Catalytic Asymmetric [3 + 2] Cycloaddition of Aromatic Aldehydes with Oxiranes by C–C Bond Cleavage of Epoxides: Highly Efficient Synthesis of Chiral 1,3-Dioxolanes

Weiliang Chen, Lili Lin, Yunfei Cai, Yong Xia, Weidi Cao, Xiaohua Liu and

Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

Contents:

1.	General remarks	S1
2.	Typical procedure for catalytic asymmetric [3+2] cycloaddition of aryl oxiranyl	
	diketones and aldehydes	
3.	Scope of oxiranes	
4.	Scale-up version of the reaction	S2
5.	X-ray structure of 3h	S2
6.	Characterization of the oxiranes	
7.	Characterization of the products	S4-S17
8.	References	S17
9.	Copy of ¹ H NMR and ¹³ C NMR spectra for products and substrates	S18-50
10.	Copy of CD spectras for products	

1. General remarks

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26; DMSO, δ = 2.49). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³C NMR spectra were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0; DMSO, δ = 39.6). Melting points (m.p.) were measured on electrothermal digital melting point apparatus and were uncorrected. Enantiomeric excesses (ee) were determined by HPLC analysis using the corresponding commercial chiral column as stated in the experimental procedures at 23 °C. Optical rotations were reported as follows: [α]^T_D (c g/100 mL, in ethyl acetate). HRMS was recorded on a commercial apparatus (ESI Source). All catalytic reactions were run in dried glassware using standard techniques. CH₂Cl₂, DCE, DCB (1,2-dichlorobenzene) was distilled over CaH₂. Toluene and THF were freshly distilled from sodium metal prior to use. All liquid aldehydes and ketones were freshly distilled prior to use and solid aldehydes were used after recrystallization.

2. Typical procedure for catalytic asymmetric [3+2] cycloaddition of oxiranes and adehydes

N,N'-dioxide **L2** (6.5 mg, 0.01 mmol), Gd(OTf)₃ (6.0 mg, 0.01 mmol), LiNTf₂ (15 mol%) and 4 Å MS (20.0 mg) were stirred in 0.5 mL 1,2-dichlorobenzene at 35 °C under N2 atmosphere for 0.5 h, then benzaldehyde (15.0 μ L, 0.15 mmol) was added. After the temperature decreased to 0 °C, (3-phenyloxirane-2,2-diyl)bis(phenylmethanone) **1a** (32.8 mg, 0.1 mmol) was added. The mixture was stirred at 0 °C for 72 h. The reaction mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 20:1) on silica gel to afford the desired product. (When 2-furaldehyde, 3-furaldehyde or 1,3-dihydroisobenzofuran-5-carbaldehyde was employed, 1.2 eq. aldehyde was added.)

3. The scope of oxiranes

99% yield, 87% ee

4. Scale-up version of the reaction

5. X-ray structure of 3h

Single crystal of **3h** $[C_{33}H_{24}O_4]$ was obtained from the mixed solvents of petroleum ether and ethyl acetate. The absolute configuration of **3h** is (1S, 3S). CCDC970252 contains the supplementary crystallographic data which can be obtained free of charge from The Cambrige Crystallographic Data Centere via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data. $C_{33}H_{24}O_4$, M = 484.52, orthorhombic, a = 10.5563(6), b = 13.0186(6), c = 18.3454(10) Å, U = 2521.2(2) Å³, T = 170(2) K, space group *P*212121, Z = 4.

6. Characterization of the aryl oxiranyl diketones:^{1,2}

(3-(3-chlorophenyl)oxirane-2,2-diyl)bis(phenylmethanone): white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.13 (m, 2H), 7.97 – 7.91 (m, 2H), 7.63 – 7.58 (m, 1H), 7.54 – 7.46 (m, 3H), 7.42 – 7.43 (m, 3H), 7.25 – 7.16 (m, 3H), 4.66 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ =

191.69, 190.69, 134.60, 134.58, 134.54, 134.44, 134.40, 134.09, 130.11, 129.77, 129.65, 129.16, 128.87, 128.68, 126.64, 124.48, 73.81, 61.80 ppm; EI-HRMS: Calcd for $C_{22}H_{15}{}^{35}ClO_3$ [M+H]⁺ 363.0788, Found 363.0789.

(3-(3-bromophenyl)oxirane-2,2-diyl)bis(phenylmethanone): white solid; ¹H NMR (400 MHz, DMSO) δ 8.07 (d, *J* = 7.2 Hz, 2H), 7.89 (d, *J* = 7.3 Hz, 2H), 7.76 - 7.69 (m, 1H), 7.66 - 7.57 (m, 3H), 7.56 - 7.43 (m, 4H), 7.40 - 7.32 (m, 1H), 7.30 - 7.22 (m, 1H), 5.07 (s, 1H) ppm; ¹³C

NMR (101 MHz, DMSO) δ 191.65, 190.62, 135.16, 134.78, 134.72, 134.12, 133.73, 131.74, 130.51, 129.41, 129.13, 129.08, 129.05, 128.95, 125.39, 121.55, 73.19, 60.94 ppm.

