Supporting Information

Copper-Mediated Cross-coupling/Cyclization/Oxidation: Onepot Reaction to Construct Polysubstituted Pyrroles

Pei Liu, Jin-ling Liu, Heng-shan Wang, Ying-ming Pan*, Hong Liang, and Zhen-Feng Chen*

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin 541004, People's Republic of China

E-mail: panym2013@hotmail.com; chenzfubc@yahoo.com. Fax: +86-773-5803930; Tel: +86-773-5846279.

Table of Contents

1 General Information	S2
2 General Experimental Procedure	S2
3 Optimization of the Reaction Conditions	S3
4 Characterization of the Compounds	S4-10
5 Copies of ¹ H NMR and ¹³ C NMR Spectra of Products	S11-31
6 Copies of HRMS Spectra of Products	832-36

1 General Information

All manipulations were performed under an air atmosphere unless otherwise statement. Column chromatography was performed on silica gel (300–400 mesh). NMR spectra were obtained using a Bruker Avance 500 spectrometer (¹H at 500 MHz and ¹³ C at 125 MHz). Chemical shifts for ¹H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 7.26 ppm). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.0 ppm). High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (Thermo Scientific, USA) equipped with APCI or ECI ionization source.

Materials. Unless stated otherwise, commercial reagents were used without further purification. All reagents were weighed and handled in air at room temperature.

2 General Experimental Procedure

The reaction mixture of terminal alkenes **1** (0.75 mmol), aromatic amines **2** (0.5 mmol), β -keto esters **3** (0.5mmol), CuCl (10 mol %), and DMSO (4 mL) in a 10 mL round bottom flask was stirred at 80 °C for 24 h. Upon completion, the reaction mixture was diluted with water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under vacuum. The residue was purified by flash column chromatography to afford the product.

Ph	+ Ph	-NH ₂ + ,	O OEt Catalyst 80 °C, Solven	
1a		2a	3a	4aaa
	Entry	Catalyst	Solvent	Yield (%) ^b
	1	CuCl ₂	DMSO	63
	2	CuI	DMSO	40
	3	Cu(OAc) ₂	DMSO	0
	4	Cu(OTf) ₂	DMSO	0
	5	CuSO ₄	DMSO	0
	6	Bi(OTf) ₃	DMSO	0
	7	InCl ₂	DMSO	0
	8	AgCO ₃	DMSO	0
	9	AgOAc	DMSO	0
	10	Pd(OAc) ₂	DMSO	0

3 Optimization of Reaction Conditions^a

^aReaction conditions: styrene **1a** (0.75 mmol), aniline **2a** (0.5 mmol), ethyl acetoacetate **3a** (0.5 mmol), catalyst (10 mol % to **2a**), solvent (4.0 mL), 80 °C, 24 h. ^bIsolated yield of pure product based on **2a**.

4 Characterization of the Compounds

Ethyl 2-methyl-1,5-diphenyl-1*H*-pyrrole-3-carboxylate (4aaa)

¹**H NMR** (500 MHz, CDCl₃) δ 7.43-7.39 (m, 3H), 7.19-7.15 (m, 5H), 7.11-7.07 (m, 2H), 6.85 (s, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.45 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.6, 138.1, 138.0, 133.9, 132.4, 129.2, 128.5, 128.2, 128.1, 128.0, 126.5, 112.8, 110.0, 59.5, 14.5, 12.5. **ESI HRMS** exact mass calcd for (C₂₀H₁₉NO₂Na)⁺ requires m/z 328.13135, found m/z 328.13166.

Ethyl 5-(4-methoxyphenyl)-2-methyl-1-phenyl-1*H*-pyrrole-3-carboxylate (4baa)

¹**H** NMR (500 MHz, CDCl₃) δ 7.41-7.36 (m, 3H), 7.13 (dd, J = 7.6, 1.7 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 6.71 (s, 1H), 6.68 (d, J = 8.7 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 2.39 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 158.3, 138.2, 137.5, 133.8, 129.5, 129.2, 128.6, 128.2, 125.1, 113.5, 112.7 109.1, 59.5, 55.1, 14.6, 12.5. **ESI HRMS** exact mass calcd for $(C_{21}H_{21}NO_3Na)^+$ requires m/z 358.14191, found m/z 358.13989.

Ethyl 5-(4-bromophenyl)-2-methyl-1-phenyl-1*H*-pyrrole-3-carboxylate (4caa)

¹**H NMR** (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.42 (m, 3H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.16 (dt, *J* = 5.3, 1.9 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 6.84 (s, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 2.43 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.4, 138.4, 137.8, 132.6, 131.3, 131.2, 129.4, 129.3, 128.5, 128.4, 120.5, 113.0, 110.3, 59.55, 14.5, 12.5. **ESI HRMS** exact mass calcd for $(C_{20}H_{18}NO_2BrNa)^+$ requires m/z 406.04186, 408.03981, found m/z 406.03936, 408.03726.

