Electronic Supplementary Information

Multistate self-assembled micro-morphology transitions controlled by host-guest interactions[†]

Qiwei Zhang, Xuyang Yao, Da-Hui Qu and Xiang Ma*

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China

Contents

1. Materials, general procedures and synthesis	S2
2. Spectra on the morphology transition process	S3
3. References	S5
4. Additional spectra	S6

1. Materials, general procedures and syntheses

1.1. Materials. Unless stated otherwise, all reagents were purchased from Sigma-Aldrich or TCI Chemicals and used without further purification. Solvents were purified according to standard laboratory methods.

1.2. General. ¹H NMR spectra were measured on a Brüker AV-400 spectrometer. ¹³C spectrum was measured on a Brüker AV-500 spectrometer. The electronic spray ionization (ESI) high resolution mass spectra were tested on a HP 5958 mass spectrometer. Fluorescence spectra were obtained on a HORIBA FluoroMax 4. DLS results were measured on MALV RN, ZETA SIZER, Model ZEN3600, 25°C. Elemental analysis was measured on a VARIO EL III. TEM images were recorded on a JEOL JEM-1400 apparatus. The samples $(1 \times 10^{-3} \text{ M})$ were dropped on a perforated copper grid (200 mesh) covered with a carbon film and then negative-stained by phosphotungstic acid.

1.3. Syntheses

Bis-sulfonatocalix[4]arene (BSC4). This compound was synthesized according to literature procedure.¹

7-(4-bromobutoxy)-2H-chromen-2-one (1). This compound was synthesized conveniently in one step from commercial materials 7-hydroxyl coumarin and 1,4-dibromobutane according to literature procedure.²

1-(4-((2-oxo-2H-chromen-7-yl)oxy)butyl)-[4,4'-bipyridin]-1-ium bromide (2). This compound was synthesized conveniently according to literature procedure.³

1-methyl-1'-(4-((2-oxo-2H-chromen-7-yl)oxy)butyl)-[4,4'-bipyridine]-1,1'-diium bromide iodide (3). Compound **2** (200 mg, 0.44 mmol, 1 eq) and CH₃I (627 mg 4.42 mmol, 10eq) were dissolved in 20 mL acetonitrile and 20 mL DMF. The solution was stirred at 50 °C under argon for 4 hours and then the CH₃I and acetonitrile were removed under reduced pressure. The remaining solution was poured into large amount of ethyl acetate, and orange-red solid was precipitated which was then filtrated and washed with a small amount of acetonitrile. The solid was dried in vacuo to provide compound **3** (250 mg, 95% yield), m.p. 223.3-224.7 °C. ¹H NMR (400 MHz, D₂O) δ 9.06 (d, J = 6.9 Hz, 2H), 8.94 (d, J = 6.8 Hz, 2H), 8.40 (d, J = 6.8 Hz, 2H), 8.37 (d, J = 6.8 Hz, 2H), 7.77 (d, J = 9.5 Hz, 1H), 7.41 (d, J = 8.7 Hz, 1H), 6.82 (dd, J = 8.7, 2.4 Hz, 1H), 6.70 (d, J = 2.3 Hz, 1H), 6.15 (d, J = 9.4 Hz, 1H), 4.75 – 4.71 (m, 2H), 4.40 (s, 3H), 4.03 (t, J = 5.9 Hz, 2H), 2.31 – 2.12 (m, 2H), 1.95 – 1.76 (m, 2H). ¹³C NMR (125 MHz, D₂O) δ 164.44, 161.36, 154.78, 149.56, 149.23, 146.24, 145.86, 145.44, 129.58, 126.69, 126.38, 113.35, 112.89, 111.53, 101.37, 67.44, 61.79, 48.27, 26.93, 24.71. HRMS (ESI) (m/z): [M-Br-I]⁺ calcd for [C₂₄H₂₄N₂O₃]⁺, 388.1787; found, 388.1785. Elem Anal. calcd for C₂₄H₂₄O₃N₂BrI: C 48.43, H 4.06, N 4.71. Found: C 48.58, H 4.16, N 4.85.

2. Spectra on the morphology transition process.

Fig. S1 Plot of the ratio of the fluorescence emission intensity of **3** excimer/monomer (I_E/I_M) to concentration, 25 °C.

Fig. S2 Partial ¹H NMR spectra of compound **3** in D_2O , the concentrations are (a) 0.1 mM, (b) 0.5 mM, (c) 1mM, (d) 5 mM, (e) 10 mM, 25 °C.

Fig. S3 Negative-staining TEM images of (a) **3** spherical micelles (S-state), prepared in aqueous solution, [3] = 1 mM; (b) amorphous worm-like network (N-state) formed by adding 0.1 eq **BSC4** to **3** micelle solution; (c) **3&BSC4** complex solution obtained by adding 0.5 eq **BSC4** to **3** micelle solution, [3] = 1 mM; and (d) the linear supramolecular polymer (L-state) formed by **3**, **BSC4** and γ -CD ternary complex..

Fig. S4 Partial ¹H NMR spectra of (a) **3** solution, [3]=1 mM, (b) **3&BSC4** complex, [3]/[BSC4]=1/0.5, (c) **3&BSC4**& γ -CD complex, $[3]/[BSC4]/[\gamma$ -CD]=1/0.5/0.5, D₂O, 25 °C.

Fig. S5 Normalized fluorescent emission spectra of (a) 1 mM of **3** aqueous solution forms the spherical micelles (**S**-state); (b) adding 0.1 eq **BSC4** to sample (a) forms the amorphous worm-like network (**N**-state); and (c) continue adding **BSC4** up to 0.5 eq and 0.5 eq of γ -CD to sample (b) forms the linear polymer (**L**-state).

3. References

- 1. D.-S. Guo, S. Chen, H. Qian, H.-Q. Zhang and Y. Liu, *Chem. Commun.*, 2010, **46**, 2620.
- 2. Q. Zhang, D.-H. Qu, J. Wu, X. Ma, Q. Wang and H. Tian, *Langmuir*, 2013, **29**, 5345.
- 3. Q. Zhang, D.-H. Qu, X. Ma and H. Tian, *Chem. Commun.*, 2013, **49**, 9800.

4. Additional spectra.

Elemental Composition Report

Single Mass Analysis Tolerance = 30.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 7 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-24 H: 0-30 N: 0-2 O: 0-3 H-TIAN 16-Oct-2013 18:29:00 1: TOF MS ES+ 1.66e+004 TH-QW-MVC 123 (0.846) Cm (123:125) 388.1785 100-433.1799 %-387.1728 389.1857 434.1822 261.0010 390.1884 305.9203 330.3378 300 320 340 360 380 400 517,8406 420 440 460 480 500 Minimum: Maximum: -1.5 30.0 50.0 mDa PPM DBE i-FIT i-FIT (Norm) Formula Mass Calc. Mass 388.1785 388.1787 -0.2 -0.5 14.0 14.3 0.0 C24 H24 N2 O3

ESI-MS of compound 3