(3-(m-tolyl)oxirane-2,2-diyl)bis(phenylmethanone): white solid; 1H NMR (400 MHz, CDCl3) δ 8.21 – 8.15 (m, 2H), 7.99 – 7.93 (m, 2H), 7.64 – 7.55 (m, 1H), 7.52 – 7.44 (m, 3H), 7.41 – 7.32 (m, 2H), 7.18 – 7.11 (m, 3H), 7.07 – 7.01 (m, 1H), 4.65 (s, 1H), 2.27 (s, 3H) ppm; ¹³C NMR (101

MHz, CDCl3) δ = 192.13, 191.16, 138.17, 134.82, 134.44, 134.23, 134.16, 132.23, 130.14, 129.73, 129.72, 128.79, 128.54, 128.33, 127.00, 123.46, 73.98, 62.81, 21.34 ppm; EI-HRMS: Calcd for C₂₃H₁₈O₃ [M+Na]⁺ 365.1154, Found 365.1152.

(3-(p-tolyl)oxirane-2,2-diyl)bis(phenylmethanone): white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.15 (m, 2H), 7.99 – 7.93 (m, 2H), 7.62 – 7.56 (m, 1H), 7.51 – 7.45 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 4.66 (s, 1H), 2.26 (s, 3H) ppm; ¹³C NMR

 $(101 \text{ MHz}, \text{CDCl}_3) \delta = 192.15, 191.21, 138.83, 134.79, 134.42, 134.25, 134.17, 130.13, 129.76, 129.28, 129.18, 128.78, 128.56, 126.30, 74.07, 62.84, 21.21 ppm; EI-HRMS: Calcd for C₂₃H₁₈O₃ [M+H]⁺ 343.1334, Found 343.1332.$

(**3-(3-phenoxyphenyl)oxirane-2,2-diyl)bis(phenylmethanone**): white solid; ¹H NMR (400 MHz, DMSO) δ 8.10 - 8.03 (m, 2H), 7.92 - 7.85 (m, 2H), 7.75 - 7.69 (m, 1H), 7.67 - 7.56(m, 3H), 7.52 - 7.45 (m, 2H), 7.40 - 7.30 (m, 3H), 7.20 - 7.12 (m, 2H), 6.96 - 6.87 (m, 2H), 6.84 -

6.75 (m, 2H), 5.02 (s, 1H) ppm; ¹³C NMR (101 MHz, DMSO) δ = 191.90, 190.58, 156.45, 156.22, 134.70, 134.68, 134.66, 134.04, 133.75, 130.25, 130.01, 129.44, 129.21, 129.00, 128.85, 123.57, 121.61, 119.39, 118.38, 115.98, 73.16, 61.40 ppm; EI-HRMS: Calcd for C₂₈H₂₀O₄ [M+H]⁺ 421.1440, Found 421.1436.

(3-phenyloxirane-2,2-diyl)bis(p-tolylmethanone): white solid; ¹H NMR (400 MHz, DMSO) δ 8.01 – 7.93 (m, 2H), 7.80 – 7.73 (m, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.24 (m, 7H), 4.96 (s, 1H), 2.38 (s, 3H), 2.30 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ = 191.21, 190.19, 145.62, 145.51, 132.56, 131.73, 131.31, 129.60, 129.44, 129.27,

128.79, 128.28, 126.26, 73.53, 61.66, 21.29, 21.20 ppm; EI-HRMS: Calcd for $C_{24}H_{20}O_3$ [M+H]⁺ 357.1491, Found 357.1488.

(3-(furan-3-yl)oxirane-2,2-diyl)bis(phenylmethanone): white solid; ¹H NMR (400 MHz, DMSO) δ 8.10 – 8.02 (m, 2H), 8.00 – 7.90 (m, 2H), 7.84 (s, 1H), 7.74 – 7.49 (m, 7H), 6.30 – 6.09 (m, 1H), 4.91 (s, 1H) ppm; ¹³C NMR (101 MHz, DMSO) δ = 191.86, 191.43, 144.13, 143.18, 134.70, 134.18,

133.79, 129.37, 129.23, 129.03, 128.95, 118.52, 108.44, 72.58, 56.37 ppm; EI-HRMS: Calcd for $C_{20}H_{14}O_4 [M+H]^+$ 319.0970, Found 319.0966.

(3-(thiophen-3-yl)oxirane-2,2-diyl)bis(phenylmethanone): white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.13 (m, 2H), 8.02 – 7.94 (m, 2H), 7.62 – 7.56 (m, 1H), 7.54 – 7.44 (m, 3H), 7.41 – 7.34 (m, 2H), 7.33 – 7.28 (m, 1H), 7.21 – 7.16 (m, 1H), 7.01 – 6.96 (m, 1H), 4.75 (s, 1H) ppm; ¹³C NMR (101

MHz, CDCl₃) δ = 191.95, 191.47, 134.66, 134.50, 134.28, 134.22, 133.90, 130.11, 129.71, 128.81, 128.61, 126.56, 125.75, 124.27, 73.73, 59.72 ppm; EI-HRMS: Calcd for C₂₀H₁₄O₃S [M+H]⁺ 335.0742, Found 335.0737.

7. Characterization of the products

(2,5-diphenyl-1,3-dioxolane-4,4-diyl)bis(phenylmethanone) 3a:³

Viscous oil in 92% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}_{D}$ = -119.52 (c 0.84, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ASH column (*i*PrOH/hexane = 2/98, 1.0 mL/min, 254 nm), *t*_r (minor) = 9.22 min, *t*_r (major) = 10.35 min, 90% ee; ¹H NMR (400 MHz, CDCl₃) δ

8.11 – 8.02 (m, 2H), 7.76 – 7.66 (m, 4H), 7.52 – 7.46 (m, 4H), 7.43 – 7.34 (m, 5H), 7.19 – 7.09 (m, 5H), 6.59 (s, 1H), 6.06 (s, 1H) ppm.

