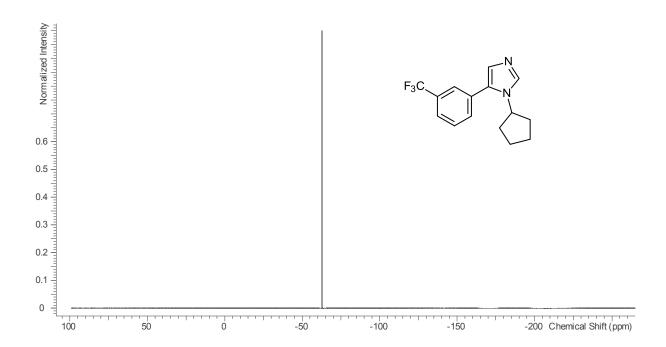


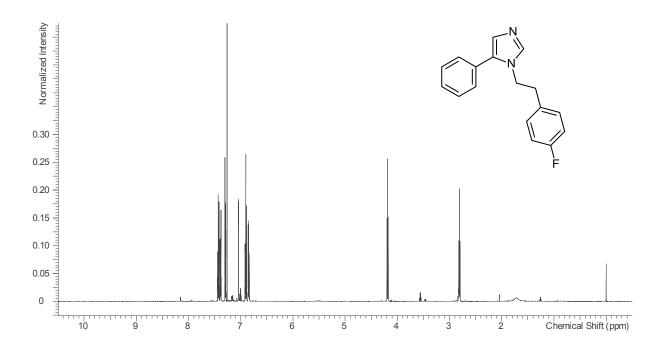

4-(3-Cyclopentyl-3*H*-imidazol-4-yl)-benzonitrile (36)

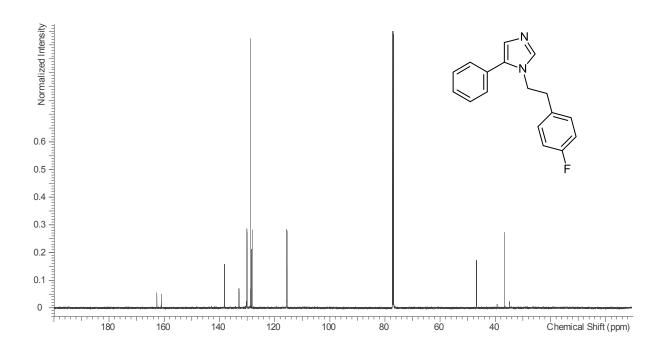


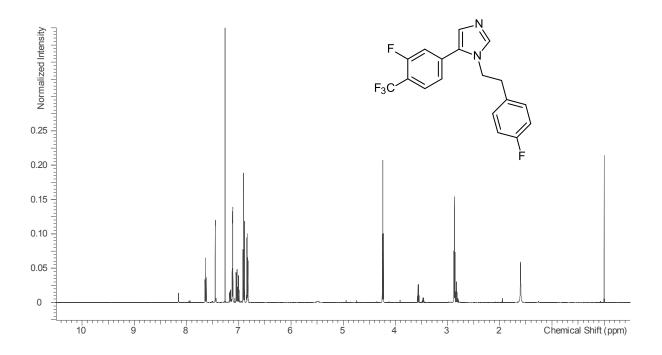

1-Cyclopentyl-5-(4-trifluoromethyl-phenyl)-1*H*-imidazole (37)