Ethyl 5-(4-fluorophenyl)-2-methyl-1-phenyl-1*H*-pyrrole-3-carboxylate (4daa)

¹**H** NMR (500 MHz, CDCl₃) δ 7.40-7.37 (m, 3H), 7.13-7.10 (m, 2H), 7.02-6.99 (m, 2H), 6.85-6.81 (m, 2H), 6.75 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.40 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 165.5, 162.6, 160.6, 138.0, 137.9, 132.9, 129.9, 129.8, 129.3, 128.5, 128.4, 127.6, 127.5, 115.1, 114.9, 112.9, 109.9, 59.6, 14.6. 12.5. **ESI HRMS** exact mass calcd for (C₂₀H₁₈NO₂FNa)⁺ requires m/z 346.12193, found m/z 346.11985.

Ethyl 2-methyl-1-phenyl-5-(o-tolyl)-1*H*-pyrrole-3-carboxylate (4eaa)

¹**H NMR** (500 MHz, CDCl₃) δ 7.29-7.20 (m, 5H), 7.11-7.08 (m, 1H), 7.02 (dd, J = 7.9, 1.6 Hz, 2H), 6.99 (d, J = 7.6 Hz, 1H), 6.62 (s, 1H), 4.32 (q, J = 7.1Hz, 2H), 2.43 (s, 3H), 2.12 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.8, 137.7, 136.6, 132.7, 132.3, 131.7, 129.7, 129.0, 128.7, 128.1, 127.8, 127.8, 125.0, 110.6, 59.5, 20.4, 14.6, 12.7. **ESI HRMS** exact mass calcd for (C₂₁H₂₁NO₂Na)⁺ requires m/z 342.14700, found m/z 342.14532.

Ethyl 2-methyl-1-phenyl-5-(p-tolyl)-1*H*-pyrrole-3-carboxylate (4faa)

¹**H NMR** (500 MHz, CDCl₃) δ 7.39-7.37 (m, 3H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.14 (dd, *J* = 7.0, 4.8 Hz, 3H), 7.08 (t, *J* = 6.8 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 1H),

6.76 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.40 (s, 3H), 2.25 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 138.2, 137.8, 136.2, 134.0, 129.5, 129.1, 128.7, 128.5, 128.2, 128.0, 112.7, 109.5, 59.5, 21.0, 14.6, 12.5. **ESI HRMS** exact mass calcd for (C₂₁H₂₁NO₂Na)⁺ requires m/z 342.14700, found m/z 342.14529.

Ethyl 2-methyl-5-(naphthalen-2-yl)-1-phenyl-1*H*-pyrrole-3-carboxylate (4gaa)

¹**H** NMR (500 MHz, CDCl₃) δ 7.74-7.68 (m, 1H), 7.59 (d, J = 8.1 Hz, 2H), 7.51 (s, 1H), 7.41-7.36 (m, 5H), 7.21-7.15 (m, 3H), 6.94 (s, 1H), 4.35 (q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 138.4, 138.2, 133.8, 133.2, 131.9, 129.8, 129.3, 128.6, 128.3, 127.9, 127.5, 126.6, 126.3, 126.1, 125.7, 113.1, 110.5, 59.5, 14.6, 12.5. **ESI HRMS** exact mass calcd for (C₂₄H₂₁NO₂Na)⁺ requires m/z 378.14700, found m/z 378.14514.

Ethyl 2-methyl-5-phenyl-1-(p-tolyl)-1*H*-pyrrole-3-carboxylate (4aba)

¹**H NMR** (500 MHz, CDCl₃) δ 7.19-7.11 (m, 5H), 7.08-7.05 (m, 2H), 7.01 (d, J = 8.2 Hz, 2H), 6.79 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.39 (s, 3H), 2.38 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.6, 138.2, 138.1, 135.5, 133.9, 132.5, 129.8, 128.2, 128.1, 128.0, 126.4, 112.7, 110.0, 59.5, 21.1, 14.56, 12.5. **ESI HRMS** exact mass calcd for (C₂₁H₂₁NO₂Na)⁺ requires m/z 342.14700, found m/z 342.14514.

Ethyl 1-(4-bromophenyl)-2-methyl-5-phenyl-1*H*-pyrrole-3-carboxylate (4aca)

¹**H** NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), 7.20-7.14 (m, 3H), 7.05-7.00 (m, 4H), 6.79 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.40 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 165.4, 137.8, 137.1, 133.8, 132.4, 132.0, 130.0, 128.2, 126.7, 125.6, 122.2, 113.2, 110.3, 59.6, 14.5, 12.5. **ESI HRMS** exact mass calcd for (C₂₀H₁₈NO₂BrNa)⁺ requires m/z 406.04186, 408.03981, found m/z 406.03955, 408.03743.