(5-phenyl-2-(m-tolyl)-1,3-dioxolane-4,4-diyl)bis(phenylmethanone) 3b: Viscous oil in 97% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}_{D}$ = -101.16 (c 0.60, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 8.19 min, t_r (major) = 8.75 min, 89% ee; ¹H NMR (400

MHz, CDCl₃) δ 8.08 (d, J = 7.6 Hz, 2H), 7.72 (d, J = 7.6 Hz, 2H), 7.56 – 7.51 (m, 2H), 7.51 – 7.47(m, 1H), 7.43 – 7.35 (m, 6H), 7.31– 7.27 (m, 1H), 7.21 – 7.08 (m, 5H), 6.58 (s, 1H), 6.02 (s, 1H), 2.44 (s, 3H). ppm; ¹³C NMR (101 MHz, CDCl₃) δ 196.37, 194.27, 138.27, 135.61, 134.81, 134.57, 134.22, 133.46, 132.96, 130.70, 130.28, 129.96, 128.49, 128.44, 128.22, 127.94, 127.88, 127.72, 127.49, 124.28, 104.40, 94.89, 82.64, 21.52 ppm; EI-HRMS: Calcd for C₃₀H₂₄O₄ [M+Na]⁺ 471.1572, Found 471.1571.

(2-(3-methoxyphenyl)-5-phenyl-1,3-dioxolane-4,4-diyl)bis(phen ylmethanone) 3c: Viscous oil in 90% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}_{D}$ = -77.30 (c 0.89, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 8.19

min, t_r (major) =8.75 min, 88% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.6 Hz, 2H), 7.72 (d, J = 7.6 Hz, 2H), 7.56 – 7.51 (m, 2H), 7.51 – 7.47 (m, 1H), 7.43 – 7.35 (m, 6H), 7.32 – 7.28 (m, 1H), 7.20 – 7.12 (m, 5H), 6.58 (s, 1H), 6.02 (s, 1H), 2.44 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 196.37, 194.27, 138.27, 135.61, 134.81, 134.57, 134.22, 133.46, 132.96, 130.70, 130.28, 129.96, 128.49, 128.44, 128.22, 127.94, 127.88, 127.72, 127.49, 124.28, 104.40, 94.89, 82.64, 21.52 ppm; EI-HRMS: Calcd for C₃₀H₂₄O₅ [M+Na]⁺ 487.1521, Found 487.1520.

(2-(3-phenoxyphenyl)-5-phenyl-1,3-dioxolane-4,4-diyl)bis(phenyl methanone) 3d: Viscous oil in 96% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}_{D} = -70.68$ (c 1.01, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 9.30min, t_r (major) =10.09 min, 83%

ee; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 2H), 7.54 – 7.41 (m, 5H), 7.40 – 7.34 (m, 6H), 7.21 – 7.04 (m, 9H), 6.58 (s, 1H), 6.03 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 196.10, 194.06, 157.58, 156.89, 136.98, 135.52, 134.47, 134.17, 133.53, 133.00, 130.26, 129.99, 129.88, 129.82, 128.52, 128.28, 127.96, 127.77, 127.50, 123.63, 121.97, 120.07, 119.18, 117.46, 103.76, 94.95, 82.66 ppm; EI-HRMS: Calcd for C₃₅H₂₆O₅ [M+Na]⁺ 549.1678, Found 549.1677.

(5-phenyl-2-(p-tolyl)-1,3-dioxolane-4,4-diyl)bis(phenylmethanone) 3e: Viscous oil in 95% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}_{D}$ = -103.62 (c 0.41, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IB column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 5.54 min, t_r (major) = 6.72 min, 86% ee; ¹H NMR (400

MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.76 – 7.67 (m, 2H), 7.66 – 7.58 (m, 2H), 7.52 – 7.46 (m, 1H), 7.44 – 7.33 (m, 5H), 7.33 – 7.27 (m, 2H), 7.22 – 7.07 (m, 5H), 6.58 (s, 1H), 6.03 (s, 1H), 2.43 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 196.35, 194.30, 139.93, 135.62, 134.63, 134.24, 133.45, 132.95, 132.05, 130.28, 129.91, 129.20, 128.48, 128.20, 127.93, 127.74, 127.50, 127.19, 104.38, 94.89, 82.60, 21.45 ppm; EI-HRMS: Calcd for C₃₀H₂₄O₄ [M+Na]⁺ 471.1572, Found 471.1572.

(2-(3-chlorophenyl)-5-phenyl-1,3-dioxolane-4,4-diyl)bis(phenylme thanone) 3f: Viscous oil in 96% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}{}_{\rm D}$ = -95.90 (c 0.95, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), $t_{\rm r}$ (minor) = 7.49 min, $t_{\rm r}$ (major) =7.93 min, 88%

ee; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.6Hz, 2H), 7.76 (s, 1H), 7.66 – 7.59 (m, 3H), 7.53 – 7.36 (m, 8H), 7.20 – 7.10 (m, 5H), 6.58 (s, 1H), 6.03 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 195.96, 194.04, 137.01, 135.43, 134.54, 134.19, 134.15, 133.63, 133.07, 130.25, 130.08, 129.89, 129.75, 128.57, 128.42, 128.04, 127.81, 127.53, 127.39, 125.47, 103.30, 94.74, 82.86 ppm; EI-HRMS: Calcd for C₂₉H₂₁³⁵ClO₄ [M+Na]⁺ 491.1026, Found 491.1025.

