Supporting Information

Novel regio- and stereoselective phosphonyl radical addition of glycals promoted via Mn(II)/air: syntheses of 1,2-dideoxy 2-C-diphenylphosphinylglycopyranosides

Fuyi Zhang,*^{*a*} Liming Wang,^{*a*} Cui Zhang,^{*a*} and Yu-Fen Zhao*^{*a,b*}

^aThe College of Chemistry and Molecular Engineering, The Key Lab of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, China. Fax: +86-371-67763845 ; Tel: +86-371-67763845; E-mail: zhangfy@zzu.edu.cn, zicb@zzu.edu.cn. ^bCollege of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China

Contents:

1. Detailed Experimental Procedures and Characterization Data	2- 6
2. Crystal data for compound 2	7 — 7
3. Optimized structure and Cartesian coordinates of radical 11	8-9
4. Optimized structure and Cartesian coordinates of radical 12	10-11
5. The C-O <i>p</i> - <i>p</i> conjugation of radical 11 calculated at the B3LYP/6-31G(d)	level in
АсОН	12-12
6. ³¹ P-NMR, ¹ H-NMR, ¹³ C-NMR, DEPT-135, ¹ H- ¹ H COSY, HSQC, HMBC	C NMR
spectra of new compounds	13-53

1. Experimental Procedures and Characterization Data

(1) General information

Melting points were measured in open capillary tubes. Elemental analyses were carried out on a MOD 1106 analyzer. Infrared spectra were recorded on a Shimadzu IR-435 instrument in the 400–4000 cm⁻¹ region. NMR spectra were recorded with a Bruker DPX-400 spectrometer, proton NMR spectra were recorded on a Bruker 400 MHz spectrometer at ambient temperature. Internal reference of proton 7.26 was used for CDCl₃. Data were given as follows: chemical shift in ppm, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant (J/Hz). ¹³C NMR spectra were recorded at 100 MHz. Internal references of carbon 77.16 was used for CDCl₃. ³¹P NMR spectra were recorded at 162 MHz. The reactions were detected by thin layer chromatography using GF254 plates. Flash chromatography was performed with silica gel 60.

(2) Experimental procedures and Characterization Data

Diphenylphosphine oxide was prepared according to reported methods (K. Shioji, A. Matsumoto, M. Takao, *Bull. Chem. Soc. Jpn.*, 2007, **80**, 743). Mn(OAc)₃ was prepared according to reported methods (B. John, Jr Bush, H. Finkbeiner, *J. Am. Chem. Soc.*, 1968, **90**, 5903). Protected glycals were synthesized according to reported methods (N. Chatterjee, P. Pandit, S. Halder, A. Patra, D. K. Maiti, *J. Org. Chem.*, 2008, **73**, 7775)

General procedure for the syntheses of protected 1, 2-dideoxy-2-C-diphenyl phosphinylglycopyranoses

To a solution of protected glycals (9.0 mmol) and diphenylphosphine oxide (1.8 mmol) in 20 mL of acetic acid, $Mn(OAc)_2 \cdot 4H_2O$ (2.7 mmol) was added. The mixture was heated at 60 °C with stirring and a clear solution was gradually formed. After TLC (petroleum ether : EtOAc = 1 : 2 - 1 : 3) indicated the reaction was complete, water was added and the solution was extracted with EtOAc. The combined organic layers were washed with NaHCO₃ solution and brine, dried over Na₂SO₄ and then evaporated. Flash chromatography (petroleum ether : EtOAc = 1 : 1 - 1 : 3) gave the desired products.

To a solution of protected glycals (0.4 mmol) and diphenylphosphine oxide (0.8 mmol) in 2 mL of acetic acid, FeCl₃ or Cu(OTf)₂ (1.2 mmol) was added. The mixture was heated at 60 °C with stirring. TLC (petroleum ether : EtOAc = 1 : 2 - 1 : 3) showed no reaction took place. Several hours later, the glycals were gradually destroyed by heated AcOH. TLC showed there was no main spot on the TLC except the starting materials.

