Highly diastereoselective cyclopropanation of α -methylstyrene catalyzed by a C₂-symmetrical

chiral iron porphyrin complex

Daniela Intrieri, Stéphane Le Gac, Alessandro Caselli, Eric Rose, Bernard Boitrel, Emma Gallo

Supporting Information

Page Contents

S1 · · · · General methods for synthesis and catalysis.
S2 · · · Synthesis of compound 2.
S3 · · · Synthesis of complex 2Fe.
S3 · · · Catalytic procedures.
S3 · · · Recycle of the catalyst 2Fe.
S4 · · · UV-Vis spectra.
S4 · · · IR spectra.
S5 · · · NMR spectra.
S8 · · · MS-ESI spectra.
S10 · · · NMR and HPLC spectra of catalytic reactions.
S24 · · · References.

General methods for synthesis and catalysis

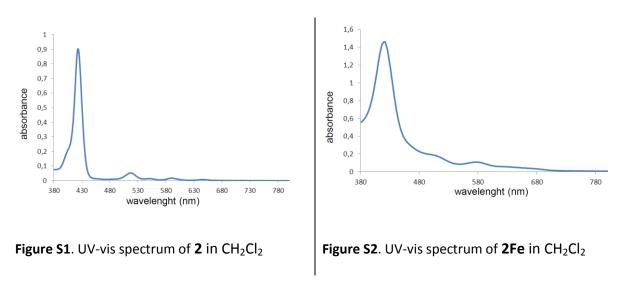
Unless otherwise specified, all reactions were carried out under nitrogen atmosphere employing standard Schlenk techniques and magnetic stirring. THF and benzene were dried by M. Braun SPS-800 solvent purification system. Toluene and α -methylstyrene were distilled over sodium and kept under nitrogen. All the other starting materials were commercial products used as received. (R)-2,2'-dimethoxy-1,1'-binaphthyl-3,3'-diboronic acid¹, and porphyrin $\mathbf{1}^2$ were synthesized by methods reported in the literature or by using minor modifications of them. The purity of α -methylstyrene was checked by GC-MS or ¹H NMR analysis. NMR spectra were recorded at room temperature on a Bruker AC-300, on a Bruker avance 300-DRX, operating at 300 MHz for ¹H, at 75 MHz for ¹³C or on a Bruker Avance 400-DRX spectrometers, operating at 400 MHz for ¹H and at 100 MHz for ¹³C, or on a Bruker avance 500-DRX spectrometer operating at 500 MHz for ¹H and at 125 MHz for ¹³C. Chemical shift (ppm) are reported relative to TMS. The ¹H NMR signals of the compounds described in the following have been attributed by 2D NMR techniques. GC-MS analyses were performed on Shimadzu QP5050A instrument. Infrared spectra were recorded on a Varian Scimitar FTS 1000 spectrophotometer. UV/Vis spectra were recorded on an Agilent 8453E instrument. $[\alpha]_{D}$ values are given in 10⁻¹deg cm² g⁻¹. The ESR spectrum of **2Fe** was recorded from a sample powder at 77 K with a Bruker EMX Xband spectrometer equipped with an Oxford cryostat. Elemental analyses and mass spectra were recorded in the analytical laboratories of Milan University.

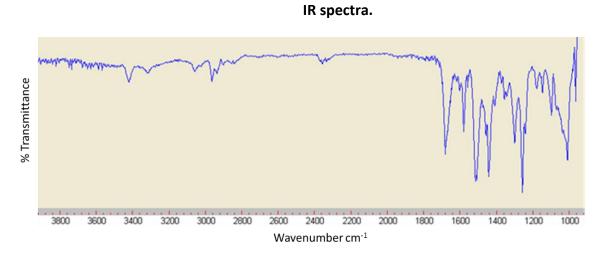
Synthesis of compound 2.