(2-(3-bromophenyl)-5-phenyl-1,3-dioxolane-4,4-diyl)bis(phenylme thanone) 3g:Viscous oil in 99% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}{}_D$ = -93.47 (c 0.81, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 7.88 min, t_r (major) = 8.35 min, 87% ee; ¹H

NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H), 7.91 (s, 1H), 7.77 – 7.69(m, 4H), 7.53 – 7.48 (m, 1H), 7.42 – 7.33 (m, 6H), 7.21 – 7.10 (m, 5H), 6.58 (s, 1H), 6.02 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 195.98, 194.02, 137.20, 135.44, 134.17, 134.13, 133.65, 133.08, 133.04, 130.30, 130.26, 130.17, 129.76, 128.58, 128.43, 128.05, 127.83, 127.52, 125.97, 122.61, 103.24, 94.73, 82.86 ppm; EI-HRMS: Calcd for C₂₉H₂₁⁷⁹BrO₄ [M+Na]⁺ 535.0521, Found 535.0518.

PhOC O COPh

(2-(naphthalen-1-yl)-5-phenyl-1,3-dioxolane-4,4-diyl)bis(phenylme thanone) 3h:³ White solid in 97% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{18}_{D}$ = -143.82 (c 0.94, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IC column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 8.32 min, t_r (major) = 9.52 min, 77%

ee; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 7.2 Hz, 1H), 8.16 – 8.08 (m, 2H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.94 – 7.86(m, 2H), 7.80 – 7.72 (m, 2H), 7.63 – 7.58 (m, 1H), 7.58 – 7.49 (m, 2H), 7.48 – 7.35 (m, 6H), 7.19 – 7.07 (m, 5H), 6.72 (s, 1H), 6.66 (s, 1H) ppm.

(2-(naphthalen-2-yl)-5-phenyl-1,3-dioxolane-4,4-diyl)bis(phenylmet hanone) 3i: White solid in 95% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}{}_{D}$ = -94.19 (0.77, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 10.74 min, t_r (major) =14.14min, 87% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.12 (d, J = 8.0 Hz, 2H), 8.01

-7.97 (m, 1H), 7.95 -7.86 (m, 3H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.59 -7.53 (m, 2H), 7.51 -7.44 (m, 3H), 7.42 -7.36 (m, 3H), 7.19 -7.12 (m, 5H), 6.67 (s, 1H), 6.24 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 196.32$, 194.23, 135.63, 134.57, 134.26, 134.15, 133.54, 133.00, 132.92, 132.36, 130.31, 129.92, 128.55, 128.49, 128.48, 128.31, 128.00, 127.89, 127.79, 127.56, 127.14, 126.93, 126.50, 124.23, 104.48, 94.99, 82.84 ppm; EI-HRMS: Calcd for C₃₃H₂₄O₄ [M+Na]⁺ 507.1572, Found 507.1575.

(2-(furan-3-yl)-5-phenyl-1,3-dioxolane-4,4-diyl)bis(phenylmethanone) 3j: Viscous oil in 95% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}_{D}$ = -140.47 (c 0.77, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 9.59 min, t_r (major) =10.28 min, 89% ee; ¹H NMR (400 MHz, DMSO) δ 8.08 (s, 1H), 7.91 (d, *J* = 7.4 Hz, 2H), 7.84 (s, 1H), 7.73 (d, *J* = 7.4 Hz, 2H), 7.63 – 7.58 (m,

1H), 7.57 – 7.52 (m, 1H), 7.50 – 7.44 (m, 2H), 7.40 – 7.34 (m, 4H), 7.23 – 7.13 (m, 3H), 6.88 (d, J = 0.9 Hz, 1H), 6.43 (s, 1H), 6.16 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 196.23$, 194.09, 143.72, 142.34, 135.55, 134.37, 134.09, 133.52, 133.06, 130.26, 129.86, 128.50, 128.27, 127.96, 127.80,

127.38, 121.24, 109.02, 99.35, 94.71, 82.50 ppm; EI-HRMS: Calcd for $C_{27}H_{20}O_5 [M+Na]^+ 447.1208$, Found 447.1208.

(5-phenyl-2-(thiophen-3-yl)-1,3-dioxolane-4,4-diyl)bis(phenylmethanon e) 3k: Viscous oil in 96% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}_{D}$ = -99.19 (c 0.87, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 10.17 min, t_r (major) =10.84 min, 82% ee; ¹H NMR (400 MHz, CDCl₃) δ

8.06 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.68 (s, 1H), 7.52 – 7.47 (m, 1H), 7.46 – 7.34 (m, 7H), 7.23 – 7.18 (m, 2H), 7.17 – 7.09 (m, 3H), 6.55 (s, 1H), 6.14 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 196.29, 194.14, 136.71, 135.53, 134.42, 134.15, 133.51, 133.03, 130.27, 129.89, 128.50, 128.27, 127.96, 127.79, 127.43, 126.54, 126.29, 125.48, 101.12, 94.79, 82.60 ppm; EI-HRMS: Calcd for C₂₇H₂₀O₄S [M+Na]⁺ 463.0980, Found 463.0976.

