SUPPORTING INFORMATION

Unusual pore structure and sorption behaviour in a hexanodal zinc-organic framework material

Jinjie Qian ${ }^{a, b}$ Feilong Jiang, ${ }^{a}$ Linjie Zhang, ${ }^{a, b}$ Kongzhao Su, ${ }^{a, b}$ Jie Pan, ${ }^{a, b}$ Qipeng Li, ${ }^{a, b}$ Daqiang Yuan ${ }^{a}$ and Maochun Hong* ${ }^{a}$
${ }^{\text {a }}$ Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
${ }^{\mathrm{b}}$ Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
*To whom correspondence should be addressed: E-mail:hmc@firsm.ac.cn; Fax:
+86-591-83794946; Tel: +86-591-83792460

Table of Contents

Section S1. General Experimental Procedures S2-S3
Section S2. Single-Crystal X-ray Crystallography S4-S5
Section S3. Additional Structural and Topological Figures S6-S9
Section S4. Topological Analysis Results S10-S12
Section S5. Powder X-Ray Diffraction S13
Section S6. TGA Plots S13
Section S7. Gas Sorption Test S14-S17
Section S8. IAST adsorption selectivity calculation S18-S19
Section S9. References S20

S1. General Experimental Procedures

1.1. Materials and Methods.

Reactions were carried out in 23 ml glass vials under autogenous pressure. All the reactants are of reagent-grade quality and used as commercially purchased without further purification. The power X-ray diffraction patterns (PXRD) were collected by a Rigaku D using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=0.154 \mathrm{~nm}$). Single gas adsorption measurements were performed in the Accelerated Surface Area and Porosimetry 2020 (ASAP2020) System. Elemental analyses for C, H, N were carried out on a German Elementary Vario EL III instrument. Thermogravimetric analyses (TGA) were recorded on a NETZSCH STA 449C unit at a heating rate of $10{ }^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ under flowing nitrogen atmosphere. SEM images were taken by Phenom G2.

1.2. Synthesis of $\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{Zn}_{10}(\mathrm{BTC})_{6}\left(\mu_{3}-\mathrm{O}\right)\left(\mu_{4}-\mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \cdot 3 \mathrm{DMA} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (FJI-3)

A mixture of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.10 \mathrm{mmol}, 37 \mathrm{mg}), \mathrm{H}_{3} \mathrm{BTC}(0.10 \mathrm{mmol}, 21 \mathrm{mg}$, $\mathrm{H}_{3} \mathrm{BTC}=$ 1,3,5-benzenetricarboxylate) in N, N '-dimethylacetamide (DMA) (5 ml) with an additional $\mathrm{HBF}_{4}(0.1 \mathrm{ml}$, Tetrafluoroboric acid, 40% in water $)$ was sealed in a 23 ml glass vial, which was heated at $100{ }^{\circ} \mathrm{C}$ for 5 days, and cooled down to room temperature. It is worth pointing here is that the distorted $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$cations locate inside the large solvent accessible void, which is the byproduct of in situ decomposition of the DMA solvent, thus leading to the charge equilibrium. After washed by fresh acetonitrile, the colorless crystals of FJI-3 were obtained in $c a$. $\sim 50 \%$ yield based on the BTC ligand. Elemental analysis was calculated for FJI-3: C, 33.17%; H, 3.54%; N, 2.76%. Found: C, 33.43%; H, 3.78%; N, 2.96%. The phase purity of the sample was confirmed by powder X-ray diffraction (PXRD) and more details are shown below in Section S5.
$\mathrm{H}_{3} \mathrm{BTC}+\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \xrightarrow[100^{\circ} \mathrm{C} 5 \mathrm{~d}]{\mathrm{DMA} / \mathrm{HBF}_{4}}$

$$
\left[\mathrm{Me}_{2} \mathrm{NH}_{2}\right]_{2}\left[\mathrm{Zn}_{10}(\mathrm{BTC})_{6}\left(\mu_{3}-\mathrm{O}\right)\left(\mu_{4}-\mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \bullet 3 \mathrm{DMA} \bullet 9 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{FJI}-3)
$$

Scheme S1. The synthesis of FJI-3.

