# Catalytic asymmetric conjugate addition of terminal alkynes to $\beta$ -trifluoromethyl $\alpha$ , $\beta$ -enones $\dagger$

Amparo Sanz-Marco,<sup>a</sup> Andrea García-Ortiz,<sup>a</sup> Gonzalo Blay\*<sup>a</sup> and José R. Pedro\*<sup>a</sup>

Departament de Química Orgànica, Facultat de Química, Universitat de València, C/ Dr. Moliner, 50, E-46100 Burjassot (València), Spain

# SUPPORTING INFORMATION

### **Table of Contents:**

| General Experimental Methods                                        | S2  |
|---------------------------------------------------------------------|-----|
| Typical procedures and characterization data for compounds <b>3</b> | S2  |
| Determination of the absolute configuration of (S)-(-)-3aa          | S11 |
| Synthesis of compounds 6 and 7                                      | S12 |
| NMR spectra                                                         | S14 |
| Chiral analysis chromatograms                                       | S82 |

### **General Experimental Methods**

Reactions were carried out under nitrogen in round bottom flasks oven-dried overnight at 120 °C. Commercial reagents were used as purchased.  $\beta$ -Trifluoromethyl- $\alpha$ , $\beta$ -enones were prepared from the corresponding substituted acetophenones 1 and trifluoroacetaldehyde hemiacetal as described in the literature.<sup>1</sup> Toluene was distilled from CaH<sub>2</sub> Tetrahydrofuran (THF) was distilled from Na. Triethylamine was dried and stored on 4 Å molecular sieves. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Melting points were determined in capillary tubes. NMR spectra were run at 300 MHz for <sup>1</sup>H and at 75 MHz for <sup>13</sup>C NMR using residual nondeuterated solvent (CHCl<sub>3</sub>) as internal standard ( $\delta$  7.26 and 77.0 ppm, respectively), and at 282 MHz for <sup>19</sup>F NMR using CFCl<sub>3</sub> as internal standard. Chemical shifts are given in ppm. The carbon type was determined by DEPT experiments. High resolution mass spectra (ESI) were recorded on a Q-TOF spectrometer equipped with an electrospray source with a capillary voltage of 3.3 kV (ESI). Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary columns from Daicel.

# Typical procedures and characterization data for compounds 3

### General procedure for the enantioselective alkynylation reaction

[Cu(CH<sub>3</sub>CN)<sub>4</sub>]BF<sub>4</sub> (5.7 mg, 0.018 mmol) and L4 (12.4 mg, 0.018 mmol) were placed in a dry round bottom flask which was purged with nitrogen. THF (0.2 mL) was added and the mixture was stirred for 1.5 h at room temperature. Then, a solution of  $\beta$ trifluoromethyl- $\alpha$ , $\beta$ -enone 2 (0.090 mmol) in dry THF (1.0 mL) was added via syringe, followed of triethylamine (12.5  $\mu$ L, 0.090 mmol). The solution was placed in a bath at 40 °C. After 10 min, the alkyne 1 (0.675mmol) was added and the solution was stirred at 40 °C under nitrogen until the reaction was complete (TLC). The reaction mixture was quenched with 20% aqueous NH<sub>4</sub>Cl (1.0 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 15 mL), washed with brine (15 mL), dried over MgSO<sub>4</sub> and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with hexane:diethyl ether mixtures afforded compound **3**.

### (S)-(-)-3-(Trifluoromethyl)-1,5-diphenylpent-4-yn-1-one (3aa)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (85%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 8.1$  min, minor enantiomer  $t_r = 10.1$  min.

 $[\alpha]_{D}^{20}$  –34.7 (*c* 0.81, CHCl<sub>3</sub>, 85% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.03-7.99 (m, 2H), 7.62 (ddd, *J* = 6.6, 1.3 Hz, 2H), 7.40-7.37 (m, 2H), 7.31-7.24 (m, 3H), 4.29-4.16 (m,

1H), 3.60 (dd, J = 17.3, 8.9 Hz, 1H), 3.42 (dd, J = 17.3, 4.2 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>)  $\delta$  194.5 (C), 136.1 (C), 133.8 (CH), 131.9 (2CH), 128.8 (2CH), 128.6 (CH), 128.2 (2CH), 128.2 (2CH), 125.3 (q,  $J_{C-F} = 263.0$  Hz, CF<sub>3</sub>), 122.0 (C), 84.3 (C), 81.4 (q,  $J_{C-F} = 6.5$  Hz, C), 38.3 (CH<sub>2</sub>), 33.7 (q,  $J_{C-F} = 41.2$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -71.6 (s, 3F); HRMS (ESI) *m*/*z*: 303.0893 (M + H)<sup>+</sup>, C<sub>18</sub>H<sub>14</sub>F<sub>3</sub>O requires 303.0991.

#### (S)-(-)-3-(Trifluoromethyl)-5-phenyl-1-*p*-tolylpent-4-yn-1-one (3ab)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (80%) was determined by chiral HPLC (Chiralpak AD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r =$ 8.1 min, minor enantiomer  $t_r =$  9.1 min.

[α]<sub>D</sub><sup>20</sup> –28.5 (*c* 0.89, CHCl<sub>3</sub>, 80% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.92-7.88 (m, 2H), 7.40-7.36 (m, 2H), 7.31-7.26 (m, 5H), 4.26-4.19 (m, 1H), 3.56 (dd, J = 17.2, 8.9 Hz, 1H), 3.39 (dd, J = 17.2, 4.2 Hz, 1H), 2.43 (s, 3H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 194.1 (C), 144.7 (C), 133.6 (C), 131.9 (2CH), 129.5 (2CH), 128.6 (CH), 128.2 (2CH), 127.2 (2CH), 125.4 (q,  $J_{C-F} = 279.3$  Hz, CF<sub>3</sub>), 122.0 (C), 84.7 (C), 84.2 (C), 38.1 (CH<sub>2</sub>), 33.7 (q,  $J_{C-F} = 31.7$  Hz, CH), 21.7 (CH<sub>3</sub>); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –71.6 (s, 3F); HRMS (ESI) *m/z*: 317.1148 (M+H)<sup>+</sup>, C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>O requires 317.1141.

### (S)-(-)-3-(Trifluoromethyl)-1-(4-methoxyphenyl)-5-phenylpent-4-yn-1-one (3ac)



Purified by flash chromatography eluting with hexane-diethyl ether (99:01). Enantiomeric excess (80%) was determined by chiral HPLC (Chiralpak IC), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 9.0$  min, minor enantiomer  $t_r = 8.0$ 

min.