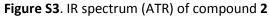
In a dried 100 mL Schlenk flask, compound $\mathbf{1}^{[2]}$ (0.300 g, 2.33×10⁻⁴mol), (*R*)-2,2'-dimethoxy-1,1'-binaphthyl-3,3'-diboronic acid (0.226 g, 5.60×10^{-4} mol), tetrakis(triphenyl-phosphine)palladium(0) (0.108 g, 9.34×10^{-5} ⁵mol) and potassium carbonate (0.516 g, 3.71×10⁻³mol) were dissolved in 16.0 mL of toluene, 5.0 mL of ethanol and 8.0 ml of water. The biphasic solution was refluxed under nitrogen atmosphere for 4 hours until the complete consumption of 1 that was monitored by TLC. The resulting mixture was allowed to reach room temperature and the biphasic solution was diluted with 50.0 mL of saturated aqueous NH₄Cl and 50.0 mL of CH_2Cl_2 and then it was separated. The aqueous phase was extracted with an additional 2×50 mL of CH₂Cl₂, and the combined organic phases were washed with 1×50 mL of water and 1×50 mL of saturated aqueous NaHCO₃. The organic phase was dried over Na₂SO₄ and filtered. The filtrate was concentrated in *vacuo* and then purified by chromatography (SiO₂ 15-40 μ m, eluent dichloromethane/methanol = 99.5:0.5). (2, 0.143 g, 35%). Elemental Analysis calcd for C₁₂₀H₈₆N₈O₈: C, 81.52; H, 4.90; N, 6.34; found: C, 81.26; H, 4.97; N, 5.94. v_{max} (CH₂Cl₂)/cm⁻¹: 3685.7 (w), 3412.8 (w), 1711.0 (w), 1676.8 (w), 1519.1 (w), 1445.1 (w), 1418.5 (w), 1359.6 (w), 1305.9 (w), 1240.9 (w), 1101.2 (w), 1009.5 (w). $v_{max}(ATR)/cm^{-1}$ 3423.6 (w), 3316.6 (w), 3056.6 (w), 2963.2 (w), 2938.3 (w), 1681.2 (w), 1580.8 (w), 1513.1(w), 1443.3 (w), 1302.5 (w), 1260.6 (w), 1101.6 (w) 1012.3 (w). λ_{max} (CH₂Cl₂)/nm 423, 517, 551, 590, 646 (log ϵ_{M} 4.82, 3.57, 3.06, 2.96, 2.71). $[\alpha]_{D}^{20} = -809.524$ (c = 7×10⁻⁴ g/100mL; in CH₂Cl₂). m/z (ESI) 1767.1 [M⁺]. ¹H NMR (500 MHz, CDCl₃, 298 K) δ 9.07 (d, 2H, J = 8 Hz, HAr_{meso}), 9.00 (s, 2H, H_{βpyr}), 8.95 (s, 2H, H_{βpyr}), 8.94 (d, 2H, J = 4 Hz, H_{βpyr}), 8.90 (d, 2H, J = 8 Hz, HAr_{meso}), 8.88 (d, 2H, J = 4 Hz, H_{Bovr}), 7.98 (dd, 2H, J₁ = 1 Hz, J₂ = 8 Hz, HAr_{meso}), 7.89 (dt, 2H, J₁ = 1 Hz, J₂ = 8 Hz, HAr_{meso}), 7.86 (dt, 2H, J₁ = 1 Hz, J₂ = 8 Hz, HAr_{meso}), 7.85 (s, 2H, NHCO), 7.83 (dd, 2H, J₁ = 1 Hz, J₂ = 8 Hz, HAr_{meso}), 7.70 (d, 4H, J = 8 Hz, HAr_{binap}), 7.64 (s, 2H, HAr_{binap}), 7.63 (s, 2H, HAr_{binap}), 7.62 (s, 2H, NHCO), 7.51 (dt, 2H, J₁ = 1 Hz, J₂ = 8 Hz, HAr_{meso}), 7.49 (dt, 2H, J₁ = 1 Hz, J₂ = 8 Hz, HAr_{meso}), 7.32 (s, 2H, HAr_{strap}), 7.27 (m, 2H, HAr_{binap}), 7.19 (s, 2H, HAr_{strap}), 7.07 (m, 2H, HAr_{binap}), 6.90 (d, 2H, J = 8 Hz, HAr_{binap}), 6.83 (d, 2H, J = 8 Hz, HAr_{binap}), 6.67 (d, 2H, J = 8 Hz, HAr_{strap}), 6.39 (d, 2H, J = 8 Hz, HAr_{strap}), 6.12 (t, 2H, J = 8 Hz, HAr_{strap}), 5.98 (t, 2H, J = 8 Hz, HAr_{strap}), 5.91 (d, 2H, J = 8 Hz, HAr_{strap}), 5.78 (d, 2H, J = 8 Hz, HAr_{strap}), 3.87 (d, 2H, J = 8 Hz, CH₂), 3.72 (d, 2H, J = 8 Hz, CH₂), 3.66 (d, 2H, J = 8 Hz, CH₂), 3.55 (d, 2H, J = 8 Hz, CH₂), 2.42 (s, 6H, OMe), 1.89 (s, 6H, OMe), -2.64 (s, 2H, NH_{int}). ¹³C NMR (125 MHz, CDCl₃, 298 K) δ 166.3, 165.6, 154.9(0), 154.8(7), 141.8, 141.5, 138.9, 138.6, 135.4, 135.2, 135.1, 134.2, 133.5, 133.4, 133.0, 132.6, 131.9, 130.9, 130.4(5), 130.4(2), 130.3(9) (2C), 130.3(5) (2C), 130.1, 128.1, 128.0, 127.7, 127.5(3), 127.4(9), 127.4(3), 126.3, 125.7(5), 125.4(4), 125.4(2), 125.1, 124.9, 124.1, 123.1, 122.8, 122.6, 120.6, 115.6, 115.0, 59.9, 59.8, 38.5, 37.9.

Synthesis of complex 2Fe (Fe = $Fe^{III}(OCH_3)$)

In a dried 50 mL Schlenk flask, porphyrin **2** (0.078 g, 4.40×10⁻⁵mol) and FeBr₂ (0.047 g, 2.20×10⁻⁴mol) were dissolved in 25.0 mL of THF. The dark solution was refluxed under nitrogen atmosphere for 24 hours until the complete consumption of **2** that was monitored by TLC. The mixture was evaporated to dryness and the residue purified by chromatography (alumina 0.063-0.200 mm, eluent CH₂Cl₂/CH₃OH = 99.5:0.5). (**2Fe** 0.081 g, 99 %). Elemental analysis: Found: C, 78.83; H, 4.65; N, 6.15. Calc for C₁₂₁H₈₇FeN₈O₉: C, 78.43; H, 4.73; N, 6.05). v_{max} (CH₂Cl₂)/cm⁻¹ 3685.7 (w), 3418.9 (w), 1723.7 (w), 1676.8 (w), 1605.3 (w), 1516.9 (w), 1278.4 (w), 1098.0 (w), 1009.5 (w). v_{max} (ATR)/cm⁻¹ 3417.6 (w), 2962.0 (w), 2926.0 (w), 2854.1 (w), 1677.1 (w), 1513.6 (w), 1259.2 (w), 1087.3 (w), 1011.4 (w), 795.0 (w). λ_{max} (CH₂Cl₂)/nm 420, 576 (log ε_{M} 4.58 and 3.35). ESR data (experimental X-band (9.462 GHz) sample powder, 77 K): High spin S =5/2 confirmed by the g tensor values (g₁ = 5.71 and g_{//} = 2.00).[α]_D²⁰ = -625.000 (c = 8x10⁻⁴ g/100mL; in CH₂Cl₂). m/z (ESI) 1875.5 [M+Na⁺].