3, 4, 6-tri-O-acetyl-1, 2-dideoxy-2-C-diphenylphosphinyl-D-glucopyranose (2)

Colorless rod-like crystal, mp 256-257 °C; $[\alpha]_D^{20}$ +19.0° (*c* 0.5, CHCl₃); IR (KBr) cm⁻¹: 3059, 2913, 1744, 1441, 1376, 1251, 1230, 1138, 1066, 1038, 724, 704; ¹H

NMR (CDCl₃, 400 MHz) δ : 7.87-7.76 (4H, m, ArH), 7.47 (br s, 6H, ArH), 5.69-5.66 (m, 1H, H-3), 5.00 (t, 1H, $J_{4,3} = J_{4,5} = 9.6$ Hz, H-4), 4.26 (dd, $J_{6a,5} = 4.8$ Hz, $J_{6a,6b} = 12.4$ Hz, H-6a), 4.04 (dd, 1H, $J_{6b,5} = 1.6$ Hz, $J_{6b,6a} = 12.4$ Hz, H-6b), 3.90-3.86 (m, 1H, H-1a), 3.70 (dt, 1H, ${}^{3}J_{P,1b} = 2.0$ Hz, $J_{1b,1a} = J_{1b,2} = 12.0$ Hz, H-1b), 3.63-3.59 (m, 1H, H-5), 3.20-3.12 (m, 1H, H-2), 2.06, 1.96, 1.16 (each 3H, $3 \times CH_{3}CO$); ${}^{13}C$ NMR (CDCl₃, 100 MHz) δ : 170.71, 170.20, 169.22 ($3 \times CH_{3}CO$), 132.26 (d, $J_{C,P} = 99.1$ Hz, arom. C-P), 132.28 (d, $J_{Cp,P} = 3.0$ Hz, arom. C_{p} -H), 131.00 (d, $J_{Co,P} = 9.3$ Hz, arom. C_{o} -H), 131.04 (d, $J_{Cp,P} = 3.0$ Hz, arom. C_{o} -H), 129.08 (d, $J_{Cm,P} = 11.6$ Hz, arom. C_{m} -H), 128.78 (d, $J_{Cm,P} = 11.8$ Hz, arom. C_{m} -H), 76.55 (C-5), 70.22 (C-4), 70.12 (C-3), 65.93 (C-1), 62.44 (C-6), 41.15 (d, $J_{2,P} = 66.4$ Hz, C-2), 20.81, 20.73, 19.71 ($3 \times CH_{3}CO$). ${}^{31}P$ NMR (CDCl₃, 162 MHz) δ : 24.21; HRESIMS m/z: 475.1518 (Calcd for C24H2808P: M⁺ + H, 475.1522); *Anal.*: Calcd for C24H2708P: C, 60.76; H, 5.74. Found: C, 60.74; H, 5.69.

The structure of **2** was definitely characterized by spectroscopic data. The high-resolution ESI-MS spectrum of **2** displays the $[M + Na]^+$ peak at m/z 497.1343, indicating its formula to be $C_{24}H_{27}O_8P$. The ³¹P NMR shows one signal at 24.2 ppm, and the IR spectrum gives one P=O group absorption at 1230 cm⁻¹. The DEPT-135 spectrum gives secondary carbon signals at δ 62.3 ppm and 65.8 ppm, corresponding to C-6 and C-1. In the ¹H NMR spectrum, the proton at δ 3.72 (dt, $J_1 = 12.0$ Hz, $J_2 = 2.0$ Hz) is ascribed to the axial one of H-1. These coupling patterns indicate H-2 and newly formed diphenylphosphinyl group are bonded to C-2 in axial and equatorial positions, respectively. The proton that appeared as a multiplet at δ 3.20-3.12 ppm is assigned to H-2. The ¹³C NMR peak at δ 41.0 ppm as a doublet with coupling constant of 66.0 Hz is assigned to C-2. All the assignments were made on the basis of 2D NMR spectra. The structures of the following new compounds were also definitely characterized by spectroscopic data

3,4,6-tri-O-acetyl-1,2-dideoxy-2-C-diphenylphosphinyl-D-galactopyranose (3)