[α]<sub>D</sub><sup>20</sup> –40.9 (*c* 0.91, CHCl<sub>3</sub>, 80% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.88 (dt, J = 9, 3 Hz, 2H), 7.29-7.26 (m, 2H), 7.19-7.16 (m, 3H), 6.89-6.84 (dt, J = 9, 3 Hz, 2H), 4.16-4.09 (m, 1H), 3.70 (s, 3H), 3.43 (dd, J = 18, 9 Hz, 1H), 3.25 (dd, , J = 18, 3 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 193.0 (C), 164.0 (C), 131.9 (2CH), 130.6 (2CH), 129.2 (C), 128.6 (CH), 128.2 (2CH), 125.4 (q,  $J_{C-F} = 279.4$  Hz, CF<sub>3</sub>), 122.1 (C), 114.0 (2CH), 84.3 (C), 82.0 (q,  $J_{C-F} = 3.8$  Hz, C), 55.5 (CH<sub>3</sub>), 37.9 (CH<sub>2</sub>), 33.8 (q,  $J_{C-F} = 31.6$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –71.6 (s, 3F); HRMS (ESI) *m/z*: 333.1088 (M + H)<sup>+</sup>, C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>O<sub>2</sub> requires 333.1097.

# (S)-(-)-1-(4-Chlorophenyl)-3-(trifluoromethyl)-5-phenylpent-4-yn-1-one (3ad)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (80%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 7.5$  min, minor enantiomer  $t_r = 10.9$  min.

[α]<sub>D</sub><sup>20</sup> –32.7 (*c* 0.81, CHCl<sub>3</sub>, 80% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.95 (dt, J = 9.0, 3.0 Hz, 2H), 7.48 (dt, J = 9.0, 2.4 Hz, 2H), 7.40-7.36 (m, 2H), 7.31-7.24 (m, 3H), 4.27-4.14 (m, 1H), 3.55 (dd, J = 17.3, 8.9 Hz, 1H), 3.38 (dd, J = 17.3, 4.2 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 193.4 (C), 140.4 (C), 134.4 (C), 131.9 (2CH), 129.6 (2CH), 129.2 (2CH), 128.7 (CH), 128.2 (CH), 125.4 (q,  $J_{C-F} = 279.3$  Hz, CF<sub>3</sub>), 121.9 (C), 84.5 (C), 81.6 (q,  $J_{C-F} = 3.9$  Hz, C), 38.3 (CH<sub>2</sub>), 33.7 (q,  $J_{C-F} = 31.5$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –71.7 (s, 3F); HRMS (ESI) *m/z*: 337.0592/339.0564 (M + H)<sup>+</sup> 100/32.0, C<sub>18</sub>H<sub>13</sub>F<sub>3</sub>O<sub>3</sub>Cl requires 337.0607/339.0578.

### (S)- (-)-3-(Trifluoromethyl)-1-(4-nitrophenyl)-5-phenylpent-4-yn-1-one (3ae)



Purified by flash chromatography eluting with hexane-diethyl ether (95:05). Enantiomeric excess (70%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 95:05, 1 mL/min, major enantiomer  $t_r = 20.1$  min, minor enantiomer  $t_r = 31.2$ 

min.

[α]<sub>D</sub><sup>20</sup> –25.2 (*c* 0.60, CHCl<sub>3</sub>, 70% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.35 (dt, J = 9.0, 3.0 Hz, 2H), 8.16 (dt, J = 9.0, 3.0 Hz, 2H), 7.40-7.25 (m, 5H), 4.27-4.15 (m, 1H), 3.63 (dd, J = 17.5, 8.9 Hz, 1H), 3.47 (dd, J = 17.5, 4.2 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 193.2 (C), 150.7 (C), 140.4 (C), 131.9 (2CH), 129.3 (2CH), 128.9 (CH), 128.3 (2CH), 125.1 (q,  $J_{C-F} = 281.3$  Hz, CF<sub>3</sub>), 124.1 (2CH), 121.7 (C), 84.8 (C), 81.1 (C), 38.9 (CH<sub>2</sub>), 33.7 (q,  $J_{C-F} = 31.9$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –71.6 (s, 3F); HRMS (ESI) *m*/*z*: 348.0851 (M+H)<sup>+</sup>, C<sub>18</sub>H<sub>13</sub>F<sub>3</sub>NO<sub>3</sub> requires 348.0848.

### (S)-(-)-3-(Trifluoromethyl)-1-(naphthalene-3-yl)-5-phenylpent-4-yn-1-one (3af)



Purified by flash chromatography eluting with hexane-diethyl ether (99:01). Enantiomeric excess (84%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 16.3$  min, minor enantiomer  $t_r = 19.1$ 

min.

 $[\alpha]_D^{20}$  –118.6 (*c* 1.30, CHCl<sub>3</sub>, 84% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.50 (s, 1H), 8.05 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.98 (d, *J* = 7.9 Hz, 1H), 7.90 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.65-7.54 (m, 2H), 7.38-7.35 (m, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, *J* = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 3.73 (dd, J = 10.2, 8.6 Hz, 2H), 7.28-7.20 (m, 3H), 4.35-4.22 (m, 1H), 7.28-7.20 (m, 2H), 7.28-7.20 (m,

17.2, 8.9 Hz, 1H), 3.54 (dd, J = 17.2, 4.1 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>)  $\delta$  194.4 (CH), 135.9 (C), 133.5 (C), 132.4 (C),131.8 (2CH), 130.12 (CH), 129.64 (CH), 128.9 (CH), 128.7 (CH), 128.6 (CH), 128.2 (2CH), 127.8 (CH), 127.0 (CH), 125.4 (q,  $J_{C-F} = 279.4$  Hz, CF<sub>3</sub>), 123.7 (CH), 122.0 (C), 84.4 (C), 81.9 (q,  $J_{C-F} = 3.5$  Hz, C), 38.3 (CH<sub>2</sub>), 33.8 (q,  $J_{C-F} = 31.8$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -71.5 (s, 3F); HRMS (ESI) m/z: 353.1148 (M+H)<sup>+</sup>, C<sub>22</sub>H<sub>16</sub>F<sub>3</sub>O requires 353.1148.

### (S)-(-)-3-(Trifluoromethyl)-5-phenyl-1-(thiophen-2-yl)pent-4-yn-1-one (3ag)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (90%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 10.5$  min, minor enantiomer  $t_r = 15.2$  min.

[α]<sub>D</sub><sup>20</sup> –6.1 (*c* 1.09, CHCl<sub>3</sub>, 90% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.77 (dd, J = 3.8, 1.1 Hz, 1H), 7.68 (dd, J = 5, 1.1 Hz, 1H), 7.36-7.33 (m, 2H), 7.28-7.22 (m, 3H), 7.14 (dd, J = 5, 3.8 Hz, 1H), 4.23-4.10 (m, 1H), 3.47 (dd, J = 16.6, 8.9 Hz, 1H), 3.32 (dd, , J = 16.6, 4.5 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 187.4 (C), 143.2 (C), 134.7 (CH), 132.7 (CH), 131.9 (2CH), 128.7 (CH), 128.3 (CH), 128.2 (2CH), 125.2 (q,  $J_{C-F} = 278.7$  Hz, CF<sub>3</sub>), 121.9 (C), 84.7 (C), 81.5 (C), 38.7 (CH<sub>2</sub>), 33.8 (q,  $J_{C-F} = 31.7$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.7 (s, 3F); HRMS (ESI) *m*/*z*: 309.0550 (M + H)<sup>+</sup>, C<sub>16</sub>H<sub>12</sub>F<sub>3</sub>OS requires 309.0555.