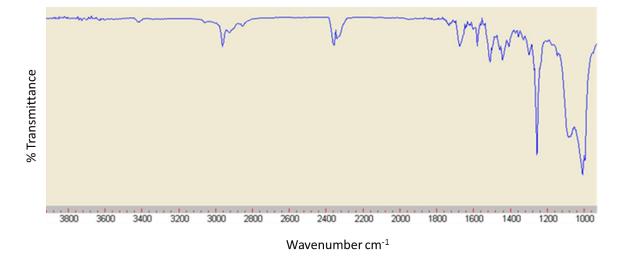
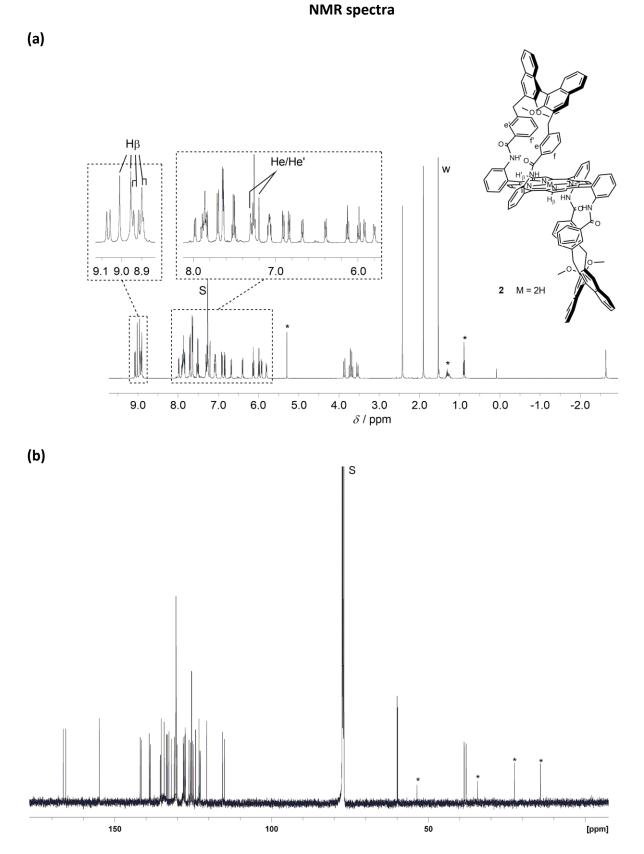
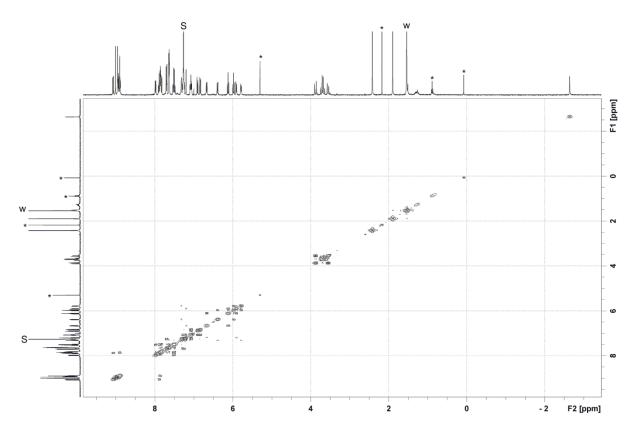

Catalytic procedures.

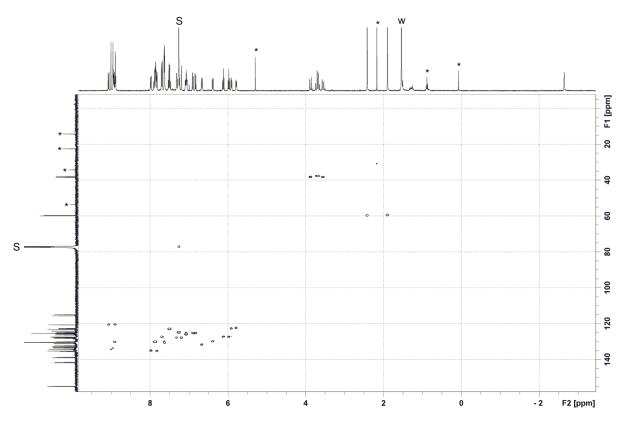

Method a (runs 1-5, Table1): In a typical run, 2Fe (5.0 mg, 2.70×10⁻⁶mol) was dissolved in the desired solvent (5.0 mL) and then α-methylstyrene (0.88 mL,6.75 x10⁻⁴mol) and ethyl diazoacetate (EDA) (0.028 mL, 2.70×10⁻⁴mol) were added. The consumption of EDA was monitored by IR spectroscopy by measuring the decrease of the characteristic N₂ absorbance at 2114 cm⁻¹. The reaction was considered to be finished when the measured EDA absorbance was below 0.03 (by using a 0.5 mm-thickness cell). The solution was then evaporated to dryness and analysed by ¹H NMR with 2,4-dinitrotoluene as an internal standard, and by HPLC by using a chiral column (DAI-CEL CHRALCEL, IB, *n*-hexane/*i*-PrOH 99.5:0.5). *Method b (run 1, Table 2):* The procedure illustrated for *method a* was repeated by using an equimolar α-methylstyrene/EDA ratio (0.035 mL, 2.70×10⁻⁴mol/ 0.028 mL, 2.70×10⁻⁴mol). *Method c (runs 2-4 and 6-9, Table 2):* 145.0 μL of a 2Fe toluene solution (3.72×10⁻³mol/L) was dissolved in 2.0 mL of toluene before adding equimolar amounts of α-methylstyrene and EDA. *Method d (run 5, Table 2):* The procedure *e* was repeated by adding EDA dropwise by a syringe pump to the reaction mixture.