(2-(4-chlorophenyl)-5-(m-tolyl)-1,3-dioxolane-4,4-diyl)bis(phenyl methanone) 31: Viscous oil in 98% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}_{D}$ = -86.78 (c 0.90, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 7.54 min, t_r (major) =8.39 min, 83%

ee; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.52 – 7.45 (m, 3H), 7.41 – 7.34 (m, 3H), 7.23 – 7.12 (m, 4H), 7.03 (t, J = 7.6 Hz, 1H), 6.95 – 6.88 (m, 1H), 6.53 (s, 1H), 6.03 (s, 1H), 2.17 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 195.99, 194.09, 137.61, 135.86, 135.60, 134.25, 134.07, 133.68, 133.60, 132.95, 130.25, 129.73, 129.15,

128.78, 128.71, 128.55, 128.31, 127.96, 127.72, 124.63, 103.51, 94.66, 82.95, 21.27 ppm; EI-HRMS: Calcd for $C_{30}H_{23}^{-35}ClO_4$ [M+Na]⁺ 505.1183, Found 505.1185.

(2-(4-bromophenyl)-5-(m-tolyl)-1,3-dioxolane-4,4-diyl)bis(phenyl methanone) 3m: Viscous oil in 96% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}_{D} = -74.85$ (c 1.05, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 8.02 min, t_r (major) =9.04 min, 83%

ee; ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.01 (m, 2H), 7.67 – 7.59 (m, 6H), 7.52 – 7.46 (m, 1H), 7.41 – 7.34 (m, 3H), 7.21 – 7.13 (m, 4H), 7.07 – 6.99 (m, 1H), 6.95 – 6.89 (m, 1H), 6.51 (s, 1H), 6.01 (s, 1H), 2.16 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 195.97, 194.07, 137.61, 135.59, 134.24, 134.18, 134.05, 133.61, 132.96, 131.74, 130.24, 129.72, 129.15, 128.97, 128.55, 128.30, 127.96, 127.73, 124.63, 124.15, 103.54, 94.66, 82.96, 21.27 ppm; EI-HRMS: Calcd for C₃₀H₂₃⁷⁹BrO₄ [M+Na]⁺ 549.0677, Found 549.0676.

(2-(3-methoxyphenyl)-5-(m-tolyl)-1,3-dioxolane-4,4-diyl)bis(ph enylmethanone) 3n: Viscous oil in 93% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{22}_{D}$ = -100.21 (c 0.93, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column

 $(iPrOH/hexane = 10/90, 1.0 \text{ mL/min}, 254 \text{ nm}), t_r (minor) = 9.32 \text{ min}, t_r (major) = 10.64 \text{ min}, 86\% ee;$ ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.52 - 7.47 (m, 1H), 7.43 - 7.35 (m, 4H), 7.34 - 7.29 (m, 2H), 7.23 - 7.15 (m, 4H), 7.07 - 6.99 (m, 2H), 6.95 - 6.88 (m, 1H), 6.55 (s, 1H), 6.02 (s, 1H), 3.87 (s, 3H), 2.17 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 196.25, 194.20, 159.73, 137.51, 136.49, 135.74, 134.36, 134.26, 133.47, 132.90, 130.27, 129.90, 129.64, PhOC

0

COPh

129.00, 128.50, 128.28, 127.89, 127.70, 124.61, 119.56, 115.60, 112.63, 104.09, 94.83, 82.76, 55.38, 21.27 ppm; EI-HRMS: Calcd for $C_{31}H_{26}O_5$ [M+Na]⁺ 501.1678, Found 501.1684.

(2-phenyl-5-(m-tolyl)-1,3-dioxolane-4,4-diyl)bis(phenylmethanone) 30: Viscous oil in 98% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}{}_{D}$ = -117.43 (c 0.61, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 7.89min, t_r (major) =8.78 min, 84% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.0 Hz, 2H), 7.68 – 7.58 (m, 4H), 7.42 – 7.36(m, 4H), 7.32 –

7.24 (m, 3H), 7.16 – 7.05 (m, 4H), 6.94 (t, J = 7.6 Hz, 1H), 6.86 – 6.79 (m, 1H), 6.46 (s, 1H), 5.96 (s, 1H), 2.07 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 196.32, 194.27, 137.54, 135.71, 135.04, 134.34, 134.27, 133.49, 132.92, 130.29, 129.93, 129.91, 129.02, 128.54, 128.51, 128.27, 127.90, 127.69, 127.25, 124.60, 104.27, 94.80, 82.81, 21.29 ppm; EI-HRMS: Calcd for C₃₀H₂₄O₄ [M+Na]⁺ 471.1572, Found 471.1572.

(2-phenyl-5-(p-tolyl)-1,3-dioxolane-4,4-diyl)bis(phenylmethanone) 3p: Viscous oil in 92% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}_{D}$ = -88.39 (c 0.62, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 10.36min, t_r (major) =11.52 min, 82% ee; ¹H NMR (400 MHz,

CDCl₃) δ 8.09 – 8.02 (m, 2H), 7.76 –7.68 (m, 4H), 7.52 – 7.45 (m, 4H), 7.42 – 7.34 (m, 3H), 7.32 – 7.27 (m, 2H), 7.20 – 7.13 (m, 2H), 6.99 – 6.89 (m, 2H), 6.56 (s, 1H), 6.05 (s, 1H), 2.20 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ = 196.49, 194.29, 137.95, 135.54, 135.06, 134.23, 133.46, 132.91, 131.42, 130.27, 129.95, 129.86, 128.68, 128.50, 128.48, 127.71, 127.38, 127.17, 104.14, 94.82, 82.75, 21.14 ppm; EI-HRMS: Calcd for $C_{30}H_{24}O_4$ [M+Na]⁺ 471.1572, Found 471.1572.