(S)-(-)-3-(Trifluoromethyl)-5-(4-methoxyphenyl)-1-phenylpent-4-yn-1-one (3ba)



Purified by flash chromatography eluting with hexane-diethyl ether (99:01). Enantiomeric excess (83%) was determined by chiral HPLC (Chiralpak AD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 15.9$  min, minor enantiomer  $t_r = 14.4$ 

min.

[α]<sub>D</sub><sup>20</sup> –20.3 (*c* 0.93, CHCl<sub>3</sub>, 83% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.02-7.99 (m, 2H), 7.64-7.59 (m, 1H), 7.53-7.47 (m, 2H), 7.31 (dt, *J* = 9, 3 Hz, 2H), 6.79 (dt, *J* = 9, 3 Hz, 2H), 4.27- 4.14 (m, 1H), 3.79 (s, 3H), 3.58 (dd, *J* = 17.2, 8.9 Hz, 1H), 3.41 (dd, *J* = 17.2, 4.2 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 194.7 (C), 159.8 (C), 136.1 (C), 133.7 (CH), 133.3 (2CH), 128.8 (2CH), 128.2 (2CH), 125.4 (q, *J*<sub>C-F</sub> = 279.1 Hz, CF<sub>3</sub>), 114.1 (C), 113.8 (2CH), 84.2 (C), 80.4 (q, *J*<sub>C-F</sub> = 3.5 Hz, C), 55.3 (CH<sub>3</sub>), 38.3 (CH<sub>2</sub>), 33.7 (q, *J*<sub>C-F</sub> = 31.7 Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –71.7 (s, 3F); HRMS (ESI) *m/z*: 333.1088 (M + H)<sup>+</sup> C<sub>19</sub>H<sub>16</sub>F<sub>3</sub>O<sub>2</sub> requires 333.1097.

# (S)-(-)-3-(Trifluoromethyl)-5-(4-fluorophenyl)-1-phenylpent-4-yn-1-one (3ca)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (80%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 8.8$  min, minor enantiomer  $t_r = 10.8$  min.

[α]<sub>D</sub><sup>20</sup> –15.7 (*c* 1.15, CHCl<sub>3</sub>, 80% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.02-7.99 (m, 2H), 7.65-7.60 (m, 1H), 7.53-7.48 (m, 2H), 7.39-7.34 (m, 2H), 7.00-6.93 (m, 2H), 4.24-4.17 (m, 1H), 3.59 (dd, *J* = 17.3, 9 Hz, 1H), 3.42 (dd, *J* = 17.3, 4.1 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 194.5 (C), 162.7 (d, *J* = 249.9 Hz, C), 136.0 (C), 133.9 (CH), 133.8 (d, *J* = 8.5 Hz, 2CH), 128.8 (2CH), 128.2 (2CH), 125.3 (q, *J* = 279.2 Hz, CF<sub>3</sub>), 118.1 (d, *J* = 3.5 Hz, C), 115.5 (d, *J*<sub>C-F</sub> = 22.1 Hz, 2CH), 83.3 (C), 81.6 (q, *J*<sub>C-F</sub> = 5.1 Hz, C), 38.2 (CH<sub>2</sub>), 33.6 (q, *J*<sub>C-F</sub> = 31.6 Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –71.6 (s, 3F), -110.7 (s, 1F); HRMS (ESI) *m/z*: 321.0892 (M+H)<sup>+</sup>, C<sub>18</sub>H<sub>13</sub>F<sub>4</sub>O requires 321.0897.

### (S)-(-)-5-(4-Chlorophenyl)-3-(trifluoromethyl)-1-phenylpent-4-yn-1-one (3da)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (77%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 10.5$ min, minor enantiomer  $t_r = 11.5$  min.

[α]<sub>D</sub><sup>20</sup> –20.4 (*c* 0.90, CHCl<sub>3</sub>, 77% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.02-7.99 (m, 2H), 7.62 (ddd, J = 6.6, 3.9, 1.3 Hz, 1H), 7.54-7.48 (m, 2H), 7.33-7.22 (m, 4H), 4.26-4.15 (m, 1H), 3.59 (dd, J = 17.3, 9 Hz, 1H), 3.42 (dd, J = 17.3, 4.1 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 194.4 (C), 136.0 (C), 134.7 (C), 133.8 (CH), 133.1 (2CH), 128.8 (2CH), 128.6 (2CH), 128.2 (2CH), 125.3 (q,  $J_{C-F} = 279.4$  Hz, CF<sub>3</sub>), 120.5 (C), 83.2 (C), 80.9 (C), 38.2 (CH<sub>2</sub>), 33.7 (q,  $J_{C-F} = 31.7$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –71.5 (s, 3F); HRMS (ESI) *m/z*: 337.0594 / 339.0553 (M + H)<sup>+</sup> 100 / 28.9 C<sub>18</sub>H<sub>13</sub>ClF<sub>3</sub>O requires 337.0607 / 339.0578.

# (S)-(-)-3-(Trifluoromethyl)-5-(4-methoxyphenyl)-1-(thiophen-2-yl)pent-4-yn-1-one (3bg)



Purified by flash chromatography eluting with hexane-diethyl ether (99:01). Enantiomeric excess (93%) was determined by chiral HPLC (Chiralpak AY-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 25.3$  min, minor enantiomer  $t_r = 16.8$ 

min.

 $[\alpha]_{D}^{20}$  –7.3 (*c* 0.98, CHCl<sub>3</sub>, 93% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.72-7.70 (m, 1H), 7.32-7.28 (m, 2H), 7.17 (dd, *J* = 5, 3.8 Hz, 1H), 6.81-

6.77 (m, 2H), 4.23-4.11 (m, 1H), 3.79 (s, 3H), 3.48 (dd, J = 16.6, 8.9 Hz, 1H), 3.33 (dd, J = 16.6, 4.5 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>)  $\delta$  187.5 (C), 159.8 (C), 143.3 (C), 134.7 (CH), 133.3 (2CH), 132.6 (CH), 128.3 (CH), 125.2 (q,  $J_{C-F} = 279.3$  Hz, CF<sub>3</sub>), 114.0 (C), 113.8 (2CH), 84.6 (C), 80.0 (q,  $J_{C-F} = 3.3$  Hz, C), 55.3 (CH<sub>3</sub>), 38.8 (CH<sub>2</sub>), 33.8 (q,  $J_{C-F} = 31.7$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  –71.8 (s, 3F); HRMS (ESI) m/z: 338.0592 (M + H)<sup>+</sup> C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>O<sub>2</sub>S requires 338.0588.

# (S)-(-)-3-(Trifluoromethyl)-5-(4-fluorophenyl)-1-(thiophen-2-yl)pent-4-yn-1-one (3cg)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (90%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 12.6$  min, minor enantiomer  $t_r = 14.9$  min.

