Facile synthesis of nanostructured CuCo₂O₄ as a novel electrode material for high-rate supercapacitors

Afshin Pendashteh,^{*a*} Mohammad S. Rahmanifar, ^{*b*} Richard B. Kaner, ^{*c*} and Mir F. Mousavi^{**a*,*c*}

^aDepartment of Chemistry, Tarbiat Modares University, Tehran, Iran. ^bFaculty of Basic Sciences, Shahed University, Tehran, Iran. ^cDepartment of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. * To whom correspondence should be sent, Email: <u>mousavi@chem.ucla.edu</u>

Electronic Supplementary Information (ESI†)

Synthesis of $CuCo_2O_4$ nanoparticles. All of the employed chemicals were purchased from Merck and used without any purification. Stoichiometric amounts of $Cu(NO_3)_2.3H_2O$ (0.032 mol) and $Co(NO_3)_2.3H_2O$ (0.064 mol) were dissolved in 50 ml doubly distilled water and mixed together. The obtained solution was sonicated in 50 °C for 1 h in an ultrasonic bath. Then, urea (0.192 mol) was added to the solution and temperature was raised to 80 °C and maintained at this temperature for 12 h to gradually evaporate the water. The obtained powder was ground and then calcined at 400 °C for 6 h in an electrical furnace.

Synthesis of $CuCo_2O_4$ microparticles. Stoichiometric amounts of copper and cobalt nitrates were dissolved in 50 ml doubly distilled water and mixed together. Then, 20 mL of 2 M NaOH solution was gradually added and stirred at 60 °C for 1 h. The obtained precipitation was filtered, washed and dried at 60 °C. The powder was ground and then calcined at 400 °C for 3 h.^{S1}

Characterization of the sample. The prepared samples were structurally characterized using powder X-ray diffraction (XRD, Philips X'pert diffractometer with CuK α radiation ($\lambda = 0.154$ nm) generated at 40 kV and 30 mA with a step size of 0.04 °s⁻¹). The crystalline size of the particles was calculated by Debye-Scherer equation:

$$d = K\lambda/(\beta \cos\theta) \tag{1}$$

where *d* is the particle dimension, *K* is the spherical shape factor (0.89), and β is the full width at half-maximum height (*fwhm*) of the respective peaks. The average crystallite size was obtained from (311), (511), and (440) peaks.

The structure of the prepared $CuCo_2O_4$ nanoparticles was also characterized with energy dispersive X-ray (EDX) analysis (Fig. S2).

The morphology of the samples were investigated by a Zeiss field-emission scanning electron microscope (FESEM). The FESEM images were further analyzed by Measurements software and size distribution of $CuCo_2O_4$ nanoparticles is shown in Fig. S1.

Nitrogen adsorption and desorption experiments were carried out by employing a Belsorp analyzer (Japan). The specific surface area was calculated using the Brunauer-Emmett-Teller (BET) method, and the porosity distribution was obtained from the desorption branch of the isotherm by the Barrett-Joyner-Halenda (BJH) analysis.

Electrochemical measurements. The electrochemical measurements of the prepared samples were performed in a three-electrode configuration in 3 M KOH electrolyte. The working electrodes were prepared by mixing active material, carbon black, and polyvinylidene fluoride (PVDF) (10% solution in N-methyl-2-pyrollidone) with a mass ratio of 75:20:5. A 5% solution of the mixture in isopropanol was sprayed on Ni foam as the current collector. The prepared electrodes were dried in 60 °C overnight. A Pt plate was used as the auxiliary electrode and Hg/HgO as the reference electrode. An Autolab PGSTAT30 was employed to measure electrochemical properties of the samples through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. A Solartron battery test unit equipped with Cell Test software (v. 3.5.0) was used for galvanostatic charge-discharge measurements.