Ethyl 1-(4-fluorophenyl)-2-methyl-5-phenyl-1*H*-pyrrole-3-carboxylate (4ada)

¹**H NMR** (500 MHz, CDCl₃) δ 7.19-7.13 (m, 3H), 7.13-7.08 (m, 3H), 7.08 -7.06 (m, 1H), 7.04 (dd, J = 7.8, 1.5 Hz, 2H), 6.79 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 2.40 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.5, 163.0, 161.0, 138.0, 134.1, 134.0, 132.2, 130.2, 130.1, 128.2, 128.1, 126.6, 116.3, 116.1, 113.0, 110.1, 59.5, 14.5, 12.4. **ESI HRMS** exact mass calcd for (C₂₀H₁₈NO₂FNa)⁺ requires m/z 346.12193, found m/z 346.11985.

Ethyl 1-hexyl-5-(4-methoxyphenyl)-2-methyl-1H-pyrrole-3-carboxylate (4bea)

¹**H** NMR (500 MHz, CDCl₃) δ 7.25 (dd, J = 6.7, 2.0 Hz, 2H), 6.94-6.92 (m, 2H), 6.47 (s, 1H), 4.27 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 3.82-3.78 (m, 2H), 2.59 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H), 1.26-1.06 (m, 8H), 0.81 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 167.7, 165.5, 136.7, 131.9, 131.6, 129.8, 121.6, 112.1, 110.1, 59.3, 55.1, 44.1, 31.1, 30.6, 26.1, 22.4, 14.5, 13.9, 11.6. **ESI HRMS** exact mass calcd for (C₂₁H₃₀NO₃)⁺ requires m/z 344.22257, found m/z 344.22287.

Ethyl 5-(4-bromophenyl)-1-hexyl-2-methyl-1H-pyrrole-3-carboxylate (4cea)

¹**H NMR** (500 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.23-7.19 (m, 2H), 6.53 (s, 1H), 4.29-4.25 (m, 2H), 3.85-3.81 (m, 2H), 2.59 (s, 3H), 1.34 (d, *J* = 7.1 Hz, 3H), 1.2-1.07 (m, 8H), 0.82 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.5, 136.7, 131.9, 131.6, 130.8, 129.8, 121.6, 112.1, 110.1, 59.3, 44.1, 31.1, 30.6, 26.1, 22.4, 14.5, 13.9, 11.6. **ESI HRMS** exact mass calcd for (C₂₀H₂₇NO₂Br)⁺ requires m/z 392.12252, 394.12047, found m/z 392.12285, 394.12066.

Methyl 2-methyl-1,5-diphenyl-1*H*-pyrrole-3-carboxylate (4aab)

¹**H NMR** (500 MHz, CDCl₃) δ 7.39-7.37 (m, 3H), 7.15-7.12 (m, 5H), 7.05-7.03 (m, 2H), 6.79 (s, 1H), 3.85 (s, 3H), 2.41 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 166.0, 138.2, 138.1, 134.0, 132.4, 129.2, 128.5, 128.3, 128.1, 128.0, 126.5, 112.5, 110.0, 50.9, 12.5. **ESI HRMS** exact mass calcd for (C₁₉H₁₇NO₂Na)⁺ requires m/z 314.11570, found m/z 314.11377.

Isopropyl 2-methyl-1,5-diphenyl-1*H*-pyrrole-3-carboxylate (4aac)

¹**H** NMR (500 MHz, CDCl₃) δ 7.40-7.36 (m, 3H), 7.15-7.11 (m, 5H), 7.05 (dd, J = 7.9, 1.6 Hz, 2H), 6.81 (s, 1H), 5.23 (dt, J = 12.5, 6.3 Hz, 1H), 2.41 (s, 3H), 1.36 (d, J = 6.3 Hz, 6H). ¹³**C** NMR (125 MHz, CDCl₃) δ 165.1, 138.1, 137.9, 133.8, 132.4, 129.1, 128.5, 128.2, 128.1, 128.0, 126.4, 113.3, 110.1, 66.6, 22.2, 12.5. **ESI HRMS** exact mass calcd for (C₂₁H₂₁NO₂Na)⁺ requires m/z 342.14700, found m/z 342.14500. Isobutyl 2-methyl-1,5-diphenyl-1*H*-pyrrole-3-carboxylate (4aad)

¹**H** NMR (500 MHz, CDCl₃) δ 7.41-7.37 (m, 3H), 7.17-7.12 (m, 5H), 7.06 (d, J = 7.3 Hz, 2H), 6.82 (d, J = 1.6 Hz, 1H), 4.07 (dd, J = 6.5, 0.9 Hz, 2H), 2.42 (s, 3H), 2.07 (td, J = 13.3, 6.7 Hz, 1H), 1.03 (d, J = 6.7 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 165.6, 138.1, 137.9, 133.9, 132.4, 129.1, 128.5, 128.2, 128.1, 128.0, 126.5, 112.9, 110.0, 69.8, 28.0, 19.3, 12.5. **ESI HRMS** exact mass calcd for (C₂₂H₂₃NO₂Na)⁺ requires m/z 356.16265, found m/z 356.16055.