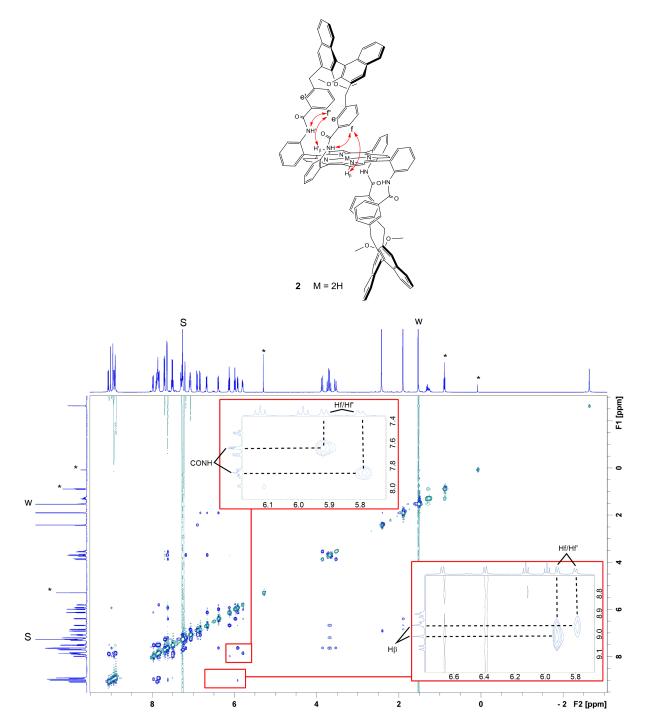

Recycle of catalyst 2Fe.

 α -Methylstyrene (0.421 mL, 3.24×10⁻³mol) and ethyl diazoacetate (EDA) (0.340 mL, 3.24×10⁻³mol) were added to a toluene solution (17.0 mL) of **2Fe** (6.0 mg, 3.24×10⁻⁶mol) at 0°C under nitrogen atmosphere. The consumption of EDA was monitored by IR spectroscopy by measuring the characteristic N₂ absorbance at 2114 cm⁻¹. After the complete EDA consumption, EDA and α -methystyrene were added again to the catalytic mixture for two more consecutive times. The NMR analyses of the crude revealed 90% of global yield, 98% of *trans*-diastereoselectivity with 75% of *ee_{trans}*.

UV-Vis spectra.


Figure S4. IR spectrum (ATR) of complex 2Fe


Figure S5. (a) ¹H NMR spectrum (500 MHz, 298 K) of compound **2** in $CDCl_3$. **(b)** ¹³C NMR spectrum (125 MHz, 298 K) of compound **2** in $CDCl_3$. (S = $CHCl_3$, w = water, * = traces of residual solvents or grease).

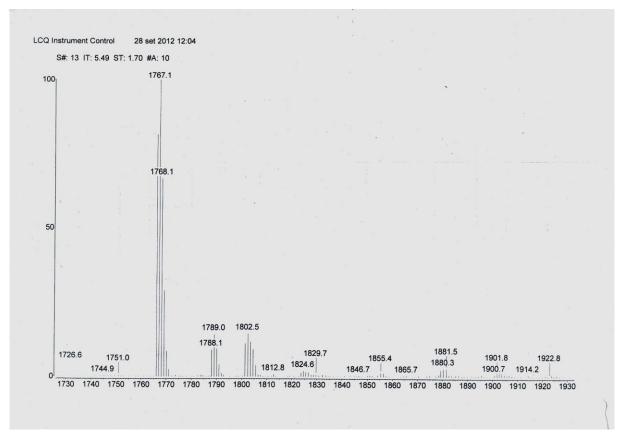

Figure S6. COSY 2D NMR spectrum (500 MHz, 298 K) of compound **2** in $CDCl_3$ (S = $CHCl_3$, w = water, * = traces of residual solvents or grease).

Figure S7. HMQC 2D NMR spectrum (500 MHz, 298 K) of compound **2** in $CDCl_3$ (S = $CHCl_3$, w = water, * = traces of residual solvents or grease).