White foam, $[\alpha]_D^{20} - 24^0$ (*c* 0.5, CHCl₃); IR (KBr) cm⁻¹: 3091, 3063, 3028, 2943, 2870, 1750, 1440, 1373, 1241, 1166, 1056, 908, 722, 706, 581, 541; ¹H NMR (CDCl₃, 400 MHz) δ : 7.82-7.77 (m, 4H, ArH), 7.51-7.48 (m, 6H, ArH), 5.53-5.47 (m, 1H, H-3), 5.36 (br s, 1H, H-4), 4.06-4.03 (m, 1H, H-6), 3.94-3.91 (m, 1H, H-1b), 3.81-3.76 (m, 2H, H-1a, H-5), 3.23-3.20 (m, 1H, H-2), 2.14, 2.02, 1.24 (3 × s, each 3H, 3 × CH₃CO); ¹³C NMR (CDCl₃, 100 MHz) δ : 170.54, 170.06, 168.90 (3 × CH₃CO), 132.94 ((d, $J_{C, P} = 99.7$ Hz, arom. C-P), 132.24 (arom. C_{*p*}-H), 131.73 (d, J_{Cp} , P = 4.8 Hz, arom. C_{*p*}-H), 130.64 (d, $J_{Co, P} = 8.9$ Hz, arom. C_{*o*}-H), 128.99 (d, $J_{Cm, P} = 11.6$ Hz, arom. C_{*m*}-H), 128.61 (d, $J_{Cm, P} = 11.9$ Hz, arom. C_{*m*}-H), 74.99 (C-5), 68.52 (d, $J_{3,P} = 5.5$ Hz, C-3), 66.39 (d, $J_{4,P} = 7.5$ Hz, C-4), 65.86 (C-1), 62.26 (C-6), 36.28 (d, $J_{2,P} = 68.0$ Hz, C-2), 20.76, 19.65 (3 × CH₃CO); ³¹P NMR (CDCl₃, 162 MHz) δ : 26.19; HRESIMS *m/z*: 497.1341 (Calcd for C_{24H27}NaO₈P: M⁺ + Na, 497.1340). **3.4-di-O-acetyl-1,2-dideoxy-2-***C***-diphenylphosphinyl-L-arabinopyranose (4)**

White foam, $[\alpha]_D^{20}$ -4.0⁰ (*c* 1.0, CHCl₃); IR (KBr) cm⁻¹: 3057, 2978, 2855, 1746, 1438, 1374, 1244, 1190, 1162, 1062, 1023, 755, 722, 703, 547; ¹H NMR (CDCl₃, 400 MHz) δ : 7.82-7.78 (m, 4H, ArH), 7.49 (br s, 6H, ArH), 5.52-5.46 (m, 1H, H-3), 5.25 (br s, 1H, H-4), 3.94 (br d, 1H, *J* = 12.8 Hz, H-5a), 3.86 (br d, 1H, *J* = 12.0 Hz, H-1a), 3.72-3.59 (m, 2H, H-1b, H-5b), 3.29-3.23 (m, 1H, H-2), 2.14, 1.26 (2 × s, each 3H, 2 × CH₃CO); ¹³C NMR (CDCl₃, 100 MHz) δ : 170.20, 169.00 (2 × CH₃CO), 132.84 (d, *J*_{C, P} = 99.8 Hz, arom. C-P), 132.20 (d, *J*_{Cp, P} = 2.2 Hz, arom. C_p-H), 131.93 (d, *J*_{C, P} = 81.6 Hz, arom. C-P), 131.74 (d, *J*_{Cp, P} = 2.2 Hz, arom. C_p-H), 130.69 (d, *J*_{Co, P} = 2.8 Hz, arom. C_o-H), 128.59 (d, *J*_{Cm, P} = 12.0 Hz, arom. C_m-H), 68.63 (C-5), 68.00 (d, *J*_{3, P} = 5.2 Hz, C-3), 66.35 (d, *J*_{4,P} = 7.0 Hz, C-4), 65.82 (d, *J*_{1, P} = 2.1 Hz, C-1), 36.74 (d, *J*₂, P = 68.0 Hz, C-2), 21.08, 19.73 (2 × CH₃CO); ³¹P NMR (CDCl₃, 162 MHz) δ : 26.84; HRESIMS *m*/*z*: 403.1329 (Calcd for C₂₁H₂₄O₆P: M⁺ + H, 403.1311); *Anal*.: Calcd for C₂₁H₂₃O₆P: C, 62.68; H, 5.76. Found: C, 62.65; H, 5.71.

3,4-di-O-acetyl-1,2-dideoxy-2-C-diphenylphosphinyl-D-xylopyranose (5)