(5-(benzo[d][1,3]dioxol-5-yl)-2-phenyl-1,3-dioxolane-4,4-diyl)bis(p henylmethanone) 3q: Viscous oil in 94% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{22}_{D}$ = -94.48 (c 0.86, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 16.00 min,

 $t_{\rm r}$ (major) =17.44 min, 86% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 2H), 7.78 – 7.69 (m, 4.9 Hz, 4H), 7.52 – 7.45 (m, 4H), 7.44 – 7.34 (m, 3H), 7.24 – 7.17 (m, 2H), 6.95 – 6.85 (m, 2H), 6.59 (d, J = 8.0 Hz, 1H), 6.50 (s, 1H), 6.03 (s, 1H), 5.86 – 5.77 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 196.14, 194.19, 147.46, 147.36, 135.57, 134.99, 134.22, 133.53, 133.03, 130.26, 129.91, 129.88, 128.53, 128.51, 128.25, 127.83, 127.14, 121.41, 108.13, 107.83, 104.09, 100.96, 94.74, 82.65 ppm; EI-HRMS: Calcd for C₃₀H₂₂O₆ [M+Na]⁺ 501.1314, Found 501.1310.

(5-(2-fluorophenyl)-2-(3-methoxyphenyl)-1,3-dioxolane-4,4-diyl) bis(phenylmethanone) 3r: Viscous oil in 93% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}{}_{D}$ = -110.47 (c 0.90, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_{r} (minor) = 13.07

min, t_r (major) =18.46 min, 84% ee; 1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.53 - 7.48 (m, 1H), 7.45 - 7.36 (m, 4H), 7.31 - 7.27 (m, 2H), 7.23 - 7.16 (m, 3H), 7.16

-7.09 (m, 2H), 7.06 -7.01 (m, 1H), 6.85 -6.77 (m, 1H), 6.56 (s, 1H), 6.02 (s, 1H), 3.86 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 196.00, 193.98, 163.61, 161.16, 159.77, 137.20, 137.13, 136.15, 135.48, 134.02, 133.61, 133.22, 130.28, 129.86, 129.72, 129.61, 129.53, 128.55, 127.89, 123.30, 123.27, 119.38, 115.61, 115.26, 115.05, 114.58, 114.35, 112.58, 104.19, 94.93, 81.93, 55.39 ppm; EI-HRMS: Calcd for C₃₀H₂₃FO₅ [M+Na]⁺ 505.1427, Found 505.1425.

MeO F

(5-(3-fluorophenyl)-2-(3-methoxyphenyl)-1,3-dioxolane-4,4-diyl) bis(phenylmethanone) 3s: Viscous oil in 93% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}{}_{D}$ = -79.87 (c 0.92, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 9.46 min,

 $t_{\rm r}$ (major) =10.24 min, 83% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 7.54 – 7.48 (m, 1H), 7.44 – 7.36 (m, 4H), 7.31 – 7.26(m, 2H), 7.24 – 7.16 (m, 3H), 7.15 – 7.09 (m, 2H), 7.05 – 7.01 (m, 1H), 6.85 – 6.76 (m, 1H), 6.56 (s, 1H), 6.02 (s, 1H), 3.86 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 195.99, 193.98, 163.61, 161.16, 159.77, 137.21, 137.13, 136.15, 135.49, 134.03, 133.60, 133.21, 130.28, 129.86, 129.71, 129.61, 129.53, 128.55, 127.89, 123.29, 123.27, 119.38, 115.61, 115.25, 115.04, 114.58, 114.36, 112.58, 104.19, 94.93, 81.93, 55.38 ppm; EI-HRMS: Calcd for C₃₀H₂₃FO₅ [M+Na]⁺ 505.1427, Found 505.1428.

(5-(4-fluorophenyl)-2-(3-methoxyphenyl)-1,3-dioxolane-4,4-d iyl)bis(phenylmethanone) 3t: Viscous oil in 99% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}{}_{D}$ = -109.94 (c 0.98, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 9.09 min, t_r (major) =9.84 min, 85% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 753 – 7.48 (m, 1H), 7.44 – 7.35 (m, 6H), 7.32 – 7.28 (m, 2H), 7.23 – 7.17 (m, 2H), 7.05 – 7.00 (m, 1H), 6.87 – 6.79 (m, 2H), 6.56 (s, 1H), 6.03 (s, 1H), 3.86 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 196.13, 194.12, 163.75, 161.29, 159.75, 136.29, 135.47, 134.09, 133.61, 133.21, 130.39, 130.36, 130.27, 129.85, 129.70, 129.30, 129.22, 128.55, 127.91, 119.39, 115.49, 115.05, 114.84, 112.65, 104.08, 94.83, 82.09, 55.39 ppm; EI-HRMS: Calcd for C₃₀H₂₃FO₅ [M+Na]⁺ 505.1427, Found 505.1431.