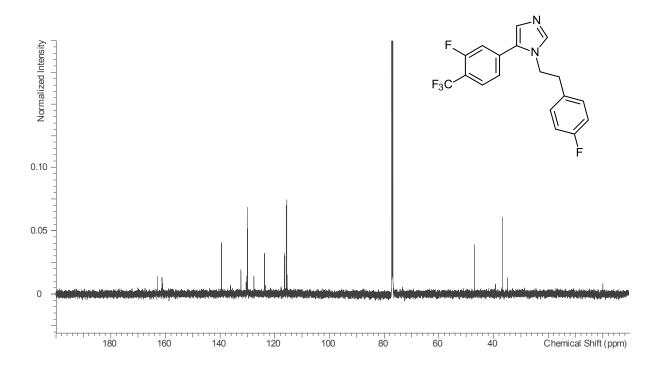


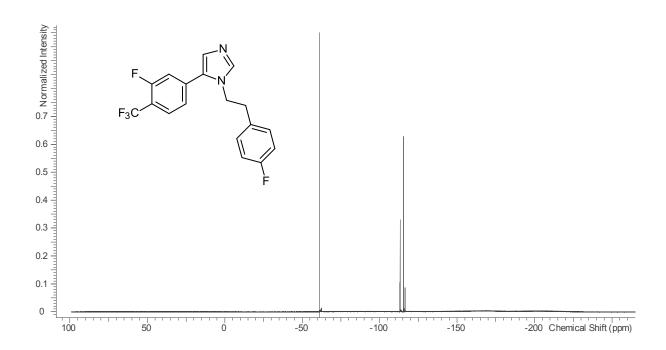


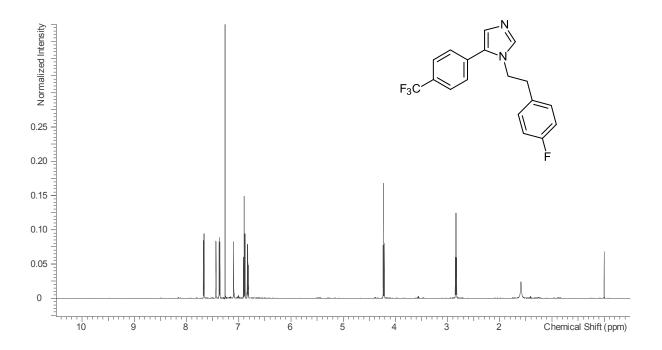

1-Cyclopentyl-5-(3-trifluoromethyl-phenyl)-1*H*-imidazole (38)

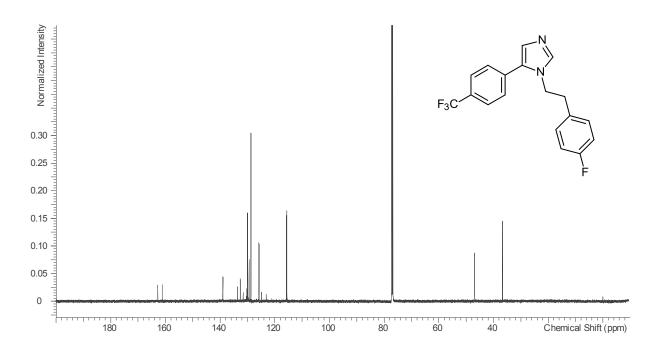


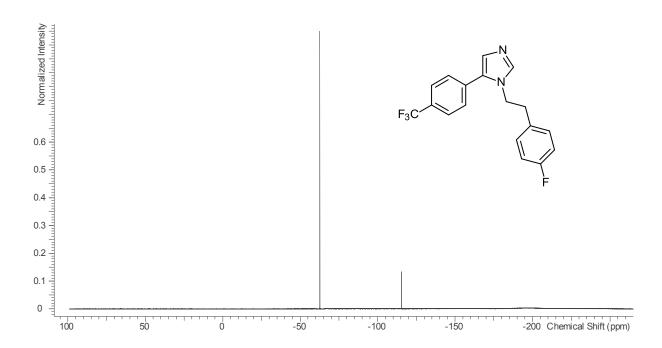

1-[2-(4-Fluoro-phenyl)-ethyl]-5-phenyl-1*H*-imidazole (39)

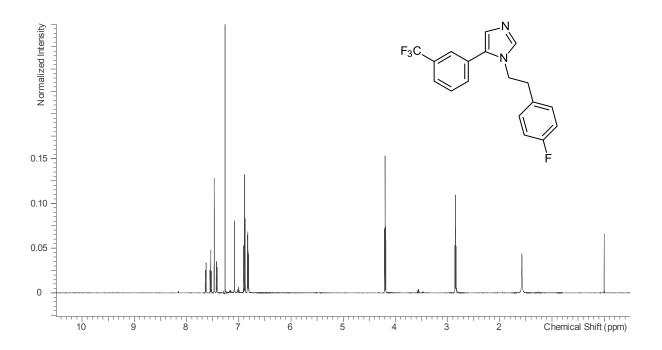


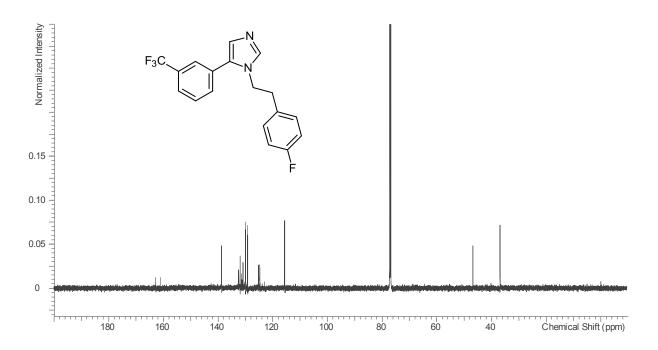


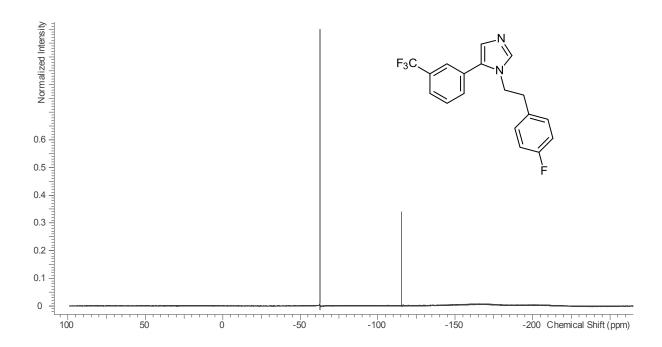

$1\hbox{-}[2\hbox{-}(4\hbox{-}Fluoro\hbox{-}phenyl)\hbox{-}ethyl]\hbox{-}5\hbox{-}(3\hbox{-}fluoro\hbox{-}4\hbox{-}trifluoromethyl\hbox{-}phenyl)\hbox{-}}1H\hbox{-}imidazole\ (40)$