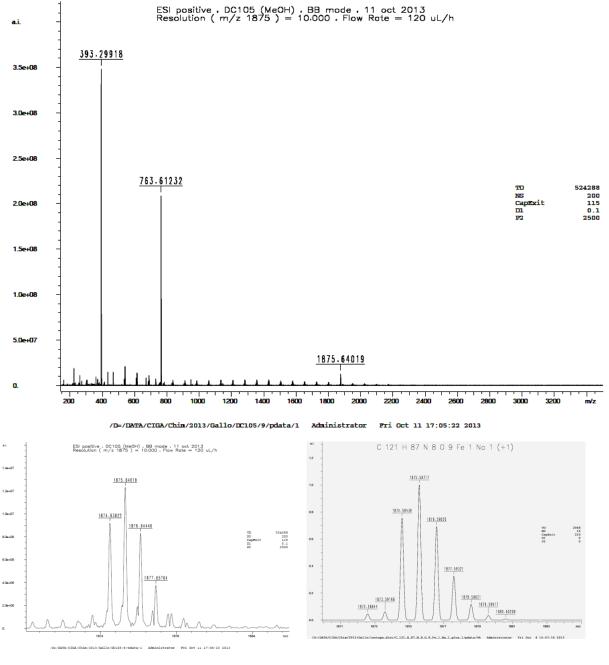


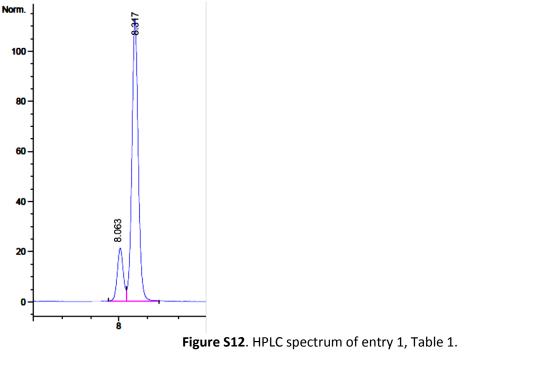
Figure S8. ROESY 2D NMR spectrum (500 MHz, 298 K) of compound **2** in CDCl₃ (S = CHCl₃, w = water, * = traces of residual solvents or grease). Expanded regions showing NOE cross-peaks between Hf and both the amide and H β protons.

MS-ESI spectra

Figure S9. MS-ESI spectrum of compound 2 [M⁺]

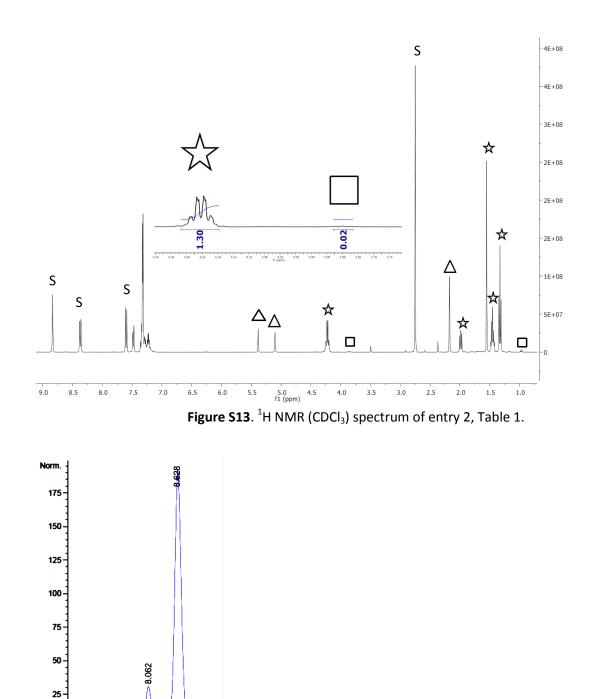
a) Experimental MS-ESI spectrum

b) Simulation of MS-ESI spectrum


Figure S10. MS-ESI spectrum of complex 2Fe [M+Na⁺]

NMR and HPLC spectra of catalytic reactions

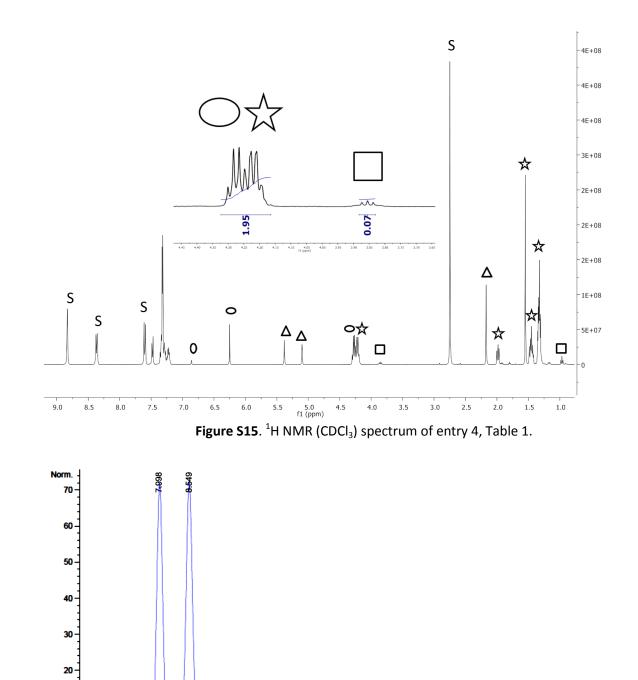
	S Internal standard 2,4-dinitrotoluene
Legend	O Maleate
	O Fumarate
0	Δ α -methylstyrene
	Cyclopropane <i>trans</i>
	Cyclopropane <i>cis</i>

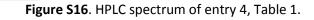

Figure S11. ¹H NMR (CDCl₃) spectrum of entry 1, Table 1.

DAI-CEL CHRALCEL, IB, n-hexane/i-PrOH 99.5:0.5 peak time(min) area percent 1 8.063 14,066 2 8.317 85,936

0

8


AI-CEL CHRALCEL,	IB, n-hexane/i-PrOH	99.5:0.5
peak	time(min)	area percent
1	8.062	12,656
2	8.628	87,344
		100,000


S12

10-

0

8

DAI-CEL CHRALCEL,	IB,	n-hexane/i-PrOH	99.5:0.5
peak		time(min)	area percent
1		7.998	30.381
2		8.549	69.919