Figure S1. SEM images of the FJI-3 before (a, c) and after the activation process (b,
d).

S2. Single-Crystal X-ray Crystallography

The structure data of FJI-3 was collected on a Rigaku Mercury CCD diffractometer equipped with a graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$) at room temperature and the structure was resolved by the direct method and refined by full-matrix least-squares fitting on F^{2} by SHELX-97. ${ }^{\text {S1 }}$ Crystallographic data and structure refinement parameters at 173 (2) K for FJI-3 are listed in Table S1. We employed PLATON/SQUEEZE ${ }^{\text {S2 }}$ to calculate the contribution to the diffraction from the solvent region and thereby produced a set of solvent-free diffraction intensities. The final formula of FJI-3 was calculated from the SQUEEZE results combined with elemental analysis data and TGA data. More details on the crystallographic studies as well as atomic displacement parameters are given in Supporting Information as CIF files. Crystallographic data for the structure reported in this paper has been deposited. The following crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number (CCDC No.) 967656 for FJI-3.

Table S1. Crystal Data and Structure Refinement for FJI-3 at 173 (2) K.

Items	FJI-3-T173K
chemical formula	$\mathrm{C}_{27} \mathrm{H}_{9} \mathrm{O}_{22} \mathrm{Zn}_{5}$
formula mass	1012.19
crystal system	Orthorhombic
space group	Ibam (\#.72)
$a(\AA)$	$19.7757(2)$
$b(\AA)$	$44.7064(5)$
$c(\AA)$	$28.6303(3)$
$\alpha\left(^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	90.00
$\gamma\left({ }^{\circ}\right)$	90.00
unit cell volume $\left(\AA{ }^{\circ}\right)$	$25312.1(5)$
temperature (K)	$173(2)$
Z	16
$\mathrm{~F}(000)$	7952
no. of reflections measured	26679
no. of independent reflections	10953
$\mathrm{R}_{\text {int }}$	0.0960
final R 1 values $(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.0850
final wR $\left(\mathrm{F}^{2}\right)$ values $(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.2709
goodness of fit on F^{2}	1.072
flack parameter	$0.00(2)$

S3. Additional X-ray Crystal Structural and Topological Figures

PW2
e)

Figure S2. Coordination condition of Zn (II) centers and BTC (III) ligands in the asymmetric unit of FJI-3, secondary building units (SBUs), symmetry codes: \#1 = $1-x, y, 0.5-z ; \# 2=-x, 1-y, z ; \# 3=x, y, 1-z$.
a)
 BTC-1
b)

c)
 BTC-3

Figure S3. Coordination environment of BTC ligands in FJI-3, namely BTC-1 (a), BTC-2 (b) BTC-3 (c).

Figure S4. Four kinds of microporous cages in FJI-3 with different sizes.

Figure S5. Four kinds of microporous cages packed in FJI-3.

S4. Topological Analysis Results by TOPOS 4.0

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
Name: FJI-3
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Topology for BTC-2: Atom BTC-2 links by bridge ligands and has

Common vertex with											R(A-A)
PW1	0.5000	0.2667	0.2500	$(00-1)$	5.462 A	1					
$\mathbf{Z n}_{3} \mathbf{O}$	0.2694	0.3915	0.5000	$\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$	5.937 A	1					
$\mathbf{Z n}_{4} \mathbf{O}$	0.7789	0.3907	0.5000	$\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$	6.545 A	1					

Topology for BTC-3: Atom BTC-3 links by bridge ligands and has

Common vertex with				$\mathrm{R}(\mathrm{A}-\mathrm{A})$		
$\mathbf{P W} \mathbf{2}$	0.0000	0.5000	0.2500	$\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$	5.437 A	1
$\mathbf{Z n}_{\mathbf{4}} \mathbf{O}$	0.2211	0.6093	0.5000	$\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$	5.830 A	1
$\mathbf{Z n}_{\mathbf{3}} \mathbf{O}$	0.2694	0.3915	0.5000	$\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$	6.139 A	1