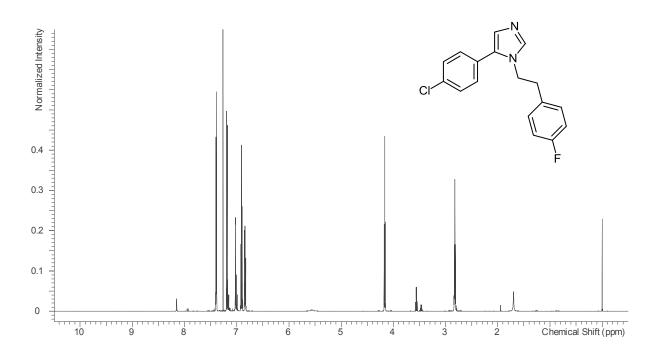


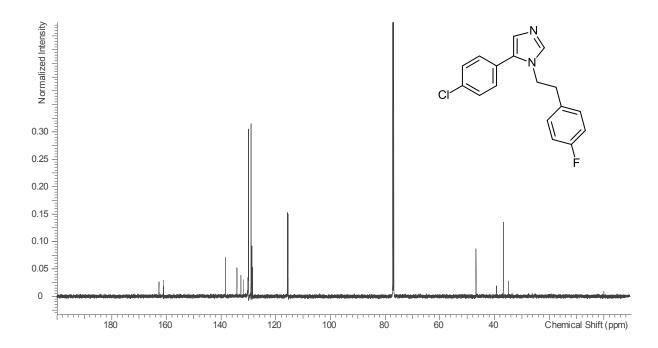


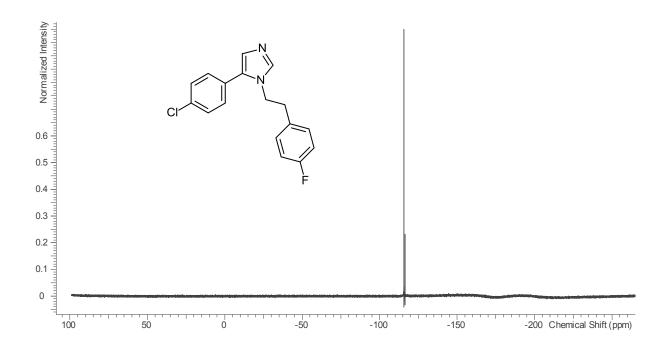

$1\hbox{-}[2\hbox{-}(4\hbox{-}Fluoro\hbox{-}phenyl)\hbox{-}thyl]\hbox{-}5\hbox{-}(4\hbox{-}trifluoromethyl\hbox{-}phenyl)\hbox{-}1$$H$-imidazole (41)$