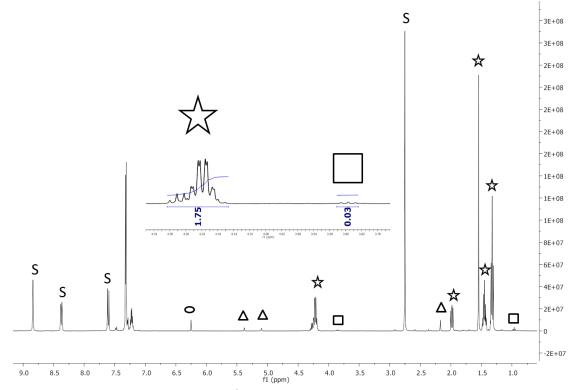
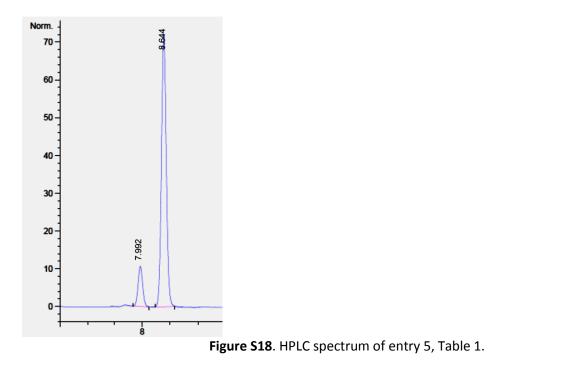
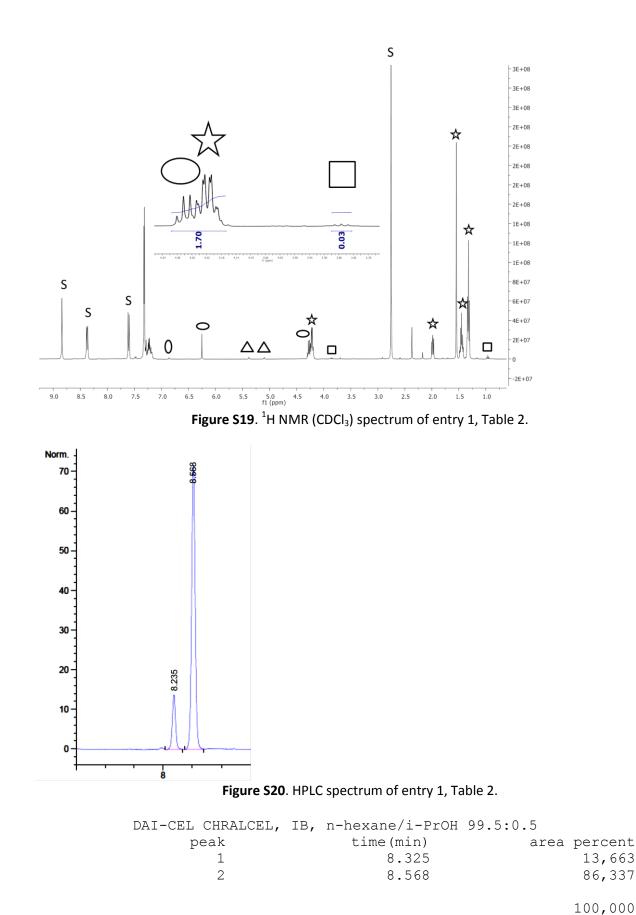
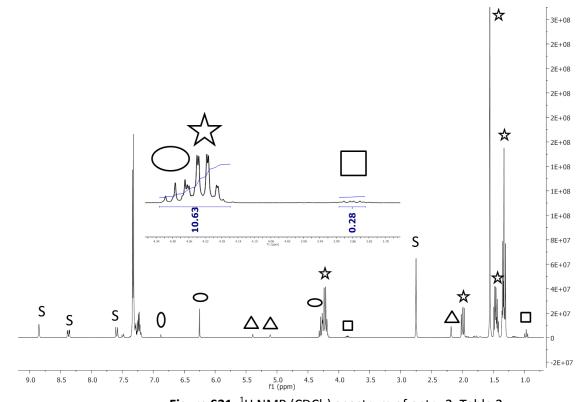
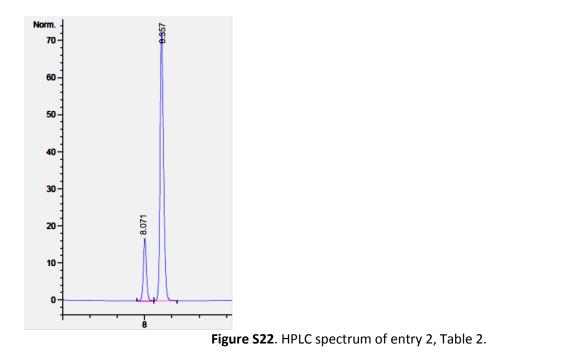
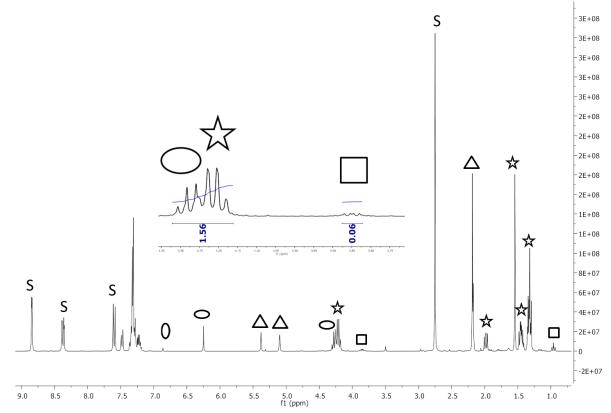
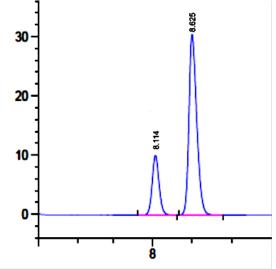





Figure S17. 1 H NMR (CDCl₃) spectrum of entry 5, Table 1.



DAI-CEL CHRALCEL,	IB,	n-hexane/i-PrOH	99.5:0.5	
peak		time(min)	area	percent
1		7.992		12,322
2		8.644		87 , 678




Figure S21. ¹H NMR (CDCl₃) spectrum of entry 2, Table 2.