[α]<sub>D</sub><sup>20</sup> –6.4 (*c* 1.03, CHCl<sub>3</sub>, 90% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.79 (dd, J = 3.9, 1.1 Hz, 1H), 7.72 (dd, J = 5, 1.1 Hz, 1H), 7.38-7-32 (m, 2H), 7.18 (dd, J = 5, 3.9 Hz, 1H), 7.00-6.93 (m, 2H), 4.23-4.08 (m, 1H), 3.49 (dd, J = 16.7, 9 Hz, 1H), 3.35 (dd, J = 16.7, 4.4 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 187.3 (C), 162.7 (d, J = 250 Hz, C), 143.2 (C), 134.8 (CH), 133.8 (d, J = 8.5 Hz, 2CH), 132.7 (CH), 128.3 (CH), 125.0 (q,  $J_{C-F} = 279.5$  Hz, CF<sub>3</sub>), 118.0 (C), 115.5 (d, J = 22.1 Hz, 2CH), 83.6 (C), 81.2 (q,  $J_{C-F} = 3.6$  Hz, C), 38.7 (CH<sub>2</sub>), 33.8 (q,  $J_{C-F} = 31.9$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.6 (s, 3F), -110.7 (s, 1F); HRMS (ESI) *m*/*z*: 327.0455 (M + H)<sup>+</sup> C<sub>16</sub>H<sub>11</sub>F<sub>4</sub>OS requires 327.0461.

# (S)-(-)- 5-(4-Chlorophenyl)-3-(trifluoromethyl)-1-(thiophen-2-yl)pent-4-yn-1-one (3dg)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (84%) was determined by chiral HPLC (Chiralpak IC), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 6.5$  min, minor enantiomer  $t_r = 7.0$  min.

[α]<sub>D</sub><sup>20</sup> –6.9 (*c* 1.06, CHCl<sub>3</sub>, 84% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.79 (dd, J = 3.9, 1.0 Hz, 1H), 7.22 (dd, J = 4.9, 1.0 Hz, 1H), 7.31-7.23 (m, 4H), 7.18 (dd, J = 4.9, 3.9 Hz, 1H), 4.21-4.14 (m, 1H), 3.49 (dd, J = 16.7, 9.0 Hz, 1H), 3.35 (dd, J = 16.7, 4.4 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 187.3 (C), 143.1 (C), 134.8 (C), 134.8 (CH), 133.1 (2CH), 132.6 (CH), 128.6 (2CH), 128.4 (CH), 125.1 (q,  $J_{C-F} = 279.6$  Hz, CF<sub>3</sub>), 120.4 (C), 83.6 (C), 82.5 (C), 38.6 (CH<sub>2</sub>), 33.9 (q,  $J_{C-F} = 31.9$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.5 (s, 3F); HRMS (ESI) *m*/*z*: 343.0158 / 345.0128 (M + H)<sup>+</sup> 100 / 36.7 C<sub>16</sub>H<sub>11</sub>ClF<sub>3</sub>OS requires 343.0171 / 345.0142.

# (S)-(-)-3-(Trifluoromethyl)-5-(2-methoxyphenyl)-1-(thiophen-2-yl)pent-4-yn-1-one (3eg)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (98%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 95:05, 1 mL/min, major enantiomer  $t_r = 10.7$  min, minor enantiomer  $t_r = 13.2$  min.

[α]<sub>D</sub><sup>20</sup> –7.8 (*c* 0.90, CHCl<sub>3</sub>, 98% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.80 (dd, J = 3.9, 1.1 Hz, 1H), 7.70 (dd, J = 5.0, 1.1 Hz, 1H), 7.34-7.24 (m, 2H), 7.17 (dd, J = 4.9, 3.8 Hz, 1H), 6.91-6.77 (m, 2H), 4.29-4.21 (m, 1H), 3.78 (s, 3H), 3.52 (dd, J = 16.6, 8.5 Hz, 1H), 3.36 (dd, J = 16.6, 4.8 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 187.5 (C), 160.4 (C), 143.4 (C), 134.5 (CH), 133.7 (CH), 132.6 (CH), 130.1 (CH), 128.3 (CH), 125.2 (q,  $J_{C-F} = 279.5$  Hz, CF<sub>3</sub>), 120.3 (CH), 111.3 (C), 110.8 (CH), 85.5 (C), 81.1 (C), 55.7 (CH<sub>3</sub>), 38.9 (CH<sub>2</sub>), 34.1 (q,  $J_{C-F} = 31.8$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –71.6 (s, 3F); HRMS (ESI) *m*/*z*: 338.0590 (M + H)<sup>+</sup> C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>O<sub>2</sub>S requires 338.0588.

# (S)-(-)-3-(Trifluoromethyl)-5-(3-fluorophenyl)-1-(thiophen-2-yl)pent-4-yn-1-one (3fg)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (99%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 13.7$  min, minor enantiomer  $t_r = 10.9$  min.

[α]<sub>D</sub><sup>20</sup> -8.3 (*c* 0.87, CHCl<sub>3</sub>, 99% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.79 (dd, J = 2.7, 1.3 Hz, 1H), 7.74 (ddd, J = 9.7, 4.9, 1.1 Hz, 1H), 7.28-7.14 (m, 3H), 7.08-6.98 (m, 2H), 4.25-4.13 (m, 1H), 3.50 (dd, J = 16.7, 9.0 Hz, 1H), 3.36 (dd, J = 16.7, 4.4 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 187.2 (C), 162.2 (d,  $J_{C-F} = 246.7$  Hz, C), 143.1 (C), 134.8 (CH), 132.7 (CH), 129.8 (d,  $J_{C-F} = 8.6$  Hz, CH), 128.4 (CH), 127.8 (d,  $J_{C-F} = 3.1$  Hz, CH), 125.1 (q,  $J_{C-F} = 279.4$  Hz, CF<sub>3</sub>), 123.7 (d,  $J_{C-F} = 9.4$  Hz, C), 118.7 (d,  $J_{C-F} = 23.0$  Hz, CH), 116.1 (d, J = 21.2 Hz, CH), 83.4 (q,  $J_{C-F} = 3.4$  Hz, C), 82.5 (d,  $J_{C-F} = 3.5$  Hz, C), 38.6 (CH<sub>2</sub>), 33.8 (q,  $J_{C-F} = 31.9$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.6 (s, 3F), -113.4 (s, 1F); HRMS (ESI) *m*/*z*: 327.0457 (M + H)<sup>+</sup> C<sub>16</sub>H<sub>11</sub>F<sub>4</sub>OS requires 327.0461.

# (S)-(-)-3-(trifluoromethyl)-5-(3,5-dimethoxyphenyl)-1-(thiophen-2-yl)pent-4-yn-1one (3gg)



Purified by flash chromatography eluting with hexane-diethyl ether (95:05). Enantiomeric excess (86%) was determined by chiral HPLC (Chiralpak AD-H), hexane-<sup>*i*</sup>PrOH 95:05, 1 mL/min, major

enantiomer  $t_r = 11.2$  min, minor enantiomer  $t_r = 12.5$  min.