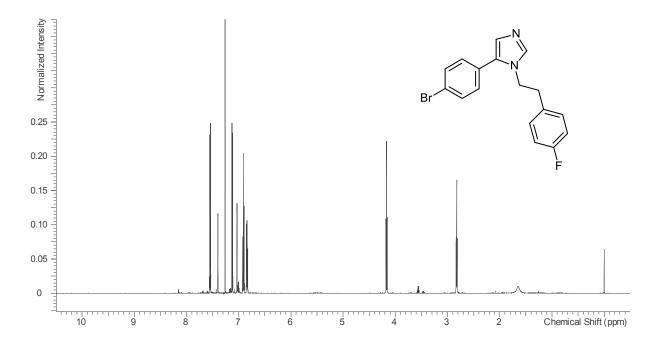


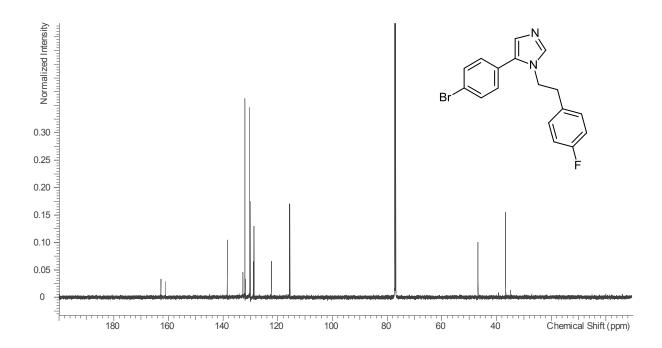


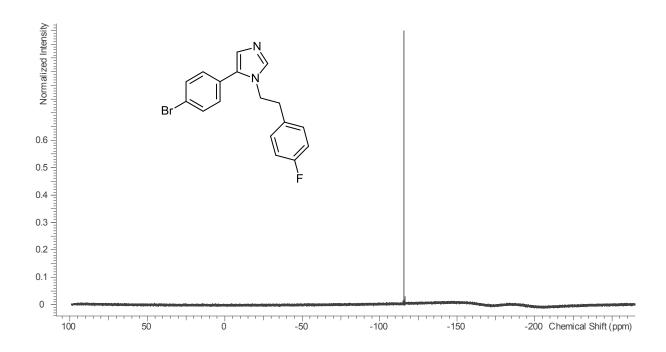

$1\hbox{-}[2\hbox{-}(4\hbox{-}Fluoro\hbox{-}phenyl)\hbox{-}ethyl]\hbox{-}5\hbox{-}(3\hbox{-}trifluoromethyl\hbox{-}phenyl)\hbox{-}1$$H$-imidazole (42)$

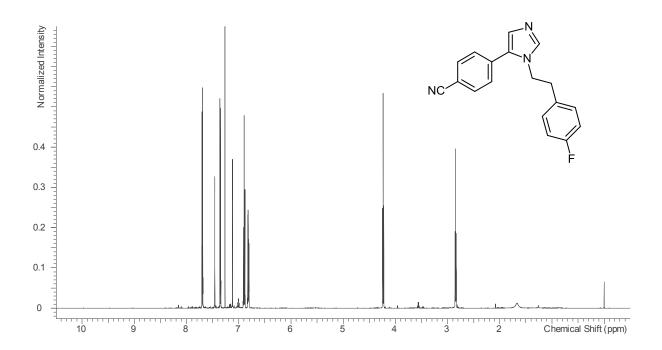


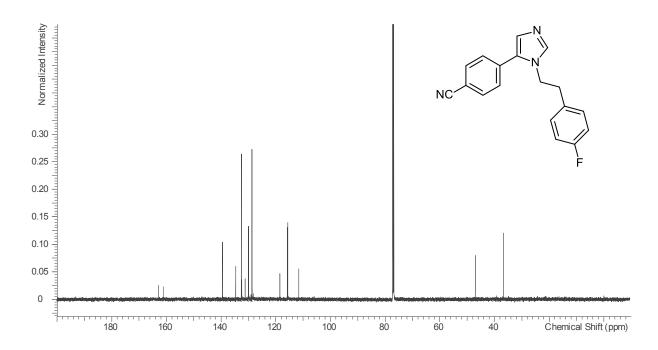


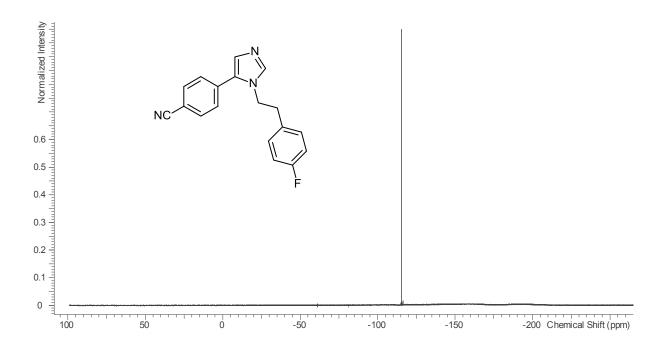

5-(4-Chloro-phenyl)-1-[2-(4-fluoro-phenyl)-ethyl]-1*H*-imidazole (43)

