Outer-sphere anion recognition by a cyclen-based octadenate europium (III) complex: pH dependent recognition of *ortho*phthalic acid.

Desigan Sannasy, Helder M Marques, Manuel A Fernandes and Alvaro S de Sousa*

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P. O. Wits, Johannesburg 2050, South Africa

Supporting information.

pН	<i>k</i> _{H2} 0	$\tau_{H_2O/ms}$	$k_{\rm D_2O}$	$\tau_{D_2O/ms}$	q^*
$\lambda_{em} = 580 \text{ nm}, \ \lambda_{ex} = 240 \text{ nm}$					
4.38	2.374	0.4212	0.556	1.799	0.93
4.80	2.331	0.4290	0.559	1.789	0.88
8.28	2.453	0.4077	0.987	1.013	0.54
8.65	2.392	0.4181	0.924	1.082	0.54
		$\lambda_{em} = 593 \text{ nm},$	$\lambda_{ex} = 240 \text{ nm}$		
4.38	2.305	0.4348	0.558	1.792	0.85
4.80	2.308	0.4333	0.565	1.770	0.84
8.28	2.350	0.4255	0.956	1.040	0.46
8.65	2.378	0.4205	0.883	1.133	0.57

Table S1. Hydration states and excited state lifetimes for $[Eu(CyD3MA)(H_2O)]^{3+}$ in H_2O and D_2O .

* $q = A[\tau^{-1}_{H_2O} - \tau^{-1}_{D_2O} - k_{XH}]$ where $k_{XH} = \alpha + \beta n_{OH} + \gamma n_{NH} + \delta n_{O=CNH}$ $\beta = 0.44 \text{ ms}^{-1}$; $\delta = 0.075 \text{ ms}^{-1}$ $\alpha = 0.31$; $n_{OH} = 1$; $n_{NH} = 0$; $n_{O=CNH} = 3$

Table S2. Selected bond lengths for [Eu(CyD3MA)(CF₃SO₃)](CF₃SO₃)₂(CH₃CN)₂.

Bond	Donor type	Bond length (Å)
Eu(1) – O(1)	Hydroxycyclohexyl	2.4078(15)
Eu(1) - O(2)	Amidic	2.3633(15)
Eu(1) - O(3)	Amidic	2.3803(14)
Eu(1) - O(4)	Amidic	2.3726(14)
Eu(1) - O(5)	Triflato	2.4432(15)
Eu(1) - N(1)	Macrocyclic ammine	2.6573(17)
Eu(1) - N(2)	Macrocyclic ammine	2.6768(17)
Eu(1) - N(3)	Macrocyclic ammine	2.6728(18)
Eu(1) - N(4)	Macrocyclic ammine	2.6582(16)

рН	<i>k</i> _{H₂O}	$\tau_{H_2O/ms}$	$k_{\rm D_2O}$	$\tau_{D_2O/ms}$	q^{a^*}	q^{b^*}
$\lambda_{\rm em} = 580 \rm nm, \ \lambda_{\rm ex} = 280 \rm nm$						
4.71	3.149	0.3176	0.569	1.757	1.8	2.2
5.32	3.120	0.3205	0.568	1.761	1.7	2.2
7.42	2.849	0.3510	0.601	1.664	1.4	1.9
8.17	2.592	0.3858	0.637	1.570	1.1	1.6
8.71	2.799	0.3573	0.808	1.238	1.1	1.6
9.48	2.727	0.3667	1.115	0.900	0.7	1.2
$\lambda_{\rm em} = 593 \rm nm, \ \lambda_{\rm ex} = 280 \rm nm$						
4.71	3.460	0.2890	0.545	1.835	2.1	2.6
5.32	3.301	0.3029	0.565	1.770	1.9	2.4
7.42	2.661	0.3758	0.613	1.631	1.2	1.7
8.17	2.367	0.4225	0.637	1.570	0.8	1.3
8.71	2.579	0.3877	0.826	1.211	0.9	1.3
9.48	2.497	0.4005	1.104	0.906	0.5	0.9

Table S3. Hydration states and excited state lifetimes of [Eu(CyD3MA)]³⁺ in a multicomponent buffer solution (KHP, MOPS, MES and TRIS).