[α]<sub>D</sub><sup>20</sup> -7.0 (*c* 0.93, CHCl<sub>3</sub>, 86% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.80 (dd, J = 3.8, 1.1 Hz, 1H), 7.71 (dd, J = 4.9, 1.1 Hz, 1H), 7.17 (dd, J = 4.9, 3.8 Hz, 1H), 6.51 (d, J = 2.3 Hz, 2H), 6.42 (t, J = 2.3 Hz, 1H), 4.22-4.15 (m, 1H), 3.75 (s, 6H), 3.49 (dd, J = 16.6, 8.9 Hz, 1H), 3.35 (dd, J = 16.6, 4.5 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 187.4 (C), 160.4 (2C), 143.2 (C), 134.7 (CH), 132.7 (CH), 130.7 (CH), 125.2 (q,  $J_{C-F} = 279.3$  Hz, CF<sub>3</sub>), 123.2 (C), 109.6 (2CH), 102.3 (CH), 84.7 (C), 80.0 (q,  $J_{C-F} = 3.4$  Hz, C), 55.4 (2CH<sub>3</sub>), 38.7 (CH<sub>2</sub>), 33.8 (q, <sub>C-F</sub>J = 31.8 Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.6 (s, 3F); HRMS (ESI) m/z: 368.0690 (M + H)<sup>+</sup> C<sub>18</sub>H<sub>15</sub>F<sub>3</sub>O<sub>3</sub>S requires 368.0694.

# (S)-(-)-3-(Trifluoromethyl)-1-(thiophen-2-yl)-5-(thiophen-3-yl)pent-4-yn-1-one (3hg)



Purified by flash chromatography eluting with hexanediethyl ether (99:01). Enantiomeric excess (88%) was determined by chiral HPLC (Chiralcel OD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 11.1$  min, minor enantiomer  $t_r = 15.5$  min.

[α]<sub>D</sub><sup>20</sup> –5.4 (*c* 0.86, CHCl<sub>3</sub>, 88% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.79 (dd, J = 3.9, 1.1 Hz, 1H), 7.71 (dd, J = 4.9, 1.1 Hz, 1H), 7.40 (dd, J = 3.0, 1.2 Hz, 1H), 7.22 (dd, J = 5.0, 3.0 Hz, 1H), 7.17 (dd, J = 5.0, 3.9 Hz, 1H), 7.04 (dd, J = 5.0, 1.2 Hz, 1H), 4.22-4.11 (m, 1H), 3.49 (dd, J = 16.7, 8.9 Hz, 1H), 3.34 (dd, J = 16.7, 4.4 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 187.3 (C), 143.2 (C), 134.7 (CH), 132.6 (CH), 129.9 (CH), 129.7 (CH), 128.3 (CH), 125.3 (CH), 125.1 (q,  $J_{C-F} = 279.5$  Hz, CF<sub>3</sub>), 120.9 (C), 81.1 (q,  $J_{C-F} = 3.5$  Hz, C), 79.9 (C), 38.7 (CH<sub>2</sub>), 33.8 (q,  $J_{C-F} = 31.7$  Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.6 (s, 3F); HRMS (ESI) *m*/*z*: 314.0043 (M + H)<sup>+</sup> C<sub>14</sub>H<sub>9</sub>F<sub>3</sub>OS<sub>2</sub> requires 314.0047.

# (S)-(+)-7-phenyl-1-(thiophen-2-yl)-3-(trifluoromethyl)hept-4-yn-1-one (3ig)



Purification by flash chromatography eluting with hexane-diethyl ether (99:01). Enantiomeric excess (92%) was determined by chiral HPLC (Chiralcel AD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 9.7$  min, minor enantiomer  $t_r = 10.8$  min.

[α]<sub>D</sub><sup>20</sup>+1.2 (*c* 0.73, CHCl<sub>3</sub>, 92% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.71 (td, J = 4.7, 1.2 Hz, 2H), 7.26-7.12 (m, 6H), 4.05 (m, 1H), 3.31 (dd, J = 16.6, 9.0 Hz, 1H), 3.19 (dd, J = 16.6, 4.5 Hz, 1H), 2.74 (t, J = 7.2 Hz, 2H), 2.42 (td, J = 7.5, 2.4 Hz, 2H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 187.6 (C), 143.4 (C), 140.3 (C), 134.5 (CH), 132.5 (CH), 128.5 (2CH), 128.3 (3CH), 126.2 (CH), 125.5 (q,  $J_{C-F} = 277.5$  Hz, CF<sub>3</sub>), 84.6 (C), 73.3 (C), 38.9 (CH<sub>2</sub>), 34.6 (CH<sub>2</sub>), 33.3 (q,  $J_{C-F} = 30.8$  Hz, CH), 20.8 (CH<sub>2</sub>); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -72.1 (s, 3F); HRMS (ESI) *m/z*: 337.0854 (M + H)<sup>+</sup> C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>OS requires 337.0868.

#### (S)-(+)-5-(Trifluoromethyl)-1,7-diphenylhept-6-yn-3-one (3ah)



Purification by flash chromatography eluting with hexane-diethyl ether (99:01). Enantiomeric excess (79%) was determined by chiral HPLC (Chiralcel AD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 6.6$  min, minor enantiomer  $t_r = 9.6$ 

min.

[α]<sub>D</sub><sup>20</sup> +6.1 (*c* 0.8, CHCl<sub>3</sub>, 79% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.42-7.36 (m, 2H), 7.35-7.22 (m, 5H), 7.24-7.14 (m, 2H), 3.99 (m, 1H), 3.01-2.78 (m, 6H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 204.3 (C), 140.4 (C), 131.9 (CH), 128.7 (CH), 128.6 (CH), 128.3 (CH), 126.3 (CH), 125.1 (q,  $J_{C-F} = 277.1$  Hz, CF<sub>3</sub>), 121.9 (C), 84.4 (C), 81.5 (q,  $J_{C-F} = 3.6$  Hz, C), 44.7 (CH<sub>2</sub>), 42.1 (CH<sub>2</sub>), 33.4 (q,  $J_{C-F} = 31.7$  Hz, CH), 29.5 (CH<sub>2</sub>); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.8 (s, 3F); HRMS (ESI) *m/z*: 331.1306 (M + H)<sup>+</sup> C<sub>20</sub>H<sub>18</sub>F<sub>3</sub>O requires 331.1304.

### (S)-(+)-5-(Trifluoromethyl)-7-(4-methoxyphenyl)-1-phenylhept-6-yn-3-one (3bh)



Purification by flash chromatography eluting with hexane-diethyl ether (99:01). Enantiomeric excess (82%) was determined by chiral HPLC (Chiralcel AD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 11.3$  min, minor

enantiomer  $t_r = 17.4$  min.