DAI-CEL CHRALCEL, IB, n-hexane/i-PrOH 99.5:0.5 peak time(min) area percent 1 8.071 16,205 2 8.357 83,795

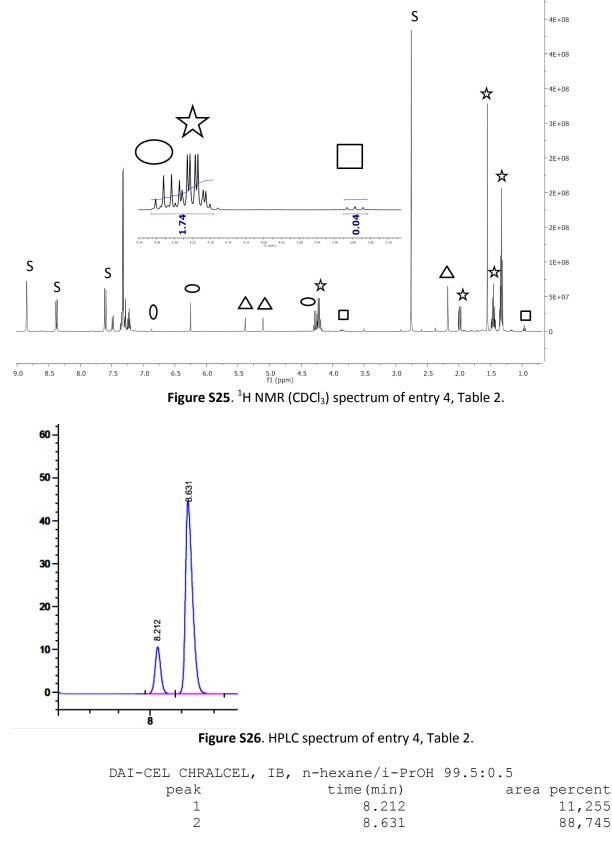
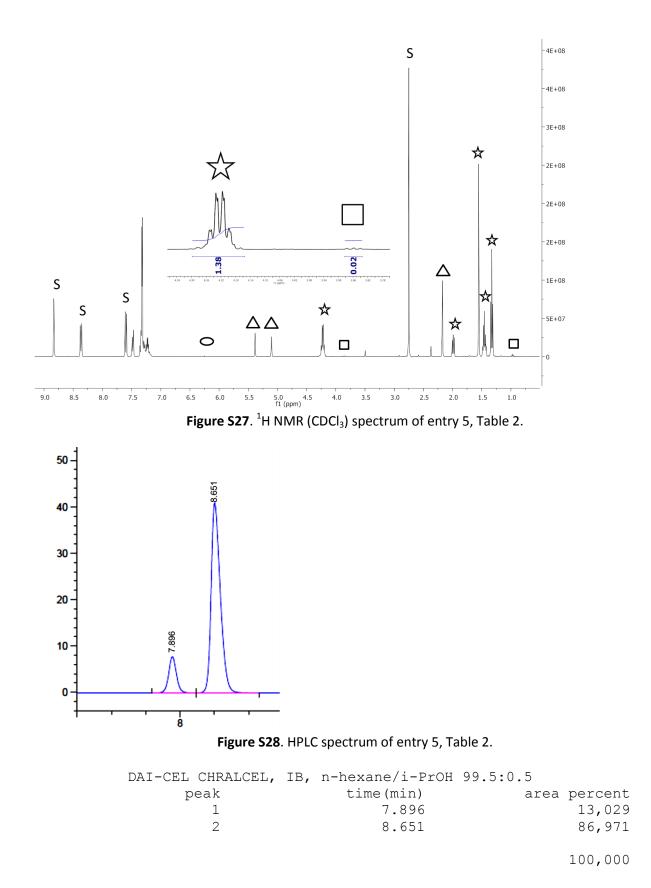
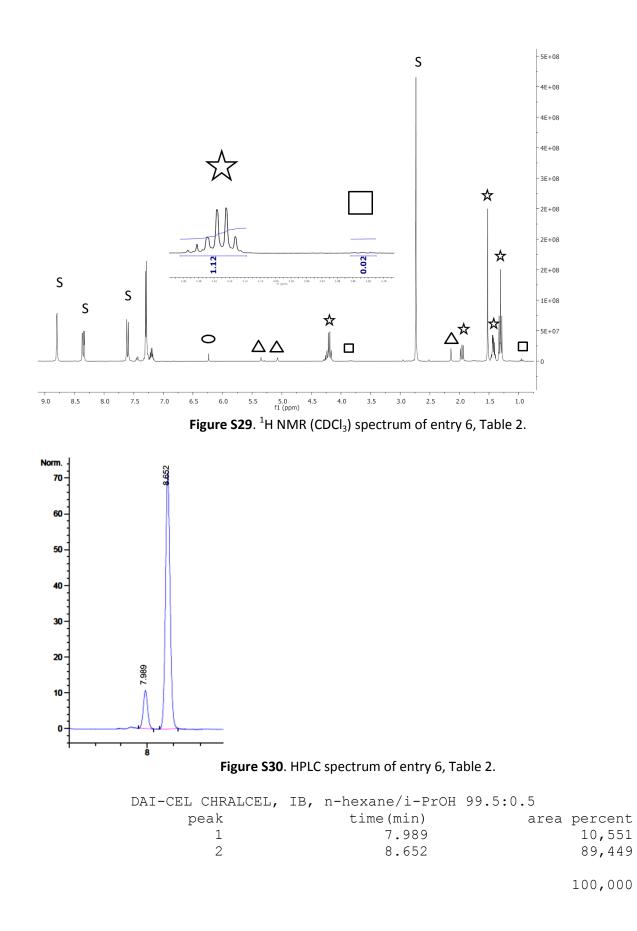
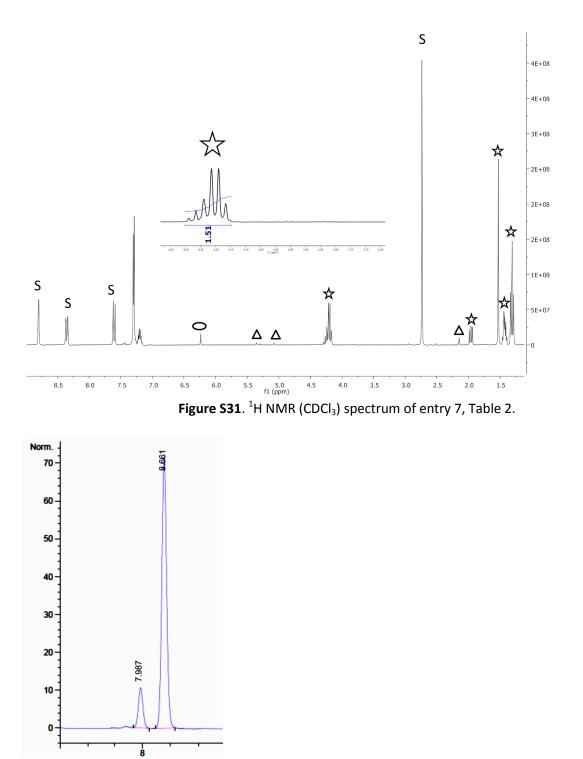