* $q = A[\tau^{-1}_{H_2O} - \tau^{-1}_{D_2O} - k_{XH}]$ where $k_{XH} = \alpha + \beta n_{OH} + \gamma n_{NH} + \delta n_{O=CNH}$ $\beta = 0.44 \text{ ms}^{-1}$; $\delta = 0.075 \text{ ms}^{-1}$ ^a $\alpha = 0.31$; $n_{OH} = 1$; $n_{NH} = 0$; $n_{O=CNH} = 3$ ^b $\alpha = 0.31$; $n_{OH} = 0$; $n_{NH} = 0$; $n_{O=CNH} = 3$

<u>NB:</u>

q values in **bold** indicate hydration states that more accurately reflect the binding mode of the pendent hydroxycyclohexyl moiety.

Table S4. Crystal Data CyD3MA. H_2O .

Empirical formula	$C_{23} \; H_{45.56} \; N_7 \; O_{4.28}$		
Formula weight	488.16		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 9.6189(2) Å	<i>α</i> = 90°.	
	b = 32.1984(7) Å	β= 99.5380(10)°.	
	c = 8.6632(2) Å	$\gamma = 90^{\circ}$.	
Volume	2646.02(10) Å ³		
Ζ	4		
Density (calculated)	1.225 Mg/m ³		
Absorption coefficient	0.086 mm ⁻¹		
F(000)	1067		
Crystal size	$0.40 \ge 0.37 \ge 0.25 \text{ mm}^3$		
Theta range for data collection	2.15 to 26.00°.		
Index ranges	$-11 \le h \le 11, -39 \le k \le 33, -10$	$\leq l \leq 10$	
Reflections collected	15521		
Independent reflections	5204 [R(int) = 0.0288]		
Completeness to theta = 25.00°	99.9 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	5204 / 1248 / 628		
Goodness-of-fit on F ²	1.143		
Final R indices [I>2sigma(I)]	R1 = 0.0763, wR2 = 0.1749		
R indices (all data)	R1 = 0.0936, wR2 = 0.1817		
Largest diff. peak and hole	0.472 and -0.380 e.Å ⁻³		

Empirical formula	$C_{29} H_{49.50} Eu F_9 N_{8.5} O_{13} S_3$
Formula weight	1144.41
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 11.8523(2) \text{ Å}$ $\alpha = 70.5800(10)^{\circ}.$
	$b = 13.4938(2) \text{ Å}$ $\beta = 70.7790(10)^{\circ}.$
	$c = 15.4748(3) \text{ Å}$ $\gamma = 81.9570(10)^{\circ}.$
Volume	2202.72(7) Å ³
Ζ	2
Density (calculated)	1.725 Mg/m ³
Absorption coefficient	1.672 mm ⁻¹
F(000)	1158
Crystal size	0.47 x 0.28 x 0.15 mm ³
Theta range for data collection	1.60 to 28.00°.
Index ranges	$\text{-15} \le h \le 15, \text{-17} \le k \le 17, \text{-20} \le l \le 20$
Reflections collected	30492
Independent reflections	10631 [R(int) = 0.0338]
Completeness to theta = 28.00°	100.0 %
Absorption correction	Integration
Max. and min. transmission	0.7876 and 0.5071
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	10631 / 0 / 595
Goodness-of-fit on F ²	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0234, $wR2 = 0.0626$
R indices (all data)	R1 = 0.0257, wR2 = 0.0637
Largest diff. peak and hole	0.689 and -0.645 e.Å ⁻³

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

Figure S1. ORTEP diagram of octadentate 1,4,7-tris[(N-methylcarbamoyl)methyl]-10-(2-hydroxycyclohexyl)-1,4,7,10-tetraazadodecane (CyD3MA.H₂O). Thermal ellipsoids (site occupancy 0.612) are shown at 50% probability level.

Figure S2. Ball-and-Stick diagram of *S*,*S*-1,4,7-tris[(N-methylcarbamoyl)methyl]-10-(2-hydroxycyclohexyl)-1,4,7,10-tetraazadodecane showing pendent N-H...O and O-H...O hydrogen bonding interactions.

In the solid state endo conformations of trans methylethanamide pendents accommodate N-H...O hydrogen-bonding interactions to the hydroxycycloalkyl oxygen, resembling endo conformations observed above the macrocyclic plane in the structure of DTMA.¹⁷ The endo hydroxycyclohexyl conformation directs the O_1 -H_{1C} vector at the macrocyclic cavity placing the hydroxycyclohexyl oxygen O_1 2.22(1) Å above the macrocyclic N_4 centroid. Oxygen O_{1W} of the lattice water molecule, hydrogen bonded to the hydroxycyclohexyl oxygen (O_1), is separated from the macrocyclic N_4 centroid by 4.45(1) Å. Outer-sphere water molecules, at comparable distances from the metal centre in cyclen-based europium (III) complexes, marginally quench (approximately 8% efficiency) lanthanide emission.¹⁸ Consequently, the O_{1W} -H_{1WA}... O_1 hydrogen bond involving the hydroxycyclohexyl pendent and the proximal water molecule in the solid state Cy3DMA structure, potentially resembles O-H...O interactions of this pendent arm in aqueous solution.