[α]<sub>D</sub><sup>20</sup> +3.0 (*c* 0.5, CHCl<sub>3</sub>, 82% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.33 (d, *J* = 9.0 Hz, 2H), 7.31-7.12 (m, 6H), 6.82 (d, *J* = 9.0 Hz, 2H), 3.98 (m, 1H), 3.81 (s, 3H), 3.00-2.78 (m, 6H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 204.4 (C), 159.9 (C), 140.5 (C), 140.5 (CH), 133.4 (CH), 128.6 (CH), 128.3 (CH), 126.3 (CH), 125.2 (q, *J*<sub>C-F</sub> = 278.3 Hz, CF<sub>3</sub>), 114.0 (C), 113.9 (CH), 84.3 (C), 80.1 (q, *J*<sub>C-F</sub> = 1.6 Hz, C), 55.3 (CH<sub>3</sub>), 44.8 (CH<sub>2</sub>), 42.1 (CH<sub>2</sub>), 33.4 (q, *J*<sub>C-F</sub> = 31.5 Hz, CH), 29.5 (CH<sub>2</sub>); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.9 (s, 3F); HRMS (ESI) *m/z*: 361.1415 (M + H)<sup>+</sup> C<sub>21</sub>H<sub>20</sub>F<sub>3</sub>O<sub>2</sub> requires 361.1410.

# Determination of the absolute configuration of (S)-(-)-3aa



(E,S)-3-(Trifluoromethyl)-1,5-diphenylpent-4-en-1-ol (4)

Lithium aluminium hydride (12.1 mg, 0.320 mmol) was added to a solution of 3aa (16.1 mg, 0.053 mmol, 80% ee) in dry THF (1.5 mL) at room temperature, and the solution was stirred overnight

at 75 °C. The reaction mixture was quenched with 20 % aqueous NH<sub>4</sub>Cl (1.0 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 x 15 mL), washed with brine (15 mL), dried over MgSO<sub>4</sub> and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with hexane: EtOAc (98:02) afforded compound 4 (16.2 mg, 99%) as a mixture of diastereomers.

# (E,S)-3-(Trifluoromethyl)-1,5-diphenylpent-4-en-1-one (5)<sup>2,3</sup>

 $F_3 O$  To a 25 mL round-bottom flask equipped with a magnetic stirring bar was added PCC (137 mg, 0.64 mmol), 4Å MS (300 mg), silica gel (300 mg) and CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The mixture was cooled to 0 °C

and the mixture of alcohols 4 (16.2 mg, 0.05 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) was added dropwise. The reaction was warmed up to room temperature and was stirred for 3 h. The mixture was filtered through a pad of silica gel eluting with CH<sub>2</sub>Cl<sub>2</sub>. The solvent was removed under reduced pressure. The residual crude product was purified by flash column chromatography eluting with hexane:  $Et_2O$  (99:01) to afford the ketone 5 (10.5 mg, 66%).

Enantiomeric excess (78%) was determined by chiral HPLC (Chiralpak AD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 9.6$  min, minor enantiomer  $t_r = 10.8$  min. (lit<sup>2,3</sup>, Chiralpak AD-H, hexane-<sup>*i*</sup>PrOH 99.6:0.4, flow = 0.7 mL/min, *R*-enantiomer  $t_r =$ 19.3 min, S-enantiomer  $t_r = 16.3 \text{ min}$ ;  $[\alpha]_D^{20} + 4.9$  (c 0.57, CCl<sub>4</sub>, 78% ee) {lit<sup>2,3</sup>[ $\alpha$ ]\_D<sup>20</sup> -16.5 (0.95, CCl<sub>4</sub>, 40% ee) for the *R*-isomer];<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.98-7.95 (m, 2H), 7.62-7.57 (m, 1H), 7.51-7.46 (m, 2H), 7.37-7.24 (m, 5H), 6.70 (d, J = 15.9 Hz, 1H), 6.04 (dd, J = 15.9, 8.6 Hz, 1H), 3.93-3.83 (m, 1H), 3.40-3.38 (m, 2H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 195.4 (C), 136.4 (C), 136.3 (CH), 136.1 (C), 133.6 (CH), 128.8 (2CH), 128.5 (2CH), 128.1 (CH), 128.1 (2CH), 126.9 (q, J = 274.7 Hz, CF<sub>3</sub>), 121.5 (q, J = 2.4 Hz, CH), 42.6 (q, J = 27.7 Hz, CH), 37.4 (s, CH<sub>2</sub>); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$ -71.2 (s, 3F); HRMS (ESI) m/z; 305.1158 (M + H)<sup>+</sup> C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>O requires 305.1153.

# Synthetic transformations of compound 3aa. Synthesis of compounds 6 and 7

# (Z,S)-(-)-1,5-Diphenyl-3-(trifluoromethyl)pent-4-en-1-one (6)



A solution of (S)-**3aa** (10.6 mg, 0.035 mmol, 80% ee) in benzene (0.5 mL) was stirred in the presence of Lindlar's catalyst (2.5 mg) under hydrogen atmosphere (balloon) for 1 h. Then, the reaction mixture was filtered through a pad of Celite® eluting with EtOAc. The solvent was removed under reduced pressure to give **5** (9.4 mg, 88%).

Enantiomeric excess (80%) was determined by chiral HPLC (Chiralpak AD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer  $t_r = 7.7$  min, minor enantiomer  $t_r = 7.3$  min.

[α]<sub>D</sub><sup>20</sup> -70.2 (*c* 0.45, CHCl<sub>3</sub>, 80% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.79 (dd, J = 3.9, 1.1 Hz, 1H), 7.71 (dd, J = 4.9, 1.1 Hz, 1H), 7.40 (dd, J = 3.0, 1.2 Hz, 1H), 7.22 (dd, J = 5.0, 3.0 Hz, 1H), 7.17 (dd, J = 5.0, 3.9 Hz, 1H), 7.04 (dd, J = 5.0, 1.2 Hz, 1H), 4.22-4.11 (m, 1H), 3.49 (dd, J = 16.7, 8.9 Hz, 1H), 3.34 (dd, J = 16.7, 4.4 Hz, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 195.5 (C), 136.3 (C), 135.9 (C), 135.7 (CH), 133.4 (CH), 128.7 (2CH), 128.4 (2CH), 128.3 (2CH), 128.1 (2CH), 127.5 (CH), 125.1 (q, J = 279.5 Hz, CF<sub>3</sub>), 123.8 (q, J = 2.3 Hz, CH), 38.3 (q, J = 27.4 Hz, CH), 38.0 (q, J = 1.8 Hz, CH<sub>2</sub>); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -71.0 (s, 3F); HRMS (ESI) *m/z*: 305.1159 (M + H)<sup>+</sup> C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>O requires 305.1153.

# (R)-(-)-3-Iodo-2,6-diphenyl-4-(trifluoromethyl)-4H-pyran (7).

Ph O Ph A solution of I<sub>2</sub> (30.1 mg, 0.119 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added to a mixture of (*S*)-**3aa** (18 mg, 0.060 mmol 85% *ee*) and NaHCO<sub>3</sub> (10 mg, 0.119 mmol) under nitrogen atmosphere. The solution was stirred overnight at 40 °C (reflux). The reaction mixture was quenched with saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (1.0 mL), extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 15 mL), washed with brine (15 mL), dried over MgSO<sub>4</sub> and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with hexane:Et<sub>2</sub>O (98:02) gave compound 7 (19.9 mg, 77%). Enantiomeric excess (84%) was determined by chiral HPLC (Chiralpak AD-H), hexane-<sup>*i*</sup>PrOH 99:01, 1 mL/min, major enantiomer t<sub>r</sub> = 6.5 min, minor enantiomer t<sub>r</sub> = 4.7 min.