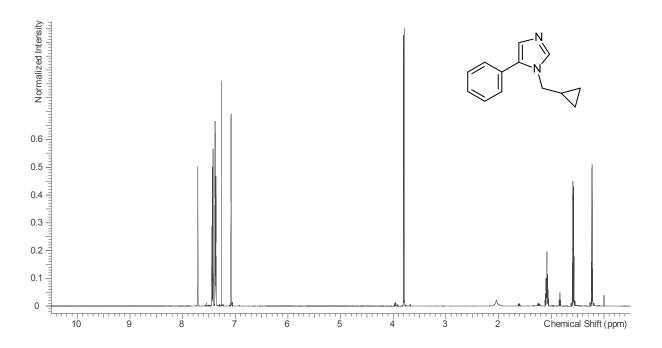


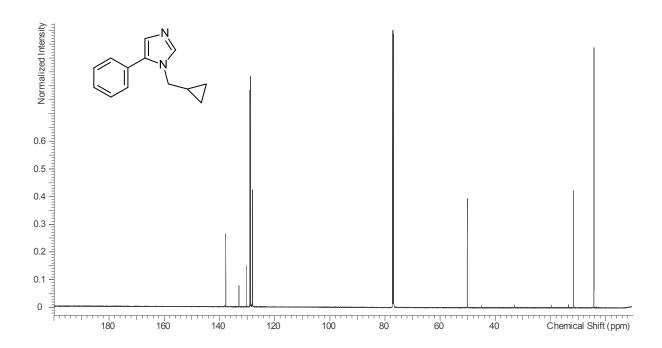


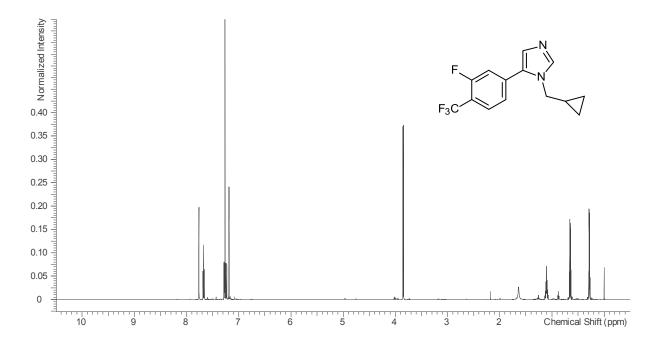

5-(4-Bromo-phenyl)-1-[2-(4-fluoro-phenyl)-ethyl]-1*H*-imidazole (44)



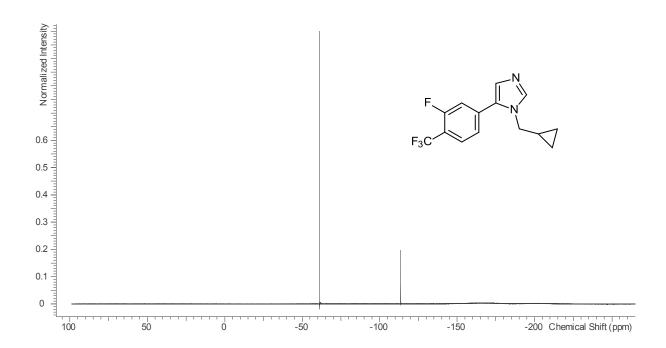


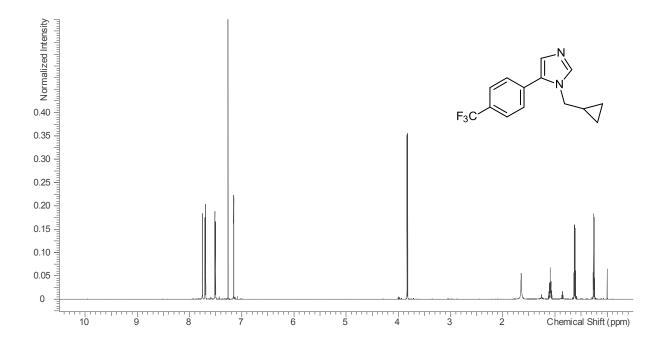

$4-{3-[2-(4-Fluoro-phenyl)-ethyl]-3}H-imidazol-4-yl}-benzonitrile (45)$

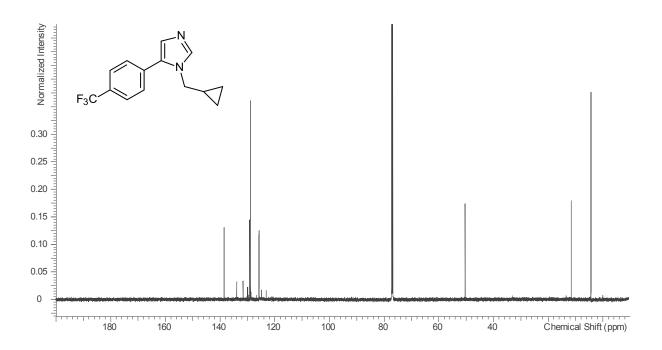


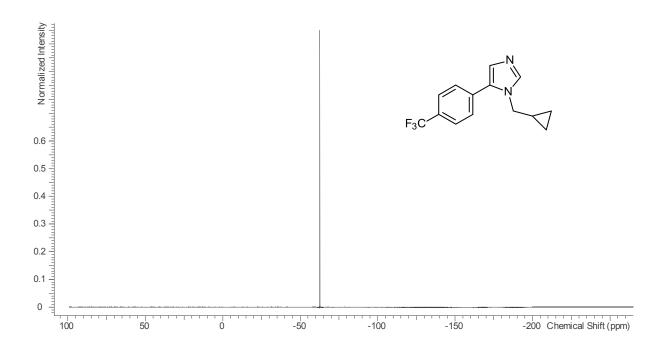


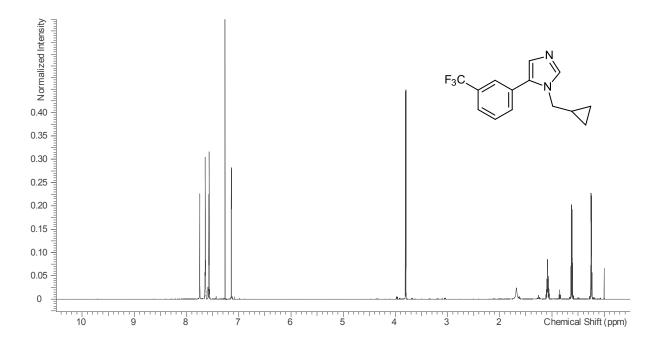
1-Cyclopropylmethyl-5-phenyl-1*H*-imidazole (46)