Topology for PW1: Atom PW1 links by bridge ligands and has

Common vertex with			R(A-A)			
BTC-1	0.0156	0.3213	0.3814	$\left(\begin{array}{llll}0 & 0 & 0\end{array}\right)$	5.453 A	1
BTC-1	-0.0156	0.3213	0.1186	$\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$	5.453 A	1
BTC-2	-0.0048	0.1487	0.1124	$\left(\begin{array}{ll}0 & 0\end{array}\right)$	5.462 A	1
BTC-2	0.0048	0.1487	0.3876	$(-10-1)$	5.462 A	1

BTC-3	0.1932	0.5024	0.3851	(000)	5.437 A
BTC-3	-0.1932	0.5024	0.1149	(000)	5.437A
BTC-3	0.1932	0.4976	0.1149	(010)	5.437A
BTC-3	-0.1932	0.4976	0.3851	(010)	5.437A

Topology for $\mathbf{Z n}_{3} \mathbf{O}$: Atom $\mathbf{Z n}_{\mathbf{3}} \mathbf{O}$ links by bridge ligands and has					
Common vertex with					R(A-A)
BTC-2	0.5048	0.3513	0.3876	(000)	5.937A
BTC-2	0.5048	0.3513	0.6124	(0001)	5.937A
BTC-3	0.1932	0.5024	0.6149	(0001)	6.139A

BTC-3	0.1932	0.5024	0.3851	$\left(\begin{array}{llll}0 & 0 & 0\end{array}\right)$	6.139 A	1
BTC-1	0.0156	0.3213	0.6186	$\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$	6.824 A	1
BTC-1	0.0156	0.3213	0.3814	$\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$	6.824 A	1

Topology for $\mathbf{Z n}_{4} \mathbf{O}$: Atom $\mathbf{Z n}_{4} \mathbf{O}$ links by bridge ligands and has					
BTC-3	0.8068	0.4976	0.6149	(11111$)$	5.830 A
BTC-3	0.8068	0.4976	0.3851	(110)	5.830 A
BTC-2	0.5048	0.3513	0.6124	(001 1)	6.545 A
BTC-2	0.5048	0.3513	0.3876	(000)	6.545A
BTC-1	1.0156	0.3213	0.3814	(100)	6.562 A
BTC-1	1.0156	0.3213	0.6186	(101)	6.562 A

Structural group analysis, Coordination sequences

BTC-1: 1	1	2	3	4	5	6	7	8	9	10

Num $\quad 3121749 \quad 50116 \quad 93213167 \quad 342$
Cum 41633821322483415547211063

BTC-2:	1	2	3	4	5	6	7	8	9	10	
Num	3	12	19	53	48	116	101	219	165	344	
Cum	4	16	35	88	136	252	353	572	737	1081	
$---------------------10 ~$	1	2	3	4	5	6	7	8	9	10	

Num $3121747 \quad 49124100211156328$
Cum 41633801292533535647201048
PW1: $1 \begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
$\begin{array}{lllllllll}\text { Num } & 4 & 83633 & 80 & 74168 & 128 & 284 & 217\end{array}$
Cum 51349821622364045328161033

PW2: $1 \begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Num $\quad 4 \quad 82828 \quad 76 \quad 74176122256208$
Cum 5134169145219395517773981
$\begin{array}{lllllllllll}\mathbf{Z n}_{3} \mathbf{O}: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Num $\quad 6 \quad 92833 \quad 88 \quad 74166135282 \quad 195$
Cum 71644771652394055408221017
$\mathbf{Z n}_{4} \mathbf{O}: 1 \begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Num $\quad \begin{array}{llllllll}6 & 928 & 33 & 88 & 74166135 & 282 & 195\end{array}$
Cum 71644771652394055408221017