(5-(4-chlorophenyl)-2-(3-methoxyphenyl)-1,3-dioxolane-4,4diyl)bis(phenylmethanone) 3u: Viscous oil in 93% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}_{D}$ = -70.39 (c 0.93, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm),

 $t_{\rm r}$ (minor) = 9.40 min, $t_{\rm r}$ (major) =10.21 min, 80% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* =8.0 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.52 – 7.47 (m, 1H), 7.45 – 7.30 (m, 7H), 7.28 (s, 1H), 7.23 – 7.17 (m, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 7.04 – 6.99 (m, 1H), 6.53 (s, 1H), 6.01 (s, 1H), 3.85 (s, 3H) ppm; ¹³C ¹³C NMR (101 MHz, CDCl₃) δ = 195.25, 191.34, 159.74, 136.17, 135.42, 134.09, 133.99, 133.64, 133.27, 133.14, 130.29, 129.90, 129.72, 128.78, 128.57, 128.16, 127.93, 119.35, 115.48, 112.64, 104.14, 94.90, 82.01, 55.40 ppm; EI-HRMS: Calcd for C₃₀H₂₃³⁵ClO₅ [M+Na]⁺ 521.1132, Found 521.1129.

(5-(furan-2-yl)-2-phenyl-1,3-dioxolane-4,4-diyl)bis(phenylmethanone) 3v: COPh Viscous oil in 97% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}{}_D = -101.94$ (c 0.82, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IC column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 9.24 min, t_r (major) =13.44 min, 86% ee; ¹H NMR (400 MHz, DMSO) δ 7.94 (d, J = 7.2 Hz, 7.72 (m 411), 7.62 = 7.54 (m 211), 7.52 = 7.40 (m 211), 7.48 = 7.42 (m 211), 7.20 = 7.24

2H), 7.78 - 7.72 (m, 4H), 7.62 - 7.54 (m, 2H), 7.53 - 7.49 (m, 3H), 7.48 - 7.43 (m, 3H), 7.39 - 7.34

PhOC

(m, 2H), 6.60 (s, 1H), 6.57 (d, J = 3.2 Hz, 1H), 6.30 – 6.24 (m, 1H), 6.03 (s, 1H) ppm; ¹³C NMR (101 MHz, DMSO) δ 194.32, 192.46, 147.46, 143.98, 134.77, 134.16, 134.11, 133.58, 133.43, 130.16, 129.56, 129.11, 128.85, 128.46, 128.22, 127.44, 111.87, 110.57, 103.71, 93.20, 75.74 ppm; EI-HRMS: Calcd for C₂₇H₂₀O₅ [M+Na]⁺ 447.1208, Found 447.1209.

(5-(furan-3-yl)-2-phenyl-1,3-dioxolane-4,4-diyl)bis(phenylmethanone) 3w: Viscous oil in 96% yield (petroleum ether : EtOAc = 10: 1); $[\alpha]^{26}_{D}$ = -132.14 (c 0.87, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE 90/10 column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 8.86 min, t_r (major) = 9.44 min, 90% ee; ¹H NMR (400 MHz,

DMSO) δ 7.94 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.74 (s, 1H), 7.72 – 7.68 (m, 2H), 7.62 – 7.54 (m, 2H), 7.54 – 7.45 (m, 6H), 7.40 – 7.31 (m, 2H), 6.50 (s, 1H), 6.27 (s, 1H), 6.08 (s, 1H) ppm; ¹³C NMR (101 MHz, DMS) δ = 195.72, 193.35, 143.73, 141.71, 134.58, 134.51, 133.94, 133.62, 133.53, 130.03, 129.55, 129.33, 128.82, 128.50, 128.25, 127.18, 120.06, 109.47, 103.61, 93.65, 75.93 ppm; EI-HRMS: Calcd for C₂₇H₂₀O₅ [M+Na]⁺ 447.1208, Found 447.1211.

PhOC O COPh (2-phenyl-5-(thiophen-2-yl)-1,3-dioxolane-4,4-diyl)bis(phenylmethanon

e) 3x: Viscous oil in 97% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]_{D}^{26}$ = -155.39 (c 0.74, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE 90/10 column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_{r} (minor) = 10.52 min, t_{r} (major) = 11.03 min, 91% ee; ¹H NMR (400 MHz,

DMSO) δ 7.95 (d, J = 8.0 Hz, 2H), 7.77 – 7.70 (m, 4H), 7.63 – 7.57 (m, 1H), 7.56 – 7.50 (m, 4H), 7.50 – 7.44 (m, 2H), 7.40 – 7.36 (m, 1H), 7.36 – 7.30 (m, 2H), 7.09 – 7.04 (m, 1H), 6.89 – 6.84 (m, 1H), 6.82 (s, 1H), 6.10 (s, 1H) ppm; ¹³C NMR (101 MHz, DMSO) δ = 195.01, 193.03, 137.27, 134.45, 134.44, 134.07, 133.67, 133.42, 130.19, 129.58, 129.32, 128.88, 128.56, 128.17, 127.61, 127.27,

126.88, 126.63, 103.69, 94.38, 78.79 ppm; EI-HRMS: Calcd for $C_{27}H_{20}O_4S [M+Na]^+ 463.0980$, Found 463.0973.