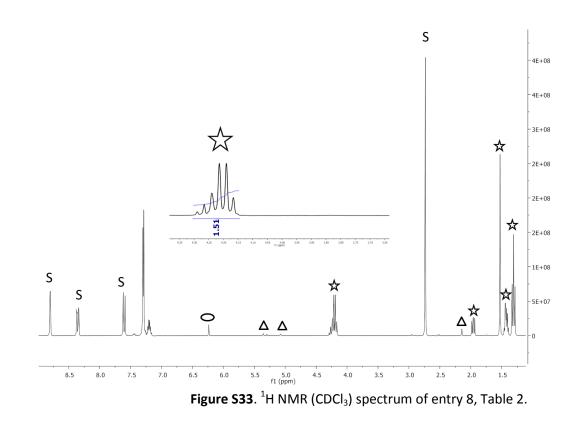
Figure S23. ¹H NMR (CDCl₃) spectrum of entry 3, Table 2.

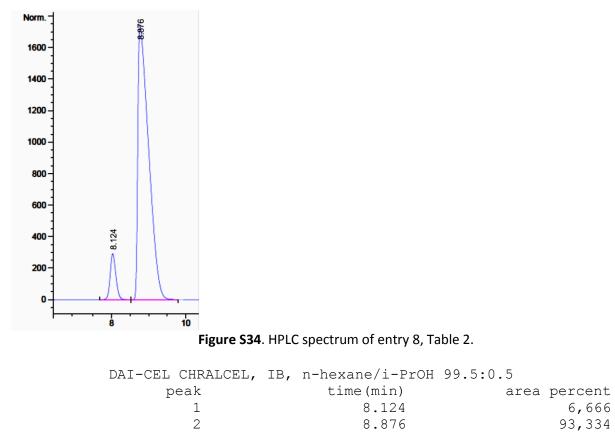


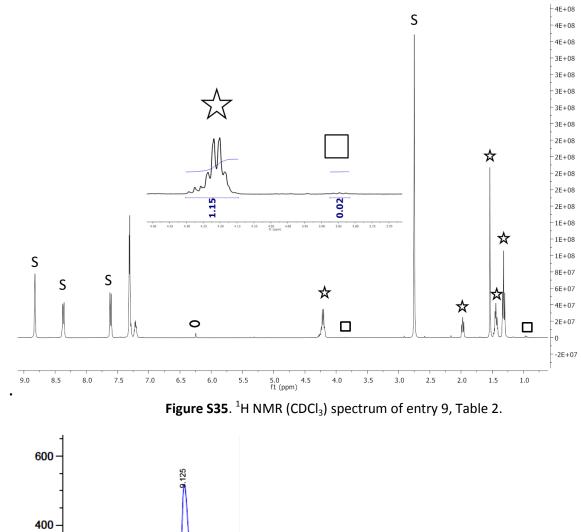


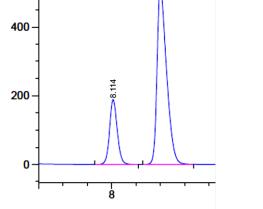

DAI-CEL CHRALCEL,	IB, n-hexane/i-PrOH	99.5:0.5
peak	time(min)	area percent
1	8.114	20,998
2	8.625	79,002

100,000








Figure S32. HPLC spectrum of entry 7, Table 2.

DAI-CEL CHRALCEL,	IB,	n-hexane/i-PrOH	99.5:0.5	
peak		time(min)	area	percent
1		7.987		10,638
2		8.661		89,362

DAI-CEL CHRALCEL,	IB,	n-hexane/i-PrOH	99.5:0.5
peak		time(min)	area percent
1		8.114	21,743
2		9.125	78,257
			100,000

References.

X.-W. Zou, L.-F. Zheng, L.-L. Wu, L.-L. Zong and Y.-X. Cheng, *Chin. J. Chem.*, 2008, **26**, 373-378.
 Z. Halime, S. Balieu, B. Najjari, M. Lachkar, T. Roisnel and B. Boitrel, *J. Porphyrins Phthalocyanines*, 2010, **14**, 412-420.