Supporting Information ID CC-COM-11-2013-048595

Two- and one-step cooperative spin transitions in Hofmann-like clathrates with enhanced loading capacity

L. Piñeiro-López, M. Seredyuk, M. C. Muñoz, J. A. Real

Synthesis. All chemicals were purchased from commercial suppliers and used without further purification.

Synthesis of bis(4-pyridyl)butadiyne (*bpb*). To a solution of CuCl (130 mg, 0.96 mmol) in pyridine (2–3 ml) under oxygen atmosphere was added 4-ethynylpyridine (600 mg, 5.81 mmol) with stirring and heated at 40–45°C for 2 h. The pyridine was removed at reduced pressure and the residual solid was washed with an aqueous solution of ammonium chloride (30 ml, 10%) and dissolved in chloroform. The organic layer was dried over MgSO₄, filtered and dried giving bis(4-pyridyl)butadiyne as lustrous dirty plates. The compound was purified by recrystallization from hot ethyl acetate to give yellowish lustrous plates (312 mg, 53 %). ¹H NMR (300 MHz, CDCl₃): δ 8.56 (4H, m, pyH^{2,6}), 7.64 (4H, m, pyH^{3,5}); ¹³C NMR (100 MHz, CDCl₃): δ 148.7, 128.6, 125.1, 79.2, 76.3. Elemental analysis calcd (%) for C₁₄H₈N₂: C, 82.33; H, 3.95; N, 13.72; found C, 82.53, H, 4.05, N, 13.69.

Synthesis of $[Fe(bpb)Pt(CN)_4]$ ·2naphthalene (1) and $[Fe(bpb)Pt(CN)_4]$ ·2nitrobenzene (2). Single crystals of 1 and 2 were grown using a slow diffusion technique. One side of a multi-arm shaped vessel contains $(NH_4)_2Fe(SO_4)_2$ · $6H_2O$ (20 mg, 51 mmol) dissolved in water (0.5 mL). The contiguous arm contains solid *bpb* (11 mg, 49 mmol) and guest (50 mg), and the third arm contains $K_2Pt(CN)_4$ · $3H_2O$ (22 mg, 51 mmol) in water (0.5 ml). The vessel was filled with a water/methanol (1:1) solution. Square shaped yellow (1) and brown (2) crystals suitable for single crystal X-ray analysis were obtained after 6 weeks.

Elemental analysis calcd (%) for **1** (C₃₈H₂₄FeN₆Pt): C, 55.96; H, 2.97; N, 10.30; found C, 55.59; H, 10.26; N, 3.10. EDAX calc. for **1**: Fe, 50.00; Pt, 50.00; found: Fe, 51.32; Pt, 48.68. Elemental analysis calcd (%) for **2** (C₃₀H₁₈FeN₈O₄Pt): C, 44.74; H, 2.25; N, 13.91; found C, 44.62; H, 1.92; N, 14.37. EDAX calc. for **2**: Fe, 50.00; Pt, 50.00; found: Fe, 48.76; Pt, 51.14.

The thermogravimetric analysis of **1** and **2** display two well defined loss of weight. The former at lower temperatures occurs in both compounds between ca. 415 K and 550 K and corresponds to the loss of two molecules of naphthalene or nitrobenzene. The second loss of weight taking place in the interval 625-840 K corresponds to the decomposition of the framework (see Figure 1 below).

Figure S1. Thermogravimetric analysis of compounds 1 (left) and 2 (right).

Infra-red spectra of 1 and 2.

The infrared spectra of 1 and 2 shown in Figures S2a and S2b, respectively clearly display the most characteristic features of both derivatives:

Compound 1: $v(CNcyanide) = 2161.2 \text{ cm}^{-1}$ (vs); $v(C=Npyridine) = 1602.0 \text{ cm}^{-1}$ (s); $v(pyridine ring) = 1418.7 \text{ cm}^{-1}$ (m); $v(pyridine ring) = 819.9 \text{ cm}^{-1}$ (s); $v(naphthalene rings) = 781.8 \text{ cm}^{-1}$ (vs); $v(naphthalene rings) = 541.6 \text{ cm}^{-1}$ (s); $v(Pt-CN) = 475.3 \text{ cm}^{-1}$ (s) (Figure S1a) (vs = very strong, s = strong, m = medium, w = weak).