Figure S3. pH dependent emission spectra of Europium-1,4,7-tris[(*N*-methylcarbamylmethyl)-10-(2-hydroxycyclohexyl)]-1,4,7,10- tetraazacyclododecane ($[Eu(CyD3MA)(H_2O)]^{3+}$) at room temperature in aqueous solution.

Figure S4. Regression analysis of $[Eu(CyD3MA)(H_2O)]^{3+}$ emission bands in aqueous solution with weighted pK_a average values.

Figure S5. Regression analysis of $[Eu(CyD3MA)(H_2O)]^{3+}$ emission bands in buffered solution (KHP, MOPS, MES and TRIS) with weighted pK_a average values.

Figure S6. pH dependent UV-vis spectra of Europium-1,4,7-tris[(*N*-methylcarbamylmethyl)-10-(2-hydroxycyclohexyl)]-1,4,7,10- tetraazacyclododecane ([Eu(CyD3MA)]³⁺) in a buffered solution (KHP, MOPS, MES and TRIS) at room temperature; pH 2 to pH 11.

Figure S7. Non-linear regression analysis of electronic absorption data (Abs₂₈₀ Phthalate π - π^* transition) for [Eu(CyD3MA)]³⁺ in a buffered solution (KHP, MOPS, MES and TRIS); pH 2 to pH 11.

Figure S8. pH dependent emission spectra of Europium-1,4,7-tris[(*N*-methylcarbamylmethyl)-10-(2-hydroxycyclohexyl)]-1,4,7,10- tetraazacyclododecane ($[Eu(CyD3MA)(H_2O)]^{3+}$) in a buffered solution (MOPS, MES and TRIS) excluding KHP at room temperature.

Figure S9. Regression analysis of pH dependent $[Eu(CyD3MA)(H_2O)]^{3+}$ emission bands in buffered solution (MOPS, MES and TRIS) excluding KHP from pH 2 to pH 11.

Experimental

<u>Synthesis</u>

1) Preparation of (2-Hydoxycyclohexyl)-1,4,7,10-tetraazacyclodecane (Cycyclen).

Reference:

A. S. de Sousa*, D. Sannasy, M. A. Fernandes, H. M. Marques "*Helical self-assembly of* 2-(1, 4, 7, 10-tetraazacyclododecan-1-yl)cyclohexan-1-ol (cycyclen)", Acta Cryst. C68, 0383 – 0386, 2012

2) Preparation of 1,4,7-tris[*N*-methylcarbomylmethyl]-10-2(hydroxycyclohexyl)-1,4,7,10-tetraazacyclododecane (CyD3MA)

A solution of 1-(2-Hydoxycyclohexyl)-1,4,7,10-tetraazacyclodecane or Cy-cyclen (0.3032 g , 1.12×10^{-3} mol), *N*-methyl chloroacetamide (0.4025 g, 3.76×10^{-3} mol), KI (0.6646 g, 4.01×10^{-3} mol) and CsCO₃ (1.8185 g, 5.58×10^{-3} mol) was refluxed in dry CH₃CN (50 ml) for 24 hrs. The reaction mixture is filtered to remove metal salts upon cooling. The solvent is removed under reduced pressure and the residue washed with diethyl ether. The off-white solid is precipitated from CH₃CN with dry diethyl ether to afford the product a white powder (49 % yield).

3) Preparation of [Eu(CyD3MA)](CF₃SO₃)₃

Europium triflate (0.4141 g, 6.90×10^{-4} mol) was dissolved in dry acetonitrile to give a 0.02 M solution. CyD3MA (0.300 g, 6.21×10^{-4} mol) was dissolved in dry acetonitrile to give a 0.03 M solution. This was added to the triflate solution via a dropping funnel under argon. The mixture was refluxed at 90 °C for 90 hrs under a CaCl₂ drying tube. Upon cooling, the solvent was removed to dryness under reduced pressure. The crude product was redissolved in a minimal amount of dry acetonitrile to which diethyl ether was added dropwise until the solution became turbid. Refrigeration overnight afforded Europium-1,4,7-tris[*N*-methylcarbamylmethyl]-10-(2-hydroxycyclohexyl)-1,4,7,10-tetraazacyclododecane (0.6284 g, 5.81×10^{-4} mol) and was isolated in 94 % yield as a triflate salt.