(2-phenyl-5-(thiophen-3-yl)-1,3-dioxolane-4,4-diyl)bis(phenylmethanon e) 3y: Viscous oil in 97% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}_{D}$ = -130.83 (c 0.92, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral IE 90/10 column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), t_r (minor) = 10.03 min, t_r (major) = 10.75 min, 90% ee; ¹H NMR (400 MHz,

CDCl₃) δ 8.08 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.73 – 7.69 (m, 2H), 7.51 – 7.46 (m, 4H), 7.42 – 7.35(m, 3H), 7.29 – 7.26 (m, 1H), 7.23 – 7.18 (m, 2H), 7.11 – 7.07 (m, 1H), 7.04 – 6.99 (m 1H), 6.64 (s, 1H), 6.03 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 196.13, 194.14, 135.79, 135.42, 135.01, 134.13, 133.59, 133.03, 130.27, 129.93, 129.73, 128.52, 127.85, 127.15, 126.93, 125.73, 123.90, 104.31, 94.49, 79.95 ppm; EI-HRMS: Calcd for C₂₇H₂₀O₄S [M+Na]⁺ 463.0980, Found 463.0981.

(2,5-diphenyl-1,3-dioxolane-4,4-diyl)bis(p-tolylmethanone) 3z: Viscous oil in 99% yield (petroleum ether : EtOAc = 20: 1); $[\alpha]^{26}{}_{\rm D}$ = -89.82 (c 0.90, CH₂Cl₂); the ee was determined by HPLC analysis using a chiral ID column (*i*PrOH/hexane = 10/90, 1.0 mL/min, 254 nm), $t_{\rm r}$ (minor) = 10.92min, $t_{\rm r}$ (major) =11.51 min, 87% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.79 – 7.73 (m, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.52 – 7.47 (m, 3H), 7.45 – 7.40 (m, 2H), 7.18 – 7.09 (m, 5H), 6.96 (d, *J* = 8.4 Hz, 2H), 6.59 (s, 1H), 6.04 (s, 1H), 2.34 (s, 3H), 2.29 (s, 3H) ppm; ¹³C NMR (101 MHz,

CDCl₃) δ 195.49, 193.94, 144.45, 143.88, 135.18, 134.82, 132.95, 131.74, 130.43, 130.04, 129.84, 129.20, 128.51, 128.48, 128.19, 127.90, 127.63, 127.19, 104.05, 94.94, 82.56, 21.70, 21.65 ppm; EI-HRMS: Calcd for C₃₁H₂₆O₄ [M+Na]⁺ 485.1729, Found 485.1731.

8. Refarence

- 1. Antonioletti, R.; Bovicelli, P.; Malancona, S. Tetrahedron 2002, 58, 589.
- 2. Yadav, V.K.; Kapoor, K. K. Tetrahedron 1995, 51, 8573.
- 3. Z. Chen, L. Wei and J. Zhang, Org. Lett., 2011, 13, 1170.

9. Copy of ¹H NMR and ¹³C NMR spectra for products and subtrates

8.086 8.067 7.518 7.319 7.354 7.150 7.164 7.120 6.584

-6.023

¹H NMR (400 MHz, CDCi); 5 809 - 801 (m, 2H), 7.67 - 7.59 (m, 6H), 7.52 - 7.46 (m, 1H), 7.41 - 7.34 (m, 3H), 7.21 - 7.13 (m, 4H), 7.07 - 699 (m, 1H), 695 - 689 (m, 1H), 651 (s, 1H), 601 (s, 1H), 216 (s, 3H).

8.108 7.940 7.576 7.576 7.508 7.144 7.144 6.238

Current Data Parameters

F2 - Acquisition Parameters DATE: 2013-05-22717:03:15 PULPROC: eg30 TD: 32768 Solvent: CDC13 NS: 16 DS: undefined SWH: 8223.7 Hz AQ: undefined TE: 256.7 C

CHANNEL fl ------NUCl: 1H Pl: 9.93 usec SFOl: undefined MHz

F2 - Processing Parameters SI: 65336 DC: 0.05 LB: 0.30 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Pho: 84.39 Phi: 19.45

4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

1.08

8.0 7.5 7.0 6.5 6.0 5.5 5.0

5.13

2

8

¹H NMR(400)MHz CDCl2) 5 808(d, J=7.6Hz 2H), 7.73(d, J=7.6Hz 2H), 7.54-7.48(m, 1H), 7.44-7.36(m, 4H), 7.31-7.26(m, 2H), 7.247.16(m, 3H), 7.15-7.09(m, 2H), 7.05-7.01(m, 1H), 6.85-676(m, 1H), 6.56(s, 1H), 6.86(s, 3H).

H NMR (400 MHz CDCi) 5 821-815 (m, 2H), 7.99-7.93 (m, 2H), 7.64-7.55 (m, 1H), 7.52-7.44 (m, 3H), 7.41-7.32 (m, 2H), 7.18-7.11 (m, 3H), 7.07-7.01 (m, 1H), 4.65 (s, 1H), 2.27 (s, 3H).

H NMR (400 MHz DMSO) 5 8.07(d, J=7.2 Hz 2H), 7.89(d, J=7.3 Hz 2H), 7.76-7.69(m, 1H), 7.66-7.57(m, 3H), 7.56-7.43(m, 4H), 7.40-7.32(m, 1H), 7.30-7.22(m, 1H), 5.07(s, 1H).

10. Copy of CD spectras for products