Specific Capacitance, Specific Energy and Specific Power calculations. Specific capacitance of the electrode can be calculated through galvanostatic charge-discharge measurements using the following equation:

$$C_{sp} = \frac{I\Delta t}{m\Delta V} \tag{2}$$

where C_{sp} is the specific capacitance, *I* is the discharge current density in *A*, Δt is the discharge duration in *s*, *m* is the loaded mass of the active material in *g*, and ΔV is the potential range in *V*.

Specific energy can be derived from the galvanostatic discharge curves using the following equation:

$$SE = \frac{c_{sp}\Delta v^2}{2} \tag{3}$$

where C_{sp} is specific capacitance (F) and ΔV is the potential window (V). The specific power of the electrode can also be calculated from the following equation:

$$SP = \frac{I\Delta V}{m} \tag{4}$$

where *SP* is the specific energy, and Δt is the discharge time (*s*).

Table S1 Electrical parameters for $CuCo_2O_4$ nanostructures obtained from EIS measurements.

Circuit elements	Before Cycling	After 2000 Cycles	
ESR (Ω)	0.970	1.263	
$R_{ct}(\Omega)$	6.575	23.12	
n ₁	0.816	0.846	
<u>n</u> ₂	0.829	0.998	

Table S2 Comparison of specific power of some previously reported works on Co_3O_4 and CuO materials in supercapacitor applications with here presented $CuCo_2O_4$ nanoparticles.

Sample	Synthesis method	Electrolyte	Specific power (kW kg ⁻¹)	Ref (year)
Ultra-layered Co ₃ O ₄	Hydrothermal (template assisted)	1 M KOH	32	9 (2011)
Mesoporous Co ₃ O ₄ nanocubes	Hydrothermal (template assisted)	6 M KOH	2	S2 (2013)
mesoporous Co_3O_4 nanosheet arrays	Electrodeposition of hydroxides followed by a calcination process	2 M KOH	3.2	83 (2012)
Hierarchical Co ₃ O ₄ nanosheet@nanowire arrays	Urea precipitation followed with annealing	1 M KOH	1.74	S4 (2012)
Co_3O_4 nanowire	Hydrothermal	2 M KOH	11	S5 (2012)
CuO nanosheet	Chemical growth	6 M KOH	1.7	S6 (2011)
Nanostructured CuCo ₂ O ₄ cauliflower-like particles	Facile urea combustion	3 М КОН	22.11	current study

Fig. S1 Size distribution of CuCo₂O₄ nanoparticles, based on FESEM image (Fig. 1c).

500nm

Fig. S2 EDX spectrum of CuCo₂O₄ nanostructures along with the corresponding SEM image.

Fig. S3 N₂ adsorption desorption isotherm of CuCo₂O₄ nanostructures (A), and BJH pore size distribution based on desorption branch (B).

Fig. S5 CV curves for $CuCo_2O_4$ nanostructures at various scan rates ranged in 5-100 mV s⁻¹ in 3 M KOH.

Fig. S6 Relation between the anodic peak currents and square root of scan rate.

Fig. S7 The equivalent circuit employed for fitting of the experimental results.

References:

[S1] A. Pendashteh, M. S. Rahmanifar and M. F. Mousavi, Ultrason. Sonochem., 2014, 21, 643-652.

[S2] X. Liu, Q. Long, C. Jiang, B. Zhan, C. Li, S. Liu, Q. Zhao, W. Huang and X. Dong, *Nanoscale*, 2013, In press, DOI: 10.1039/c3nr00495c.

[S3] C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang and X. W. Lou, *Energy & Environmental Science*, 2012, 5, 7883-7887.

[S4] Q. Yang, Z. Lu, Z. Chang, W. Zhu, J. Sun, J. Liu, X. Sun and X. Duan, *RSC Advances*, 2012, **2**, 1663-1668.

[S5] X.-h. Xia, J.-p. Tu, Y.-q. Zhang, Y.-j. Mai, X.-l. Wang, C.-d. Gu and X.-b. Zhao, *RSC Advances*, 2012, **2**, 1835-1841.

[S6] G. Wang, J. Huang, S. Chen, Y. Gao and D. Cao, *Journal of Power Sources*, 2011, **196**, 5756-5760.