Vertex symbols for selected sublattice

BTC-1 Point (Schlafli) symbol:\{4.8^2\}
Extended point symbol:[4.8(8).8(8)]
BTC-2 Point (Schlafli) symbol: $\left\{4.8^{\wedge} 2\right\}$
Extended point symbol:[4.8(7).8(7)]
BTC-3 Point (Schlafli) symbol: $\left\{4.6^{\wedge} 2\right\}$
Extended point symbol:[4.6(2).6(2)]
PW1 Point (Schlafli) symbol: $\left\{8^{\wedge} 6\right\}$
Extended point symbol:[8(2).8(2).8(4).8(6).8(8).8(8)]
PW2 Point (Schlafli) symbol: $\left\{6^{\wedge} 2.8^{\wedge} 4\right\}$
Extended point symbol:[6(4).6(4).8(2).8(2).8(4).8(4)]
$\mathbf{Z n}_{3} \mathbf{O}$ Point (Schlafli) symbol: $\left\{4^{\wedge} 3.6^{\wedge} 4.8^{\wedge} 8\right\}$
Extended point symbol:[4.4.4.6.6.6.6.8.8.8(3).8(3).8(4).8(4).8(5).8(5)]
$\mathbf{Z n}_{4} \mathbf{O}$ Point (Schlafli) symbol: $\left\{4^{\wedge} 3.6^{\wedge} 4.8^{\wedge} 8\right\}$
Extended point symbol:[4.4.4.6.6.6.6.8.8.8(3).8(3).8(4).8(4).8(5).8(5)]

Point (Schlafli) symbol for net: $\left\{4.6^{\wedge} 2\right\} 4\left\{4.8^{\wedge} 2\right\} 8\left\{4^{\wedge} 3.6^{\wedge} 4.8^{\wedge} 8\right\} 4\left\{6^{\wedge} 2.8^{\wedge} 4\right\}\left\{8^{\wedge} 6\right\} 2$
$3,3,3,4,4,6-c$ net with stoichiometry (3-c)4(3-c)4(3-c)4(4-c)2(4-c)(6-c)4; 6-nodal net

New topology

S5. Powder X-Ray Diffraction

Figure S6. PXRD patterns of FJI-3: a) simulated from the crystallographic information file; b) from the as-prepared sample; c) from the MeCN -exchanged sample; d) from the desolvated sample.

S6. Thermal Gravimetric Plots

Figure S7. TGA curves for fresh and desolvated FJI-3 samples.

S8 Gas Sorption Test

$\boldsymbol{N}_{\mathbf{2}}, \boldsymbol{H}_{\mathbf{2}}$ and CO_{2} Isotherms. $\mathrm{N}_{2}, \mathrm{H}_{2}$ and CO_{2} isotherms were determined using an IGA gravimetric adsorption apparatus at the Fujian Institute of Research on the Structure of Matter in a clean ultra high vacuum system. Before measurements, about 100 mg MeCN-exchanged samples were loaded into the sample basket within the adsorption instrument and then degassed under dynamic vacuum for 10 h to obtain the fully desolvated samples.

Figure S8. N_{2} adsorption-desorption isotherms for activated FJI-3 at 77 K .
H_{2} isotherms measured at 77 K and 87 K for FJI-3 were fit to the following Equation

In Fig. S11, the adsorption heat $\left(\mathrm{Q}_{\mathrm{st}}\right)$ of hydrogen for the desolvated FJI-3 is fitted by Virial method using the data obtained from 77 K and 87 K .

$$
\ln (\mathrm{p})=\ln (\mathrm{N})+\frac{1}{\mathrm{~T}} \sum_{\mathrm{i}=0}^{\mathrm{m}} \mathrm{a}_{\mathrm{i}} * \mathrm{~N}_{\mathrm{i}}+\frac{1}{\mathrm{~T}} \sum_{\mathrm{j}=0}^{\mathrm{m}} \mathrm{a}_{\mathrm{j}} * \mathrm{~N}_{\mathrm{j}}
$$

