Electronic supplementary information for:

Redox-driven ligand ejection in nickel(II)diiminosemiquinonate radical complexes

Nicolas Leconte, Jérémie Ciccione, Gisèle Gellon, Christian Philouze, Fabrice Thomas

General

Materials and methods: All operations were performed under anaerobic conditions under a pure argon atmosphere using standard Schlenk techniques. Anhydrous toluene and triethylamine were distilled over CaH₂ under an argon atmosphere prior to use. Anhydrous dichloromethane, acetonitrile, methanol were purchased from Acros. High-pressure reactions were carried out using a 0.6 L Parr Instrument stainless steel vessel. 3,5-Di-tert-butyl-2nitrobromobenzene 3 was prepared according to a reported procedure.¹ All other chemicals were purchased from Acros, Alfa-Aesar, Sigma-Aldrich or TCI and were used as received. NMR spectra were recorded on a Brüker Avance 400 (¹H at 400 MHz, ¹³C at 100 MHz). Chemical shifts are given relative to solvent residual peaks. Mass spectra were recorded on a Brüker Esquire 3000 (ESI/Ion Trap) equipment. Melting points were measured with a Büchi B-545 apparatus and weren't corrected. Microanalyses were performed by the Service Central d'Analyze du CNRS (Lyon, France). Infrared spectra were recorded on a Thermo Scientific Nicolet iS10 FT-IR spectrometer equipped with an ATR sampling accessory. UV/Vis visible spectra at 298K were recorded on a Varian Cary 50 spectrometer. X-band EPR spectra were recorded on an EMX plus spectrometer equipped with an Oxford Helium cryostat. Spectra were treated using the Bruker SIMFONIA software. Cyclic voltammetry curves were recorded on a CH Instruments 620 potentiostat in a standard three-electrode cell under argon atmosphere in CH₂Cl₂ solutions containing 0.1M tetrabutylammonium perchlorate (TBAP) as supporting electrolyte. An Ag/AgNO₃ (0.01 M) reference electrode was used. All the potentials given in the text are referred to the regular Fc⁺/Fc redox couple used as an internal reference. A glassy carbon disc electrode (5 mm diameter), polished with 1 µm diamond paste, was used as the working electrode. Electrochemical oxidations were performed on an EG&G PAR 273A potentiostat, under an argon atmosphere at 298 K, using a carbon felt working electrode.

Crystal structure analysis: Crystals were mounted on a Kappa CCD Nonius diffractometer equipped with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) and a cryostream cooler. The collected reflections were corrected for absorption (SADABS). Crystal structural solution (direct method) and refinement (by full-matrix least squares on F) was performed using the OLEX 2 analysis package. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were generated in idealized positions, riding on the carrier atoms, with isotropic thermal parameters.

	2 [1], 3 CH₃OH	[2], C ₆ H ₆
Empirical formula	C75H112N8Ni2O3	C78H110N8Ni
Fw	1291.15	1218.45
Temperature/K	200	200
Crystal system	monoclinic	monoclinic
Space group	C2/c	P21/n
a/Å	32.632(7)	13.686(3)
b/Å	8.9933(18)	23.219(5)
c/Å	24.821(5)	23.157(5)
α/°	90.00	90.00
β/°	94.39(3)	96.26(3)
γ/°	90.00	90.00
Volume/Å ³	7263(3)	7315(3)
Z	4	4
ρ _{calc} mg/mm³	1.181	1.106
m/mm ⁻¹	0.569	0.311
F(000)	2792.0	2648.0
Crystal size/mm ³	0.55 × 0.46 × 0.16	0.55 × 0.46 × 0.16
2O range for data collection	4.7 to 52°	2.5 to 52°
Index ranges	-40 ≤ h ≤ 36, -11 ≤ k ≤ 9, -30 ≤ l ≤ 27	$-16 \le h \le 14, -28 \le k \le 28,$ $-28 \le l \le 28$
Reflections collected	32177	63601
Independent reflections	7082[R(int) = 0.0671]	14101[R(int) = 0.0684]
Data/restraints/parameters	7082/9/453	14101/281/962
Goodness-of-fit on F ²	1.100	1.025
Final R indexes [I>=2σ (I)]	$R_1 = 0.0572, wR_2 = 0.1228$	$R_1 = 0.0551, \ wR_2 = 0.1194$
Final R indexes [all data]	$R_1 = 0.0889, wR_2 = 0.1346$	$R_1=0.1415,\ wR_2=0.1466$
Largest diff. peak/hole / e Å-3	0.48/-0.54	0.41/-0.28

Crystallographic data and structure refinement for complexes 1 & 2

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-927235 and 927236 (for **1** and **2**, respectively). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033) or via http://www.ccdc.cam.ac.uk/conts/retrieving.html.