Tert-butyl 2-methyl-1,5-diphenyl-1*H*-pyrrole-3-carboxylate (4aae)

¹**H NMR** (500 MHz, CDCl₃) δ 7.39-7.36 (m, 3H), 7.15-7.11 (m, 5H), 7.05-7.03 (m, 2H), 6.75 (s, 1H), 2.38 (s, 3H), 1.59 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.1, 138.2, 137.4, 133.7, 132.5, 129.1, 128.6, 128.2, 128.1, 128.0, 126.4, 114.4, 110.3, 76.8, 28.5, 12.5. **ESI HRMS** exact mass calcd for (C₂₂H₂₃NO₂Na)⁺ requires m/z 356.16265, found m/z 356.16104.

Benzyl 2-methyl-1,5-diphenyl-1*H*-pyrrole-3-carboxylate (4aaf)

¹**H** NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.3 Hz, 2H), 7.39-7.35 (m, 6H), 7.15-7.11 (m, 5H), 7.03 (dd, *J* = 7.7, 1.8 Hz, 2H), 6.83 (s, 1H), 5.33 (s, 2H), 2.42 (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 165.3, 138.4, 138.1, 137.0, 134.0, 132.3, 129.2, 128.5, 128.5, 128.1, 128.0, 127.9, 127.8, 126.9, 126.5, 112.5, 110.1, 65.3, 12.6. **ESI HRMS** exact mass calcd for (C₂₅H₂₁NO₂Na)⁺ requires m/z 390.14700, found m/z 390.14484.

2-Methoxyethyl 2-methyl-1,5-diphenyl-1*H*-pyrrole-3-carboxylate (4aag)

¹**H** NMR (500 MHz, CDCl₃) δ 7.40-7.37 (m, 3H), 7.15-7.12 (m, 5H), 7.05-7.02 (m, 2H), 6.83 (s, 1H), 4.44-4.42 (m, 2H), 3.73-3.71 (m, 2H), 3.43 (s, 3H), 2.41 (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 165.4, 138.4, 138.1, 134.0, 132.3, 129.2, 128.5, 128.2, 128.0, 127.9, 126.5, 112.5, 110.1, 70.9, 62.6, 59.0, 12.5. **ESI** HRMS exact mass calcd for (C₂₁H₂₁NO₃Na)⁺ requires m/z 358.14191, found m/z 358.13999.

Ethyl 1,5-diphenyl-2-propyl-1H-pyrrole-3-carboxylate (4aah)

¹**H** NMR (500 MHz, CDCl₃) δ 7.39-7.36 (m, 3H), 7.19-7.10 (m, 5H), 7.06-7.01 (m, 2H), 6.81 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.82-2.75 (m, 2H), 1.49-1.42 (m, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 0.80 (t, *J* = 7.4 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ 165.3, 142.8, 138.1, 133.9, 132.4, 129.1, 128.8, 128.3, 128.2, 128.0, 126.4, 112.5, 110.2, 59.5, 27.8, 23.3, 14.5, 14.1. **ESI HRMS** exact mass calcd for (C₂₂H₂₄NO₂)⁺ requires m/z 334.18070, found m/z 334.18114.

Ethyl 5-(4-methoxyphenyl)-1-phenyl-2-propyl-1H-pyrrole-3-carboxylate (4bah)

^{Me} ¹H NMR (500 MHz, CDCl₃) δ 7.41- 7.35 (m, 3H), 7.17-7.12 (m, 2H), 6.97-6.94 (m, 2H), 6.72 (s, 1H), 6.69-6.65 (m, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 2.80-2.74 (m, 2H), 1.48-1.41 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 0.79 (t, J = 7.4 Hz, 3H). ¹³C NMR (125MHz, CDCl₃) δ 165.4, 158.3, 142.3, 138.1, 133.8, 129.5, 129.0, 128.8, 128.3, 125.1, 113.4, 112.3, 109.3, 59.4, 55.1, 27.8, 23.3, 14.5, 14.1. **ESI HRMS** exact mass calcd for (C₂₃H₂₅NO₃Na)⁺ requires m/z 386.17321, found m/z 386.17362.

5 Copies of ¹H NMR and ¹³C NMR Spectra of Products

6 Copies of HRMS Spectra of Products