Yellow syrup, $[\alpha]_D^{20}$ +9.8⁰ (*c* 0.5, CHCl₃); IR (film) cm⁻¹: 3053, 2924, 2853, 1750, 1439, 1369, 1243, 1185, 1054, 723, 700, 550; ¹H NMR (CDCl₃, 400 MHz) δ : 7.88-7.76 (m, 4H, ArH), 7.51 (br s, 6H, ArH), 5.64 (dd, 1H, J_1 = 8.8 Hz, J_2 = 19.2 Hz, H-3), 5.00-4.94 (m, 1H, H-4), 3.99 (dd, 1H, $J_{5a,4}$ = 5.2 Hz, $J_{5a,5b}$ = 10.8 Hz, H-5a), 3.83 (br d, 1H, J = 12.0 Hz, H-1a), 3.61 (t, 1H, $J_{1b,1a}$ = $J_{1b,2}$ = 11.6 Hz, H-1b), H-1b, H-5b), 3.28 (t, 1H, $J_{5b,4}$ = $J_{5b,5a}$ = 10.8 Hz, H-5b), 3.12-3.04 (m, 1H, H-2), 1.96, 1.18 (2 × s, each 3H, 2 × CH₃CO); ¹³C NMR (CDCl₃, 100 MHz) δ : 170.40, 169.20 (2 × CH₃CO), 132.23 (d, $J_{Cp,P}$ = 98.9 Hz, arom. C-P), 132.22 (d, $J_{Cp,P}$ = 2.6 Hz, arom. C_{*p*}-H), 131.90 (d, $J_{Cp,P}$ = 2.7 Hz, arom. C_{*p*}-H), 130.65 (d, $J_{Co,P}$ = 9.1 Hz, arom. C_{*p*}-H), 129.00 (d, $J_{Cm,P}$ = 11.7 Hz, arom. C_{*n*}-H), 128.74 (d, $J_{Cm,P}$ = 11.9 Hz, arom. C_{*m*}-H), 70.81 (d, J_{4P} = 10.2 Hz, C-4), 69.61 (d, $J_{3,P}$ = 5.2 Hz, C-3), 67.86 (C-5), 66.31 (d, $J_{1,P}$ = 2.9 Hz, C-1), 41.11 (d, $J_{2,P}$ = 66.5 Hz, C-2), 20.86, 19.76 (2 × CH₃CO); ³¹P NMR (CDCl₃, 162 MHz) δ : 24.40; HRESIMS *m*/*z*: 402.1230 (Calcd for C₂₁H₂₃O₆P: M⁺, 402.1232); *Anal.*: Calcd for C₂₁H₂₃O₆P: C, 62.68; H, 5.76. Found: C, 62.73; H, 5.79.

3,4,6-tri-O-benzyl-1,2-dideoxy-2-C-diphenylphosphinyl-D-glucopyranose (6)

Yellow syrup, $[\alpha]_D{}^{20} - 32^0$ (c = 0.5 in CHCl₃); IR (film) cm⁻¹: 3056, 2901, 2856,

1443, 1359, 1180, 1123, 1089, 1021, 917, 860, 744, 696, 546, 516; ¹H NMR (CDCl₃, 400 MHz) δ: 7.93-7.88 (m, 2H, ArH), 7.73-7.68 (m, 2H, ArH), 7.45-7.26 (m, 15H, ArH), 7.11-7.02 (m, 4H, ArH), 6.54 (d, 2H, J = 6.8 Hz, ArH), 4.77-4.71 (m, 3H, PhCH₂, PhCH), 4.60 (d, 1H, J = 12.0 Hz, PhCH), 4.50 (d, 1H, B of AB, J = 11.2 Hz, PhCH_B), 4.48 (d, 1H, A of AB, J = 12.0 Hz, PhCH_A), 4.34-4.27 (m, 1H, H-3), 3.79 (t, 1H, $J_{4,3} = J_{4,5} = 9.6$ Hz, H-4), 3.70-3.60 (m, 4H, H-6, H-1), 3.45-3.42 (m, 1H, H-5), 3.10-3.07 (m, 1H, H-2); ¹³C NMR (CDCl₃, 100 MHz) δ: 138.20, 137.99, 137.87 (arom. C-CH₂O), 133.73 (d, $J_{C,P}$ = 100.4 Hz, arom. C-P), 132.74 (d, $J_{C,P}$ = 96.9 Hz, arom. C-P), 131.69 (d, $J_{Cp, P} = 2.5$ Hz, arom. C_p -H), 131.37 (d, $J_{Cp, P} = 2.7$ Hz, arom. C_p -H), 130.64 (d, $J_{Co, P} = 3.8$ Hz, arom. C_o -H), 130.55 (d, $J_{Co, P} = 4.0$ Hz, arom. Co-H), 128.79 (d, J_{Cm, P} = 11.5 Hz, arom. C_m-H), 128.58 (d, J_{Cm, P} = 12.1 Hz, arom. C_m-H), 128.47, 128.42, 128.06, 127.83, 127.81, 127.69, 127.56, 127.32, 127.01 (arom. C-H), 80.15 (d, $J_{4,P} = 10.0$ Hz, C-4), 79.87 (d, $J_{3,P} = 6.0$ Hz, C-3), 79.62 (C-5), 74.97, 74.66, 73.66 (3 × PhCH₂O), 68.80 (C-6), 66.30 (d, $J_{1, P}$ = 4.1 Hz, C-1), 42.42 (d, $J_{2, P}$ = 67.9 Hz, C-2); ³¹P NMR (CDCl₃, 162 MHz) δ : 30.09; HRESIMS *m/z*: 641.2429 (Calcd for C₃₉H₃₉NaO₅P: M⁺+Na, 641.2433).