Compound 2: $v(CNcyanide) = 2166.8 \text{ cm}^{-1}$ (vs); $v(C=Npyridine) = 1602.6 \text{ cm}^{-1}$ (s); $v(pyridine ring) = 1420.4 \text{ cm}^{-1}$ (m); $v_{as}(NO_2) = 1522.7 \text{ cm}^{-1}$ (vs); $v_s(NO_2) = 1346.1 \text{ cm}^{-1}$ (vs); v(pyridine ring) = 852.8 (w), 829.3 (s), 793 (s) cm⁻¹; $v(C_6H_5NO_2) = 704.6 \text{ cm}^{-1}$ (s); $v(Pt-CN) = 466.7 \text{ cm}^{-1}$ (m) (Figure S1b) (vs = very strong, s = strong, m = medium, w = weak).

Figure S2. Infrared spectra of compounds 1 (a) and 2 (b).

Physical measurements

Variable-temperature magnetic susceptibility data were recorded on samples of **1** and **2** constituted of single crystals (10-15 mg) with a Quantum Design MPMS2 SQUID susceptometer equipped with a 7 T magnet, operating at 1 T and at temperatures 10–400 K. Experimental susceptibilities were corrected for diamagnetism of the constituent atoms by the use of Pascal's constants. TGA measurements were performed on a Mettler Toledo TGA/SDTA 851e, in the 150–400 K temperature range under a nitrogen atmosphere with a rate of 10 K min⁻¹. The thermodynamic parameters were analyzed with Netzsch Proteus software (Netzsch-Geraetebau GMBH). Analysis for C, H, and N were performed after combustion at 850 °C using IR detection and gravimetry by means of a Perkin–Elmer 2400 series II device. ¹H and ¹³C NMR spectroscopic measurements were done on an Advance DRX Bruker 300 MHz Spectrometer. IR spectra were recorded at 293 K by using a Nicolet 5700 FTIR spectrometer with the samples prepared as KBr discs.

Single crystal X-ray diffraction. Single-crystal X-ray data of 1 and 2 were collected on a Nonius Kappa-CCD single crystal diffractometer using graphite mono-chromated MoK_{α} radiation ($\lambda = 0.71073$ Å). A multi-scan absorption correction was performed. The structures were solved by direct methods using SHELXS-97 and refined by full-matrix least squares on F^2 using SHELXL-97.^[1] Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in calculated positions refined using idealized geometries (riding model) and assigned fixed isotropic displacement parameters for 1 (120-250 K) and 2 (120 K). For compound 2 at 250 K only Fe and Pt atoms could be anisotropically refined. In general the crystals deteriorate as a consequence of the phase transition associated with the spin crossover transition. This is particularly more marked for compound 2 because the quality of the single crystals was systematically low. CCDC files 971021-971025 contain the supplementary crystallographic data for 1 (120 K), 1 (195 K), 1 (250 K), 2 (120 K) and 2 (250 K), respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

¹ G. M. Sheldrick, SHELX97, Acta Cryst. A64, 112-122, 2008.