Synthesis of the ligand H₄L and complexes 1 & 2

General comment: The ligand H₄L was prepared in two steps starting from 3,5-di-*tert*-butyl-2-nitrobromobenzene **3** (Scheme 1). A reliable procedure recently reported by the Beifuss' group ² allowed the Pd-catalyzed *N*-arylation of **3** with 4,5-dimethyl-*o*-phenylenediamine. The adjusted conditions led to the isolation of the *N*,*N*'-bis(3,5-di-*tert*-butyl-2-nitrophenyl)-4,5-dimethyl-*o*-phenylenediamine **4** in a convenient yield. Subsequent reduction of **4** by catalytic hydrogenation and recrystallization from methanol cleanly led to the targeted ligand H₄L in a moderate yield.

The reaction between H₄L and Ni(OAc)₂ in the presence of an excess of Et₃N was performed in either anhydrous MeOH or anhydrous CH₃CN (Scheme 2). While the nature of the solvents has no influence on the outcome of the reaction, the concentration revealed to be a decisive parameter. Indeed, at low concentration, only complex $[NiL]^0$ **1** was isolated whereas $[NiH_2L_2]^0$ **2** preferentially formed at high concentration.

Synthetic procedures:

N.N'-bis(3,5-di-tert-butyl-2-nitrophenyl)-4,5-dimethyl-o-phenylenediamine (4). In a flamedried resealable tube under argon atmosphere were added compound 3 (2.77g, 8.82 mmol, 2.4 equiv.), 4,5-dimethyl-o-phenylenediamine (500 mg, 3.68 mmol, 1.0 equiv.), Cs₂CO₃ (4.78 g, 14.67 mmol, 4.0 equiv.) and freshly distilled toluene (31 mL). After degassing the solution, Pd₂dba₃ (336 mg, 0.37 mmol, 10 mol%) and *rac*-Binap (343 mg, 0.55 mmol, 15 mol%) were added. The tube was immediately sealed and heated to 120°C during 24 hours. After cooling to r.t. the mixture was filtrated through a pad of Celite and abundantly washed with CH₂Cl₂ until getting a colorless filtrate. The organic phase was concentrated under reduced pressure and the remaining crude product was purified by column chromatography on silica gel (CH₂Cl₂/Pentane; 3:1 to 1:1, v:v) to give an orange solid (1.41 g, 64% yield). Pure analytical sample was obtained by crystallization from methanol; m.p. 200-203°C (Decomp., MeOH); ¹H NMR (400MHz, CDCl₃) : δ (ppm)= 7.05 (d, J= 1.8Hz, 2H), 6.93 (s, 2H), 6.86 (d, J= 1.8Hz, 2H), 5.80 (sl, 2H), 2.18 (s, 6H), 1.39 (s, 18H), 1.21 (s, 18H). ¹³C NMR (100MHz, CDCl₃): δ (ppm)=153.2, 142.1, 140.3, 136.3, 132.5, 131.5, 123.4, 117.4, 113.3, 36.2, 35.1, 31.1, 31.0, 19.3. MS (ESI): $m/z = 601 [M-H]^{-}$. IR: v (cm⁻¹) 3390, 2962, 2870,1580, 1530. Anal. Calcd for C₃₆H₅₀N₄O₄: C, 71.73; H, 8.36; N, 9.29. Found: C, 71.60; H, 8.36; N, 9.17.

N,*N*'-**bis**(**3**,**5**-**di**-*tert*-**butyl-2**-**aminophenyl**)-**4**,**5**-**dimethyl**-*o*-**phenylenediamine** (H4L). In a Paar pressure vessel, Pd/C (40 mol%) was added to a solution of the dinitro compound (0.03 M) in a CH₂Cl₂/MeOH mixture (1:1, v:v). The resulting suspension was stirred at r.t. under H₂ (25 bars) during 24 hours. After complete consumption of the material (TLC monitoring) the mixture was filtrated through celite and abundantly washed with CH₂Cl₂. The combined organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The remaining residue was recrystallized from MeOH to afford white crystals. Yield: 54%; m.p. 211-213°C (MeOH); ¹H NMR (400 MHz, CD₃OD): δ (ppm)= 7.02 (d, *J*= 2.3 Hz, 2H), 6.81 (d, *J*= 2.3 Hz, 2H), 6.52 (s, 2H), 2.12 (s, 6H), 1.43 (s, 18H), 1.21 (s, 18H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm)= 141.1, 135.5, 134.3, 132.8, 131.3, 129.6, 119.8, 118.5, 116.9, 34.9, 34.5, 31.8, 30.2, 19.3. MS (ESI): m/z= 543 [M+H]⁺. IR: v (cm⁻¹) 3481, 3348, 2950, 2867, 1580, 1514. Anal. Calcd for C₃₆H₅₄N₄, 0.5 MeOH: C, 78.44; H, 10.10; N, 10.03. Found: C, 78.15; H, 10.07; N, 9.92.