[α]<sub>D</sub><sup>20</sup> –7.0 (*c* 0.45, CHCl<sub>3</sub>, 84% *ee*); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.69-7.58 (m, 4H), 7.54-7.42 (m, 3H), 7.42-7.34 (m, 3H), 5.29 (d, J = 5.8 Hz, 1H), 4.16-4.02 (m, 1H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>) δ 155.1 (C), 153.1 (C), 135.9 (C), 132.3 (C), 129.9 (CH), 129.7 (2CH), 129.6 (CH), 128.7 (C), 128.5 (2CH), 128.2 (2CH), 125.4 (q, J = 223.7 Hz, CF<sub>3</sub>), 125.0 (2CH), 90.4 (q, J = 1.8 Hz, CH), 49.5 (q, J = 22.7 Hz, CH); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ –74.4 (s, 3F); HRMS (ESI) *m*/*z*: 428.9961 (M + H)<sup>+</sup> C<sub>18</sub>H<sub>13</sub>F<sub>3</sub>IO requires 428.9958.

- 1. G. Blay, I. Fernández, M. C. Muñoz, J. R. Pedro, C. Vila *Chem. Eur. J.*, **2010**, *16*, 9117-9122.
- (a) A. Morigaki, T. Tanaka, T. Miyabe, T. Ishihara, T. Konno, *Org. Biomol. Chem.*, 2013, **11**, 586; (b) T. Konno, T. Tanaka, A. Morigaki, T. Ishihara, *Tetrahedron Lett.*, 2008, **49**, 2106
- 3. We thank Professor Tsutomu Konno, Kyoto Institute of Technology, for sending us complete characterization data of compound (*E*,*R*)-**5**.









S17



— -71.6



3ab <sup>19</sup>F NMR, 282 MHz, CDCl<sub>3</sub>









— -71.6











S26

4.25 4.23 4.20 4.19 4.18 3.673.673.613.613.613.613.503.533.533.533.533.533.533.533.533.533.543.543.543.543.543.543.543.543.553.543.553.543.553.543.553.543.553.543.553.543.553.543.553.543.553.543.543.553.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.543.54

— 193.2 131.9 130.7 129.3 129.3 128.9 128.9 128.9 128.9 128.3 127.0 127.0 127.0 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 127.1 — 140.4 84.8 81.2 81.2 81.1 81.1 81.1 77.4 77.4 77.0 76.6 CF<sub>3</sub> O NO<sub>2</sub> 3ae <sup>13</sup>C NMR, 75.5 MHz, CDCl<sub>3</sub> -200 120 110 f1 (ppm) 80 70 40 160 140 130 190 180 170 150 100 90 60 50

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014







S28



S29







ÇF<sub>3</sub> O

**3ag** <sup>1</sup>H NMR, 300 MHz, CDCl<sub>3</sub>



S32



S33





S35




— -71.7











— -71.5











































— -71.6







S64

— -71.6



- 1







131.9 128.7 128.6 128.6 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 140.4 × 84.4 × 81.5 77.4 77.0 76.6 34.0 33.6 33.2 32.7 29.5 44.7 42.1 CF<sub>3</sub> O 3ah <sup>13</sup>C NMR, 75 MHz, CDCl<sub>3</sub> ไปสุดที่เป็นข่างแหนงแนนแหน่งไม่และและเป็นการสูงและการสูงและและเป็นสูงและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและเป็นหลายให้และและ f1 (ppm) 








S73























| No.    | RT            | Area               | Area %           |
|--------|---------------|--------------------|------------------|
| 1<br>2 | 8,33<br>10,43 | 3924955<br>3835001 | 50,580<br>49,420 |
|        |               | 7759956            | 100,000          |



| No.    | RT            | Area               | Area %          | Name |
|--------|---------------|--------------------|-----------------|------|
| 1<br>2 | 8,08<br>10,07 | 11908140<br>966915 | 92,490<br>7,510 |      |
|        |               | 12875055           | 100,000         |      |



| No.    | RT           | Area                 | Area %           | Name |
|--------|--------------|----------------------|------------------|------|
| 1<br>2 | 7,59<br>8,49 | 11951084<br>11872001 | 50,166<br>49,834 |      |
|        |              | 23823085             | 100,000          |      |



| No.    | RT           | Area              | Area %           | Name |
|--------|--------------|-------------------|------------------|------|
| 1<br>2 | 8,12<br>9,10 | 3979075<br>471170 | 89,412<br>10,588 |      |
|        |              | 4450245           | 100,000          |      |



| No.    | RT           | Area                 | Area %           | Name |
|--------|--------------|----------------------|------------------|------|
| 1<br>2 | 8,09<br>9,15 | 17412022<br>19383041 | 47,322<br>52,678 |      |
|        |              | 36795063             | 100,000          |      |



| No.    | RI           | Area              | Area %           | Nane |
|--------|--------------|-------------------|------------------|------|
| 1<br>2 | 7,96<br>8,96 | 481630<br>4313950 | 10,043<br>89,957 |      |
|        |              | 4795580           | 100,000          |      |



| No.    | RT            | Area                 | Area %           | Name |
|--------|---------------|----------------------|------------------|------|
| 1<br>2 | 7,49<br>10,77 | 17075254<br>17075995 | 49,999<br>50,001 |      |
|        |               | 34151249             | 100,000          |      |



| No.    | RT            | Area                | Area %           | Name |
|--------|---------------|---------------------|------------------|------|
| 1<br>2 | 7,53<br>10,94 | 12398415<br>1407990 | 89,802<br>10,198 |      |
|        |               | 13806405            | 100,000          |      |



| No.    | RT             | Area                 | Area %           | Name |
|--------|----------------|----------------------|------------------|------|
| 1<br>2 | 19,42<br>29,23 | 37529094<br>18616300 | 66,843<br>33,157 |      |
|        |                | 56145394             | 100,000          |      |



| No.    | RT             | Area                | Area %           | Name |
|--------|----------------|---------------------|------------------|------|
| 1<br>2 | 20,09<br>31,23 | 25599854<br>4563240 | 84,871<br>15,129 |      |
|        |                | 30163094            | 100,000          |      |





| No.    | RT             | Area                | Area %          | Name |
|--------|----------------|---------------------|-----------------|------|
| 1<br>2 | 16,27<br>19,31 | 29305795<br>2560000 | 91,966<br>8,034 |      |
|        |                | 31865795            | 100,000         |      |



| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 10,24<br>15,09 | 8252040<br>7921200 | 51,023<br>48,977 |      |
|        |                | 16173240           | 100,000          |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 10,47<br>15,19 | 11482160<br>620500 | 94,873<br>5,127 |      |
|        |                | 12102660           | 100,000         |      |



| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 13,31<br>14,87 | 2676360<br>2684990 | 49,920<br>50,080 |      |
|        |                | 5361350            | 100,000          |      |



| No.    | RT             | Area              | Area %          | Name |
|--------|----------------|-------------------|-----------------|------|
| 1<br>2 | 14,37<br>15,88 | 828280<br>9001520 | 8,426<br>91,574 |      |
|        |                | 9829800           | 100,000         |      |