3,4,6-tri-*O***-benzyl-1,2-deoxy-2***-C***-diphenylphosphinyl-D-galactopyranose (7)**

Yellow syrup, $[\alpha]_D^{20}$ +25.5⁰ (c 0.5, CHCl₃); IR (film) cm⁻¹: 3056, 2977, 2855, 1439, 1374, 1438, 1243, 1190, 1161, 1023, 756, 706, 550; ¹H NMR (CDCl₃, 400 MHz) δ: 7.90-7.85 (m, 2H, ArH), 7.74-7.70 (m, 2H, ArH), 7.44-7.09 (m, 19H, ArH), 7.11-7.02 (m, 4H, ArH), 6.76 (d, 2H, J = 7.2 Hz, ArH), 4.81 (d, 1H, B of AB, J = 11.6 Hz, PhCH_B), 4.61 (d, 1H, B' of AB', J = 11.2 Hz, PhCH_{B'}), 4.54-4.47 (d, 3H, A of AB, PhCH_A, PhCH₂), 4.44 (d, 1H, A' of AB', *J* = 11.2 Hz, PhCH_{A'}), 4.28 (br t, 1H, J = 8.0 Hz, H-3), 4.00 (br s, 1H, H-4), 3.67-3.50 (m, 6H, H-1, H-6, H-2, H-5); ¹³C NMR (CDCl₃, 100 MHz) δ : 138.38, 137.74, 137.32 (arom. C-CH₂O), 133.33 (d, $J_{C, P}$ = 102.9 Hz, arom. C-P), 131.68 (br s, arom. C_p -H), 131.22 (d, $J_{Cp, P} = 1.9$ Hz, arom. C_p -H), 130.58 (d, $J_{Co, P} = 7.8$ Hz, arom. C_o -H), 130.49 (d, $J_{Co, P} = 7.9$ Hz, arom. Co-H), 128.65 (d, $J_{Cm, P} = 11.7$ Hz, arom. C_m -H), 128.24 (d, $J_{Cm, P} = 11.6$ Hz, arom. C_m-H), 128.36, 128.33, 127.88, 127.84, 127.73, 127.68, 127.18, 127.04 (arom. C-H), 78.79 (d, $J_{3, P} = 5.9$ Hz, C-3), 77.70 (C-5), 74.77, 73.43 (2 × PhCH₂O), 72.12 (d, $J_{4, P}$ = 7.3 Hz, C-4), 71.25 (PhCH₂O), 69.17 (C-6), 65.93 (d, $J_{1,P}$ = 3.4 Hz, C-1), 37.07 (d, $J_{2, P} = 72.0$ Hz, C-2); ³¹P NMR (CDCl₃, 162 MHz) δ : 31.25; HRESIMS *m/z*: 641.2431 (Calcd for C₃₉H₃₉NaO₅P: M⁺+Na, 641.2433).

3,4-di-O-benzyl-1,2-deoxy-2-C-diphenylphosphinyl-L-arabinopyranose (8)

White solid, mp 73-75 0 C; $[\alpha]_{D}^{20}$ +41 0 (*c* 0.5, CHCl₃); IR (KBr) cm⁻¹: 3057, 3031,