	1			2	
Temperature (K)	120(1)	195(1)	250(1)	120(1)	250(1)
Empirical formula	$C_{38}H_{24}N_6PtFe$			$C_{30}H_{18}N_8O_4PtFe$	
Mr	815.57			805.46	
Crystal system	triclinic			triclinic	
Space group	<i>P</i> -1			<i>P</i> -1	
<i>a</i> (Å)	7.2452(2)	7.3635(2)	7.5174(2)	7.2443(4)	7.4872(7)
<i>b</i> (Å)	13.9706(5)	14.1112(4)	14.3676(7)	13.8127(8)	14.3024(7)
<i>c</i> (Å)	16.3779(7)	16.3906(5)	16.350(2)	15.4746(9)	15.0203(15)
α (°)	73.531(3)	74.663(3)	76.831(8)	80.352(5)	86.393(6)
β (°)	83.678(3)	82.349(2)	84.282(6)	87.669(5)	84.502(8)
γ (°)	89.998(3)	89.878(2)	89.965(3)	89.842(5)	89.936(5)
$V(\text{\AA}^3)$	1579.24(10)	1626.86(8)	1710.5(3)	1525.26(15)	1597.9(2)
Ζ	2			2	
$D_{\rm c}~({\rm mg~cm}^{-3})$	1.715	1.665	1.584	1.754	1.674
<i>F</i> (000)	796			780	
μ (Mo-K _{α})(mm ⁻¹)	4.921	4.777	4.544	5.105	4.873
Crystal size (mm)	0.08 x 0.12 x 0.12		0.06 x 0.08 x 0.08		
No. of total reflections	10484	10926	7909	8234	8591
No. of reflections $[I > 2\sigma(I)]$	9658	9980	6281	7033	6945
$R_1 \left[I > 2\sigma(I)\right]$	0.0505	0.0239	0.0921	0.0511	0.0955
R_1 [all data]	0.0553	0.0289	0.1160	0.0635	0.1249
S	1.002	0.902	1.061	1.072	1.161

 Table S1. Crystal data of compounds 1 and 2.

 $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; wR = [\Sigma [w(Fo^2 - Fc^2)^2] / \Sigma [w(Fo^2)^2]]^{1/2}.$ w = 1/ [\sigma^2(Fo^2) + (m P)^2 + n P] where P = (Fo^2 + 2Fc^2) / 3;

m = 0.0656 (1 (120 K)), 0.0273 (1 (195 K)), 0.1516 (1 (250 K)), 0.0580 (2 (120 K)) and 0.0621 (2 (250 K));n = 23.2445 (1 (120 K)), 1.3390 (1 (195 K)), 49.4900 (1 (250 K)), 4.6644 (2 (120 K)) and 0.0000 (2 (250 K))) **K)**).

 Table S2. Selected bond lengths [Å] and angles [°] for 1.

	120 K	195 K	250 K
Fe(1)-N(1)	2.001(5)	2.000(2)	2.19(2)
Fe(1)-N(2)	1.934(4)	1.935(2)	2.10(2)
Fe(1)-N(6)	1.944(4)	1.938(2)	2.11(2)
Fe(2)-N(3)	1.935(4)	2.124(2)	2.13(2)
Fe(2)-N(4)	1.938(4)	2.127(2)	2.11(2)
Fe(2)-N(5)	1.996(5)	2.229(2)	2.19(2)
N(1)-Fe(1)-N(2)	88.2(2)	88.62(8)	87.8(7)
N(1)-Fe(1)-N(6)	88.2(2)	88.33(8)	87.8(6)
N(2)-Fe(1)-N(6)	90.9(2)	92.13(8)	91.4(6)
N(3)-Fe(2)-N(4)	90.5(2)	90.05(8)	91.2(6)
N(3)-Fe(2)-N(5)	90.7(2)	89.60(8)	87.7(8)
N(4)-Fe(2)-N(5)	88.8(2)	88.99(8)	86.7(8)

 Table S3. Selected bond lengths [Å] and angles [°] for 2.

	120 K	250 K
Fe(1)-N(1)	2.000(5)	2.199(12)
Fe(1)-N(2)	1.933(5)	2.167(12)
Fe(1)-N(6)	1.934(5)	2.141(12)
Fe(2)-N(3)	1.934(5)	2.161(12)
Fe(2)-N(4)	1.937(5)	2.144(13)
Fe(2)-N(5)	1.997(6)	2.232(15)
N(1)-Fe(1)-N(2)	88.4(2)	89.0(4)
N(1)-Fe(1)-N(6)	88.2(2)	88.4(4)
N(2)-Fe(1)-N(6)	91.1(2)	90.7(5)
N(3)-Fe(2)-N(4)	89.7(2)	89.2(5)
N(3)-Fe(2)-N(5)	89.2(2)	89.3(5)
N(4)-Fe(2)-N(5)	89.8(2)	89.8(5)