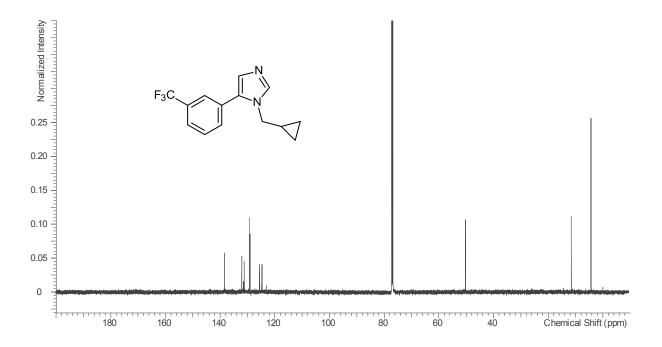


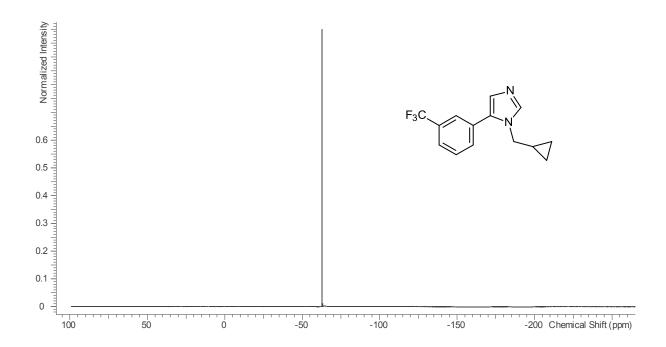

$1\hbox{-}Cyclopropylmethyl-5\hbox{-}(3\hbox{-}fluoro\hbox{-}4\hbox{-}trifluoromethyl-phenyl)}\hbox{-}1H-imidazole (47)$