2977, 2856, 1437, 1404, 1357, 1168, 1119, 1027, 748, 719, 695, 553, 537; ¹H NMR (CDCl₃, 400 MHz) δ: 7.86-7.81 (m, 2H, ArH), 7.75-7.70 (m, 2H, ArH), 7.45-7.12 (m, 14H, ArH), 6.80 (d, 2H, J = 6.8 Hz, ArH), 4.67 (s, 2H, PhCH₂), 4.43 (d, 1H, B of AB, J = 11.2 Hz, PhCH_B), 4.31 (d, 1H, A of AB, J = 11.2 Hz, PhCH_A), 4.18-4.14 (m, 1H, H-3), 4.01 (br d, 1H, J = 12.0 Hz, H-1a), 3.78 (br s, 1H, H-4), 3.71-3.66 (m, 1H, H-5a), 3.58 (dt, $J_1 = 2.8$ Hz, $J_2 = 11.6$ Hz, H-5b), 3.48-3.42 (m, 1H, H-2), 3.37 (br d, J = 11.6 Hz, H-1b); ¹³C NMR (CDCl₃, 100 MHz) δ : 138.42, 137.67 (arom. C-CH₂O), 132.53 (d, $J_{C, P} = 48.9$ Hz, arom. C-P), 131.82 (d, $J_{Cp, P} = 2.4$ Hz, arom. C_p -H), 131.40 (d, $J_{C_{p,P}} = 2.7$ Hz, arom. C_{p} -H), 130.81 (d, $J_{C_{0,P}} = 8.9$ Hz, arom. C_{o} -H), 130.72 (d, $J_{Co, P} = 9.1$ Hz, arom. Co-H), 128.82 (d, $J_{Cm, P} = 11.7$ Hz, arom. C_m-H), 128.40 (d, $J_{Cm, P}$ P = 12.1 Hz, arom. C_m -H), 128.43, 128.00, 127.93, 127.74, 127.42, 127.20 (arom. C-H), 76.80 (d, $J_{3,P} = 5.0$ Hz, C-3), 72.0 (PhCH₂O), 71.32 (d, $J_{4,P} = 6.8$ Hz, C-4), 71.01 (PhCH₂O), 68.54 (C-1), 66.02 (C-5), 37.69 (d, $J_{2, P} = 70.3$ Hz, C-2); ³¹P NMR (CDCl₃, 162 MHz) δ: 30.68; HRESIMS *m/z*: 499.2039 (Calcd for C₃₁H₃₂O₄P: M⁺+H, 499.2038).

3,4-di-O-benzyl -1,2-deoxy-2-C-diphenylphosphinyl-D-xylopyranose (9)

BnO BnO O=PPh₂

White solid, mp 99-101 0 C; $[\alpha]_{D}{}^{20}$ +9.1 0 (*c* 0.5, CHCl₃); IR (KBr) cm⁻¹: 3056, 3029, 2968, 2905, 2853, 1589, 1437, 1359, 1262, 1181, 1116, 1072, 1002, 936, 905, 745, 720, 696, 546, 524; ¹H NMR (CDCl₃, 400 MHz) δ: 7.89-7.84 (m, 2H, ArH), 7.74-7.69 (m, 2H, ArH), 7.43-7.03 (m, 14H, ArH), 6.60 (d, 2H, J = 7.2 Hz, ArH), 4.80 (d, 1H, B of AB, J = 10.8 Hz, PhCH_B), 4.64 (d, 1H, B' of AB', J = 12.0 Hz, PhCH_{B'}), 4.57 (d, 1H, A' of AB', J = 12.0 Hz, PhCH_{A'}), 4.51 (d, 1H, A of AB, J =10.4 Hz, PhCH_A), 4.21 (dd, 1H, $J_1 = 8.4$ Hz, $J_2 = 18.8$ Hz, H-3), 3.98 (dd, 1H, $J_{5a,4} =$ 5.2 Hz, $J_{5a, 5b} = 11.2$ Hz, H-5a), 3.70-3.64 (m, 1H, H-4), 3.56-3.50 (m, 1H, H-1), 3.18 (t, 1H, $J_{5b, 5a} = J_{5b, 4} = 11.2$ Hz, H-5b), 3.00-2.93 m, 1H, H-2); ¹³C NMR (CDCl₃, 100 MHz) δ: 138.22, 138.04 (arom. C-CH₂O), 133.42 (d, J_{C, P} = 91.7 Hz, arom. C-P), 132.44 (d, $J_{C, P} = 87.4$ Hz, arom. C-P), 131.71 (d, $J_{Cp, P} = 2.4$ Hz, arom. C_p -H), 131.40 (d, $J_{Cp, P} = 2.5$ Hz, arom. C_p -H), 130.70 (d, $J_{Co, P} = 2.7$ Hz, arom. C_o -H), 130.61 (d, $J_{Co, P} = 2.5$ Hz, arom. Co-H), 128.80 (d, $J_{Cm, P} = 11.6$ Hz, arom. C_m-H), 128.49 (d, $J_{Cm, P}$ $_{\rm P}$ = 11.9 Hz, arom. C_m-H), 128.46, 127.83, 127.81, 127.69, 127.64, 127.05 (arom. C-H), 80.50 (d, $J_{4, P}$ = 10.1 Hz, C-4), 78.60 (d, $J_{3, P}$ = 5.7 Hz, C-3), 74.78, 73.05 (2 × PhCH₂O), 69.00 (C-5), 66.75 (d, $J_{1, P} = 3.7$ Hz, C-1), 42.17 (d, $J_{2, P} = 68.0$ Hz, C-2); ³¹P NMR (CDCl₃, 162 MHz) δ: 27.98; HRESIMS *m/z*: 521.1856 (Calcd for C31H31NaO4P: M⁺+Na, 521.1858).