N : adsorbed quantity (mg / g);
p: pressure (mmHg);
T: Temperature (K);
ai, bj: Constant;

R: $8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$;

The isosteric enthalpy of adsorption $\left(\mathrm{Q}_{\mathrm{st}}\right)$:

$$
\mathrm{Q}_{\mathrm{st}}=\ln (\mathrm{p})=-\mathrm{R} * \sum_{\mathrm{i}=0}^{\mathrm{m}} \mathrm{a}_{\mathrm{i}} * \mathrm{~N}_{\mathrm{i}}
$$

Figure S9 H_{2} sorption isotherms for $\mathbf{F J I} \mathbf{3}$ at 77 and 87 K .

Figure S10 Nonlinear curve fitting of H_{2} adsorption isotherms for $\mathbf{F J I} \mathbf{3}$ at 77 K and 87 K.

$$
y=\ln (x)+1 / k^{*}\left(a 0+a 1^{*} x+a 2^{*} x^{\wedge} 2+a 3^{*} x^{\wedge} 3+a 4^{*} x^{\wedge} 4+a 5^{*} x^{\wedge} 5\right)+\left(b 0+b 1^{*} x+b 2^{*} x^{\wedge} 2\right)
$$

		Value	Standard Error
$\ln (P)$	a0* *	-500.34342	29.43741
	a1* *	14.32361	11.08673
	a2* *	-8.55931	0.97831
	a3* *	0.0905	0.0118
	a4* *	-0.00207	$3.08327 \mathrm{E}-4$
	a5* *	$1.75898 \mathrm{E}-5$	$2.92473 \mathrm{E}-6$
	b0* *	8.76101	0.35181
	b1* *	0.02873	0.13087
	b2* *	0.08754	0.01096
	k	77	0
	k	87	0

Figure S11 Heats of adsorption for H_{2} in FJI-3.

S9 IAST adsorption selectivity calculation

We adopt the ideal adsorbed solution theory (IAST) ${ }^{\text {S7 }}$ based upon the experimental single gas adsorption measurements as listed in the following pages, including carbon dioxide, methane and nitrogen at 273 K and 295 K , which is commonly used to predict binary mixture adsorption selectivity. Using the pure component isotherm fits, the adsorption selectivity is defined by

$$
S_{a d s}=\left(q_{1} / q_{2}\right) /\left(p_{1} / p_{2}\right),
$$

where q_{i} is the amount of i adsorbed and p_{i} is the partial pressure of i in the mixture.
We us the following written codes to simulate the adsorption selectivity of CO_{2} over CH_{4} or N_{2} in Fig. 3d,

28
$\mathrm{y} 1, \mathrm{y} 2$ \# Molar fraction of binary mixture (y1 and $\mathrm{y} 2, \mathrm{y} 1+\mathrm{y} 2=1$)
$1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,101,102,103$, 104, 105, 106, 107, 108, 109 \#The unit is same parameter b, kPa
a1, a1 \# fitting parameter Nsat1(A1) for both component (Unit: mmol/g)
b1, b1 \# fitting parameter b1 for both component (Unit: kPa^{-1})
c1, c1 \# fitting parameter c1 for both component

0, 0 \# fitting parameter Nsat2(A2) for both component(Unit: mmol/g)
0,0 \# fitting parameter b2 for both component (Unit: kPa^{-1})

1, 1 \# fitting parameter c2 for both component

Figure S12: (a) $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and N_{2} adsorption isotherm curves in the range of $0 \sim 110$
kPa at 273 K . (b) Adsorption selectivity of CO_{2} over CH_{4} or N_{2}.

S9. References.

[S1] Sheldrick, G. M. SHELXS-97, Programs for X-ray Crystal Structure Solution;

University of Göttingen: Germany, 1997.
[S2] (a) A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7; (b) P. v.d. Sluis and A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, 194.