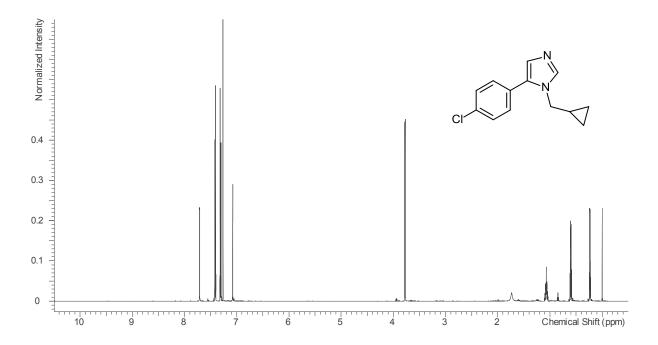


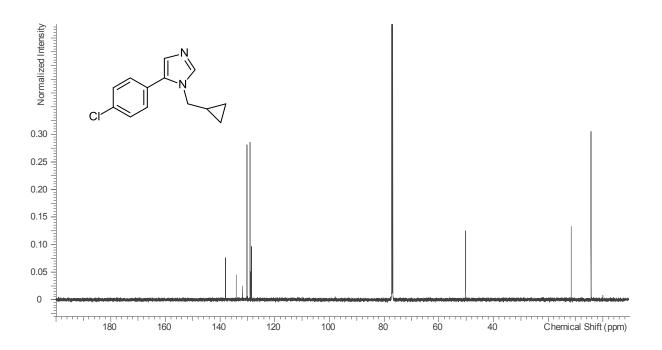


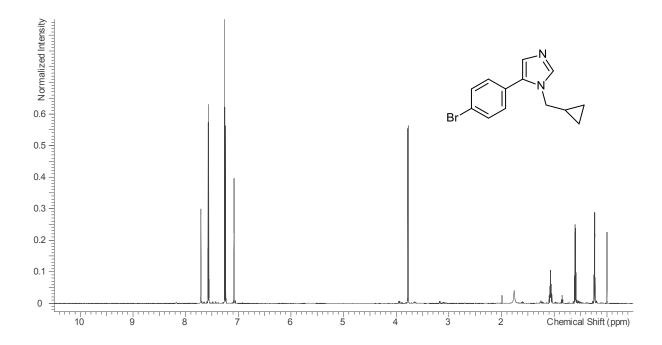

$1- Cyclopropylmethyl-5- (4-trifluoromethyl-phenyl)-1 \emph{H-imidazole (48)}$

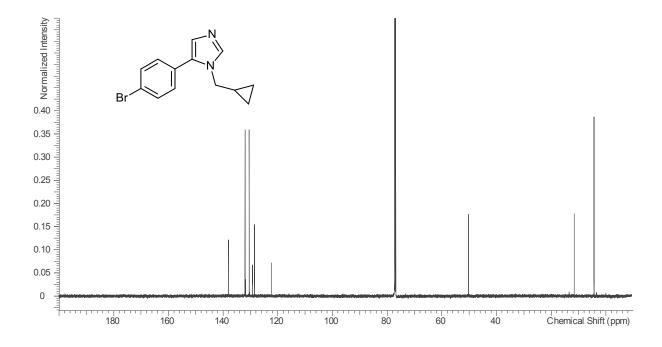


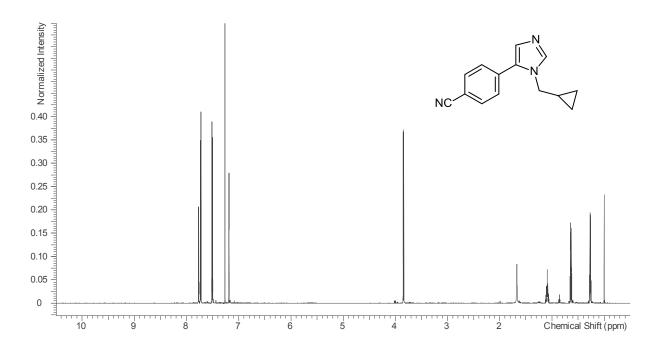


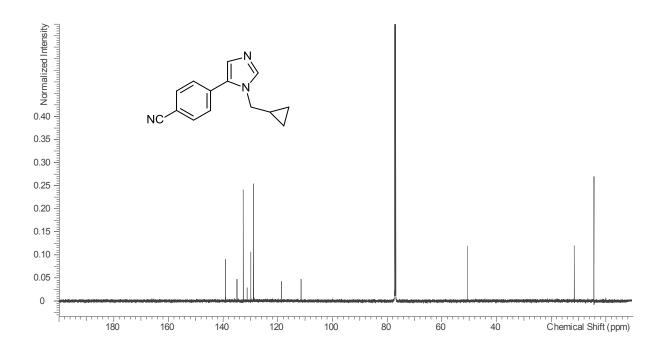

$1- Cyclopropylmethyl-5- (3-trifluoromethyl-phenyl)-1 \emph{H-imidazole (49)}$

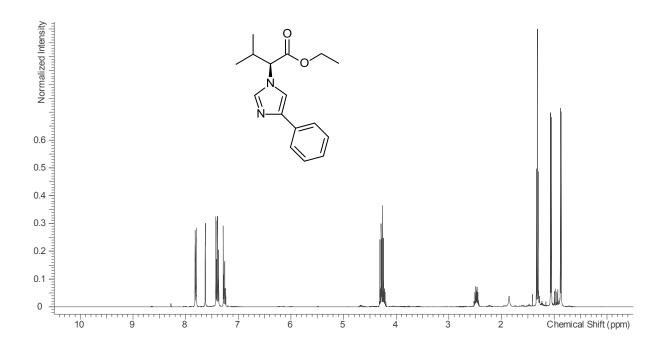


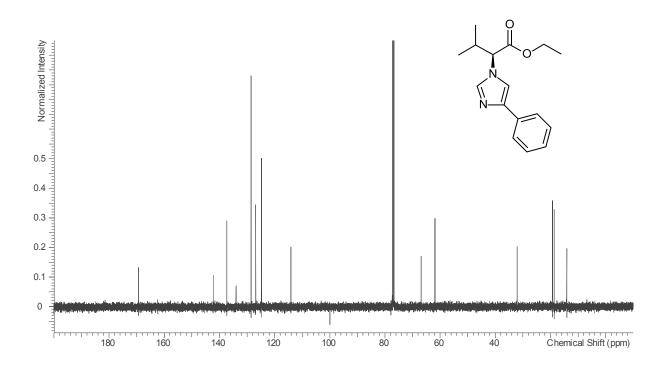


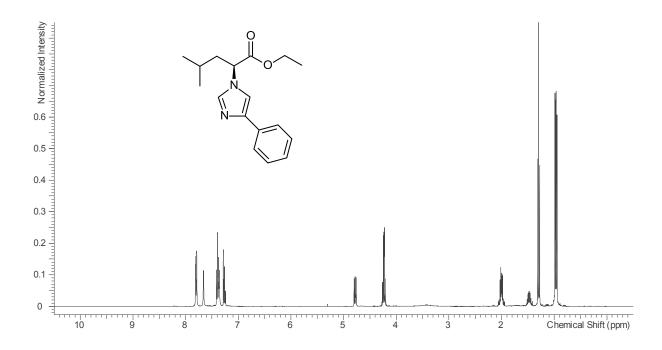

5-(4-Chloro-phenyl)-1-cyclopropylmethyl-1*H*-imidazole (50)