Crystal data and structure refinement for 2.

Empirical formula	C24 H27 O8 P		
Formula weight	474.43		
Temperature	293(2) K		
Wavelength	1.54184 Å		
Crystal system	Hexagonal,		
Space group	P6(1)		
Unit cell dimensions	$a = 11.64595(8) \text{ Å} \qquad \alpha = 90^{\circ}$		
	$b = 11.64595(8) \text{ Å} \qquad \beta = 90^{\circ}$		
	$c = 31.3727(3) \text{ Å} \qquad \gamma = 120^{0}$		
Volume	3684.96(5) Å ³		
Z	6		
Density (calculated)	1.283 Mg/m ³		
Absorption coefficient	1.382 mm^{-1}		
F(000)	1500		
Crystal size	0.20 x 0.15 x 0.15 mm		
Theta range for data collection	4.38 to 67.22°.		
Limiting indices	-13<=h<=13, -13<=k<=12, -37<=l<=35		
Reflections collected / unique	19381 / 4240 [R(int) = 0.0264]		
Completeness to theta = 67.22°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.8195 and 0.7696		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4240 / 1 / 300		
Goodness-of-fit on F ²	1.033		
Final R indices [I>2sigma(I)]	R1 = 0.0365, wR2 = 0.0978		
R indices (all data)	R1 = 0.0384, $wR2 = 0.0995$		
Absolute structure parameter	0.03(2)		
Largest diff. peak and hole	0.207 and -0.172 e.Å ⁻³		

Optimized structures and Cartesian coordinates of radical 11

11 Energy = -1872. 90898a. u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1		0	-2. 183109	-0. 206722	-0. 675759
2	6	0	-0. 147560	-2.054552	-0. 411322
3	1	0	-0.822400	-2.857763	-0.140741
4	6	0	-0.477769	-0.635433	-0.032777
5	1	0	-0.479841	-0.514123	1.065945
6	6	0	0.573214	0.345030	-0.593269
7	1	0	0. 428223	0.510554	-1.663240
8	6	0	1.977322	-0.206069	-0.334682
9	1	0	2.167892	-0.265389	0.738374
10	6	0	2.121244	-1.591155	-0.979027
11	1	0	1.930266	-1.510373	-2.058635
12	6	0	3. 493149	-2.219753	-0.804468
13	1	0	3.455122	-3.261496	-1.133839
14	1	0	4.235935	-1.679016	-1.390936
15	6	0	5.076659	-1.665211	0.905947
16	6	0	5.281622	-1.660352	2.397801
17	1	0	6.347050	-1.587843	2.621191

18	1	0	4.850386	-2.549894	2.862248
19	1	0	4.775628	-0.778471	2.807469
20	6	0	3.787124	1.360674	-0.120751
21	6	0	4.786568	2.141135	-0.930658
22	1	0	4.314735	2.594901	-1.805480
23	1	0	5.560695	1.448989	-1.281261
24	1	0	5.250118	2.903994	-0.304063
25	6	0	0.459084	2.751088	-0.637993
26	6	0	0.337808	3.947715	0.269899
27	1	0	-0.623778	3.921025	0.792511
28	1	0	0.412025	4.862061	-0.319501
29	1	0	1.127185	3.924221	1.027634
30	6	0	-2.748041	1.265512	0.252625
31	6	0	-2.689354	1.379345	1.650422
32	1	0	-2.267899	0.583500	2.257580
33	6	0	-3.168286	2.526938	2.281957
34	1	0	-3.117059	2.607637	3.364055
35	6	0	-3.710907	3.569952	1.524845
36	1	0	-4.084521	4.462105	2.019718
37	6	0	-3.770914	3.463557	0.134133
38	1	0	-4.189554	4.272459	-0.457970
39	6	0	-3.291170	2.315947	-0. 500987
40	1	0	-3.327520	2.227519	-1.582196
41	6	0	-3.267286	-1.591725	-0.174615
42	6	0	-4.104584	-2.132032	-1.160789
43	1	0	-4.060614	-1.731866	-2.168923
44	6	0	-4.977342	-3.175762	-0.847484
45	1	0	-5.622724	-3.588741	-1.617625
46	6	0	-5.016834	-3.688784	0.450126
47	1	0	-5.694486	-4.502395	0.693396
48	6	0	-4.181433	-3.158017	1.437164
49	1	0	-4.206403	-3.558472	2.446631
50	6	0	-3.310876	-2.112885	1.128541
51	1	0	-2.664916	-1.718273	1.907855
52	8	0	-2.204091	0.025181	-2.165538
53	8	0	0.557284	2.781100	-1.844360
54	8	0	0. 439690	1.601352	0.096601
55	8	0	2.948853	0.663349	-0.940393
56	8	0	1.152588	-2.481678	-0. 406994
57	8	0	3.877131	-2.216202	0.584584
58	8	0	5.852608	-1.211433	0.089801
59	8	0	3.733995	1.317704	1.089843