			Distance C····C/Å	
	C atoms	120 K	195 K	250 K
		(LS–LS)	(LS–HS)	(HS–HS)
	$C(19) \cdots C(13)$	-	3.624(7)	-
	$C(23)\cdots C(13)$	-	-	3.656(4)
	$C(24)\cdots C(13)$	3.553(10)	-	
	$C(24)\cdots C(14)$	3.499(11)	-	3.667(4)
	$C(25) \cdots C(12)$	3.546(11)	-	
<i>bpb</i> naph 1 (blue)	$C(25)\cdots C(13)$	3.560(12)	-	3.697(5)
	$C(25) \cdots C(14)$	3.646(13)	-	
	$C(26)\cdots C(1)$	2(70(11))		
	(T-Shaped)	5.070(11)	3.670(11) -	
	$C(26) \cdots C(14)$	-	3.628(6)	-
	$C(2)\cdots C(30)$	-	-	3.609(5)
	C(2)…C(31)		3.510(10)	3.545(5)
	$C(1)\cdots C(32)$	-	3.620(10)	3.546(4)
	$C(2)\cdots C(32)$	-	3.519(5)	3.655(6)
bpb···naph 2 (red)	$C(1)\cdots C(33)$		-	3.572(4)
,	$C(3)\cdots C(34)$	3.589(11)	-	3.698(5)
	$C(4)\cdots C(35)$	3.491(12)	-	
	$C(4)\cdots C(36)$	3.482(13)	-	-

 Table S4. Short contacts between invited molecules and bpb in 1.

Table S5. Short contacts between invited molecules and *bpb* in **2**.

	Catama	Distance C…C/Å		
	C atoms	120 K (LS)	250 K (HS)	
hnhnhNO. 1 (hluo)	$C(1)\cdots C(23)$	3.657(12)	-	
bpb $pm O_2$ 1 (blue)	$C(13) \cdots C(19)$	3.646(12)	-	
	$C(1)\cdots C(23)$	3.657(12)	-	
	$C(13) \cdots C(19)$	3.646(12)	-	
hub DhNO 2 (red)	C(13)····C(27)	3.685(11)	-	
$opo\cdots$ PhNO ₂ 2 (red)	$C(13) \cdots C(28)$	-	3.567(38)	
	$C(14) \cdots C(28)$	3.693(11)	-	
	$C(11) \cdots C(29)$	3.527(12)	3.518(38)	

Table S6. Mössbauer parameters, isomer shift (δ , relative to -iron), quadrupole splitting (ΔE_Q), half-width of the lines ($\Gamma_{1/2}$) and percentage of the multiplet populations in the HS and LS states (A) at different temperatures for **1** and **2**.

Compound	<i>T</i> /K	Doublet	$\delta/\mathrm{mm~s}^{-1}$	$\Delta E_{\rm Q}/{\rm mm~s^{-1}}$	$\Gamma_{1/2}/\mathrm{mm~s}^{-1}$	A/%
1	80	LS1 LS2	0.47(2) 0.49(2)	0.32(1) 0.16(2)	0.14(6) 0.16(7)	50.0(1) 50.0(1)
	199	LS HS	0.47(1)	0.14(3)	0.13(2) 0.16(2)	49.5(3) 50.5(5)
	300	HS1 HS2	1.05(1) 1.06(1)	0.51(2)	0.13(1) 0.15(1)	45.9(3) 54.1(4)
2	80	LS1 LS2	0.47(1) 0.46(1)	0.15(2) 0.33(3)	0.12(2) 0.15(1)	47.0(2) 53.0(2)
	300	HS1 HS2	1.07(1) 1.05(1)	0.90(1) 0.30(1)	0.14(1) 0.12(1)	54.1(4) 45.9(3)

Figure S3. Projection of the crystal structure of **2** along *a* axis. Two types of invited nitrobenzene molecules are colored in red and blue.