[NiL]⁰ (1). Under argon, the ligand H₄L (50mg, 0.09 mmol, 1.0 equiv.) and Et₃N (103 μ L, 0.74 mmol, 8.0 eq) were added to a degassed solution of Ni(OAc)₂.4H₂O (23 mg, 0.09 mmol, 1.0 equiv.) in dry MeOH (30 mL). The mixture was refluxed during 1 hour under argon, then exposed to air upon cooling to r.t. and stirred 2 hours. The black precipitate that formed was

filtrated, washed with MeOH and dried under vacuum; yield: 76%. Suitable crystals for X-ray analysis were obtained by slow evaporation at r.t. of an Et₂O/MeOH solution; m.p. >250°C; MS (ESI): $m/z=597 [M+H]^+$. IR: v (cm⁻¹) 3414, 2949, 2905, 2870, 1477, 1356, 1106. Anal. Calcd for C₃₆H₅₀N₄Ni, 0.5MeOH, 0.5CH₂Cl₂: C, 67.74; H, 8.14; N, 8.54. Found: C, 68.04; H, 8.00; N, 8.61.

[NiH2L2]⁰ (2). Under argon, Ni(OAc)₂.4H₂O (32 mg, 0.13 mmol, 1.0 equiv.) and Et₃N (72 µL, 0.52 mmol, 4.0 eq) were added to a degassed solution of ligand **3** (70mg, 0.13 mmol, 1.0 equiv.) in dry CH₃CN (5 mL). The mixture was refluxed during 1 hour under argon, then exposed to air upon cooling to r.t. and stirred 2 hours. The blue green precipitate that formed was filtrated, washed with CH₃CN and dried under vacuum; yield: 66%. Suitable crystals for X-ray analysis were obtained by vapor diffusion of CH₃CN in a benzene solution at r.t.; m.p. >250°C; MS (ESI): m/z= 1140 [M+H]⁺. IR: v (cm⁻¹) 3481, 3383, 3348, 2952, 2908, 2870, 1584, 1309, 1236, 1163, 1106. Anal. Calcd for C₇₂H₁₀₄N₈Ni, C₆H₆: C, 76.89; H, 9.10; N, 9.20. Found: C, 76.56; H, 9.14; N, 9.19.

Electrochemical experiments

Figure S1 Cyclic voltammetry curves of 0.5 mM CH₂Cl₂ (+0.1 M TBAP) solutions of (a): **1**; (b): electrochemically generated **1**⁺; (c) electrochemically generated **1**²⁺. Scan rate = 0.1 V / s. T = 298 K. The potentials are referenced *vs.* Fc/Fc⁺.

Figure S2 Cyclic voltammetry curve of a 0.5 mM CH_2Cl_2 (+0.1 M TBAP) solution of H_4L . Scan rate = 0.1 V / s. T = 298 K. The potentials are referenced vs. Fc/Fc⁺.

EPR and UV-Vis spectra

Figure S3 X-Band EPR spectrum of a 0.5 mM CH_2CI_2 (+ 0.1 M TBAP) of the electrochemically generated **1**⁺. Black: Experimental spectrum; Red: Simulation using the parameters $g_1 = 1.994$, $g_2 = 2.004$, $g_3 = 2.021$. Microwave Freq: 9.42 GHz, power: 5 mW, Mod. Freq: 100 KHz, Amp. 0.1 mT, T = 10 K.

Figure S4 UV-Vis spectra of H₄L in CH₂Cl₂ solution (+ 0.1 M TBAP). Black (a): H₄L before electrolysis, Red (b): After electrochemical oxidation at 0.21 V. T = 298 K.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2014

Figure S5 Evolution of the UV-Vis spectra of 1 after addition of one molar equivalent of H_4L in CH_2Cl_2 solution (+ 0.1 M TBAP). T = 298 K.

NMR Spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

References

1 Rundel, W. Chem. Ber. 1963, 96, 636-637.

2 Tietze, M.; Iglesias, A.; Merisor, E.; Conrad, J.; Klaiber, I.; Beifuss, U. Org. Lett. 2005, 7, 1549-1552.