Optimized structures and Cartesian coordinates of radical 12

12 Energy = -1872. 903415a. u.

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	15	0	-2. 343776	-1. 118146	-0. 797983
2	6	0	-0.956849	-0.039400	-1.510850
3	1	0	-1.314351	0.150715	-2.543547
4	6	0	-0.721358	1.249433	-0.810307
5	1	0	-1.547398	1.948142	-0.725429
6	6	0	0.647826	1.758271	-0.511007
7	1	0	0.904450	2.590668	-1.179216
8	6	0	1.722785	0.679151	-0.632404
9	1	0	1.760600	0.072424	0.272607
10	6	0	1.409098	-0.226737	-1.832633
11	1	0	1.307881	0.376952	-2.748987
12	6	0	2.469781	-1.279709	-2.108939
13	1	0	2.096913	-1.974426	-2.866162
14	1	0	3. 389042	-0.811573	-2. 461689
15	6	0	4.035827	-2.153086	-0.521139
16	6	0	4.135491	-2.908072	0.777998
17	1	0	5.141109	-3.316589	0.888443
18	1	0	3. 387837	-3.702177	0.834776

19	1	0	3.949340	-2.202285	1.595710
20	6	0	3.939774	1.200633	0.145522
21	6	0	5.235485	1.833695	-0.285849
22	1	0	5.060105	2.739480	-0.870570
23	1	0	5.770582	1.115159	-0.917502
24	1	0	5.845596	2.053577	0.591302
25	6	0	0.923914	3.614990	1.013461
26	6	0	0.962461	3.963657	2.479829
27	1	0	0.008193	3.707472	2.951132
28	1	0	1.159727	5.029409	2.597866
29	1	0	1.742622	3.381196	2.980132
30	6	0	-3.743588	0.030785	-0.553423
31	6	0	-3.949679	0.773372	0.619372
32	1	0	-3.274213	0.667508	1.462310
33	6	0	-5.039006	1.640032	0.718364
34	1	0	-5.194217	2.207569	1.631595
35	6	0	-5.931243	1.770596	-0.348671
36	1	0	-6.779328	2.444831	-0.267560
37	6	0	-5.738365	1.026863	-1.515106
38	1	0	-6.436381	1.118042	-2.342492
39	6	0	-4.651599	0.158004	-1.617309
40	1	0	-4.512256	-0. 438459	-2.513871
41	6	0	-1.771850	-1.705494	0.830047
42	6	0	-2.043577	-3.048049	1.133486
43	1	0	-2.551845	-3.664776	0.399134
44	6	0	-1.651774	-3.585459	2.360133
45	1	0	-1.866673	-4.626071	2.586246
46	6	0	-0.980470	-2.789169	3.289976
47	1	0	-0.672919	-3.208154	4.244108
48	6	0	-0.697424	-1.454198	2.990299
49	1	0	-0.165996	-0.834769	3.707130
50	6	0	-1.089871	-0.911007	1.766019
51	1	0	-0.848793	0.125127	1.545685
52	8	0	-2.696896	-2.242551	-1.737547
53	8	0	1.080928	4.394715	0.097632
54	8	0	0.684333	2.287318	0.848417
55	8	0	2.999412	1.315622	-0.834089
56	8	0	0.179474	-0.894344	-1.547991
57	8	0	2.742916	-2.041447	-0.917175
58	8	0	4.973089	-1.672306	-1.126533
59	8	0	3. 749529	0.631566	1.199457

The C-O p-p conjugation of radical 11 calculated at the B3LYP/6-31G(d) level in AcOH.

17

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