| No.    | RT            | Area                | Area %           | Name |
|--------|---------------|---------------------|------------------|------|
| 1<br>2 | 8,63<br>10,62 | 9960184<br>10396870 | 48,927<br>51,073 |      |
|        |               | 20357054            | 100,000          |      |



| No.    | RT            | Area              | Area %           | Name |
|--------|---------------|-------------------|------------------|------|
| 1<br>2 | 8,75<br>10,75 | 7870600<br>896555 | 89,774<br>10,226 |      |
|        |               | 8767155           | 100,000          |      |







| No.    | RT             | Area              | Area %           | Name |
|--------|----------------|-------------------|------------------|------|
| 1<br>2 | 10,45<br>11,49 | 6311811<br>844093 | 88,204<br>11,796 |      |
|        |                | 7155904           | 100,000          |      |



| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 22,05<br>25,65 | 8539349<br>8638890 | 49,710<br>50,290 |      |
|        |                | 17178239           | 100,000          |      |



| No.    | RT             | Area                | Area %          | Name |
|--------|----------------|---------------------|-----------------|------|
| 1<br>2 | 16,83<br>25,25 | 1004280<br>26295569 | 3,679<br>96,321 |      |
|        |                | 27299849            | 100,000         |      |



| No.    | RT             | Area                | Area %           | Name |
|--------|----------------|---------------------|------------------|------|
| 1<br>2 | 12,57<br>14,61 | 10194740<br>9938569 | 50,636<br>49,364 |      |
|        |                | 20133309            | 100,000          |      |



| No.    | RT             | Area              | Area %          | Name |
|--------|----------------|-------------------|-----------------|------|
| 1<br>2 | 12,54<br>14,87 | 9551030<br>527170 | 94,769<br>5,231 |      |
|        |                | 10078200          | 100,000         |      |



| No.    | RT           | Area               | Area %           | Name |
|--------|--------------|--------------------|------------------|------|
| 1<br>2 | 6,42<br>6,90 | 3692928<br>3758161 | 49,562<br>50,438 |      |
|        |              | 7451089            | 100,000          |      |



| No.    | RT           | Area              | Area %          | Name |
|--------|--------------|-------------------|-----------------|------|
| 1<br>2 | 6,49<br>7,02 | 8573328<br>769626 | 91,762<br>8,238 |      |
|        |              | 9342954           | 100,000         |      |



| No.    | RT             | Area               | Area %           | Name |
|--------|----------------|--------------------|------------------|------|
| 1<br>2 | 10,22<br>12,65 | 2889530<br>2910330 | 49,821<br>50,179 |      |
|        |                | 5799860            | 100,000          |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 10,69<br>13,20 | 21493235<br>276845 | 98,728<br>1,272 |      |
|        |                | 21770080           | 100,000         |      |



| No.    | RT             | Area                 | Area %           | Name |
|--------|----------------|----------------------|------------------|------|
| 1<br>2 | 11,04<br>15,39 | 16499859<br>16011619 | 50,751<br>49,249 |      |
|        |                | 32511478             | 100,000          |      |



| No.    | RT             | Area              | Area %          | Name |
|--------|----------------|-------------------|-----------------|------|
| 1<br>2 | 10,94<br>13,70 | 75945<br>17638089 | 0,429<br>99,571 |      |
|        |                | 17714034          | 100,000         |      |



| No. | RT    | Area     | Area %  | Name |
|-----|-------|----------|---------|------|
| 1   | 11,18 | 5055040  | 48,820  |      |
| 2   | 12,37 | 5299460  | 51,180  |      |
|     |       | 10354500 | 100,000 |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 11,24<br>12,46 | 12062089<br>935910 | 92,800<br>7,200 |      |
|        |                | 12997999           | 100,000         |      |



| No. | RT             | Area               | Area %           | Name |
|-----|----------------|--------------------|------------------|------|
| 1 2 | 13,75<br>18,77 | 3495870<br>3325550 | 51,248<br>48,752 |      |
|     |                | 6821420            | 100,000          |      |



| No.    | RT             | Area               | Area %          | Name |
|--------|----------------|--------------------|-----------------|------|
| 1<br>2 | 11,09<br>15,52 | 10169350<br>656800 | 93,933<br>6,067 |      |
|        |                | 10826150           | 100,000         |      |



| No.    | RT            | Area               | Area %           |  |
|--------|---------------|--------------------|------------------|--|
| 1<br>2 | 9,41<br>10,46 | 3829870<br>3770840 | 50,388<br>49,612 |  |
|        |               | 7600710            | 100,000          |  |



| No.    | RT            | Area              | Area %          |  |
|--------|---------------|-------------------|-----------------|--|
| 1<br>2 | 9,67<br>10,77 | 4974620<br>218520 | 95,792<br>4,208 |  |
|        |               | 5193140           | 100,000         |  |



| No.    | RT           | Area               | Area %           | Name |
|--------|--------------|--------------------|------------------|------|
| 1<br>2 | 6,59<br>8,67 | 2026100<br>4449964 | 31,286<br>68,714 |      |
|        |              | 6476064            | 100,000          |      |



| No. | RT           | Area              | Area %           | Name |
|-----|--------------|-------------------|------------------|------|
| 1 2 | 6,63<br>9,63 | 1625410<br>194860 | 89,295<br>10,705 |      |
|     |              | 1820270           | 100,000          |      |



| No. | RT             | Area               | Area %           | Name |
|-----|----------------|--------------------|------------------|------|
| 1 2 | 13,57<br>20,79 | 8411390<br>8693320 | 49,176<br>50,824 |      |
|     |                | 17104710           | 100,000          |      |



| No.    | RI             | Area              | Area %          | Name |
|--------|----------------|-------------------|-----------------|------|
| 1<br>2 | 11,30<br>17,43 | 2495555<br>247250 | 90,986<br>9,014 |      |
|        |                | 2742805           | 100,000         |      |



| No.    | RT            | Area               | Area %           | Name |
|--------|---------------|--------------------|------------------|------|
| 1<br>2 | 9,27<br>10,33 | 3064390<br>3123390 | 49,523<br>50,477 |      |
|        |               | 6187780            | 100,000          |      |



| No.    | RT            | Area                | Area %           | Name |
|--------|---------------|---------------------|------------------|------|
| 1<br>2 | 9,64<br>10,75 | 11183110<br>1407330 | 88,822<br>11,178 |      |
|        |               | 12590440            | 100,000          |      |



| No.    | RT           | Area               | Area %           | Name |
|--------|--------------|--------------------|------------------|------|
| 1<br>2 | 7,65<br>8,35 | 5623247<br>5667342 | 49,805<br>50,195 |      |
|        |              | 11290589           | 100,000          |      |



| No.    | RT           | Area              | Area %           | Name |
|--------|--------------|-------------------|------------------|------|
| 1<br>2 | 7,25<br>7,73 | 648834<br>5797605 | 10,065<br>89,935 |      |
|        |              | 6446439           | 100,000          |      |