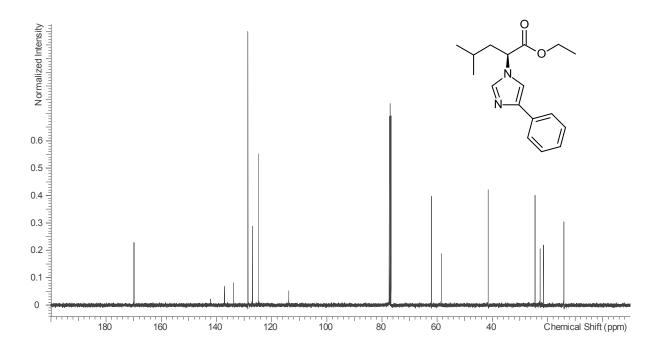


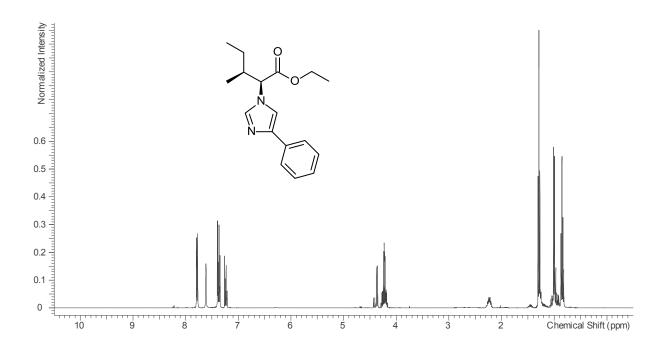

5-(4-Bromo-phenyl)-1-cyclopropylmethyl-1*H*-imidazole (51)

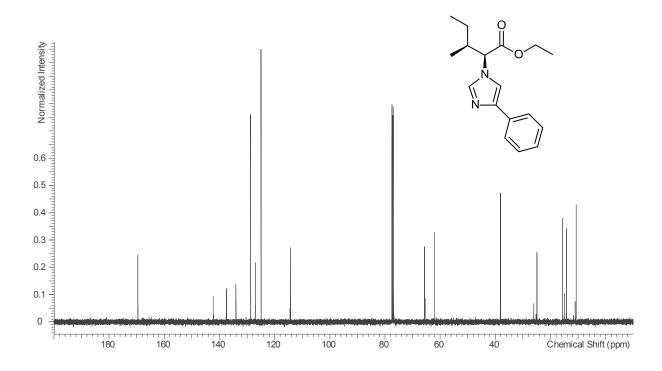


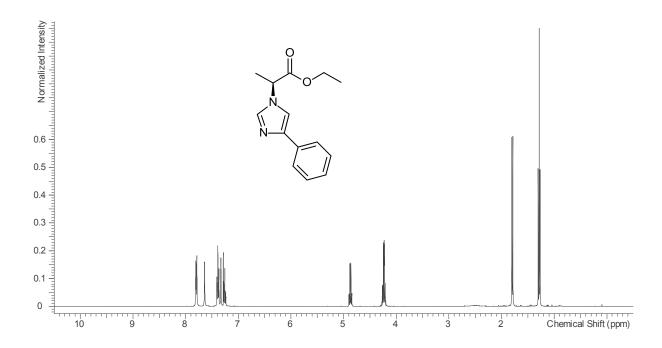

4-(3-Cyclopropylmethyl-3*H*-imidazol-4-yl)-benzonitrile (52)

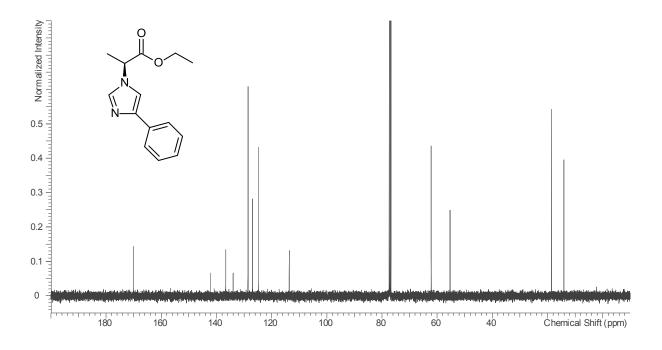



(S)-3-Methyl-2-(4-phenyl-imidazol-1-yl)-butyric acid ethyl ester (54)




(S)-4-Methyl-2-(4-phenyl-imidazol-1-yl)-pentanoic acid ethyl ester (55)




(2S,3S)-3-Methyl-2-(4-phenyl-imidazol-1-yl)-pentanoic acid ethyl ester (56)

(S)-2-(4-Phenyl-imidazol-1-yl)-propionic acid ethyl ester (57)

