Electronic Supplementary Information

Conformational modulation of peptide secondary structures using β-aminobenzenesulfonic acid

Sangram S. Kale,^a Shrikant M. Kunjir,^b Rupesh L. Gawade,^c Vedavati G. Puranik,^c P. R. Rajamohanan,^b Gangadhar J. Sanjayan^{* a}

^aDivision of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India. Fax: +91-020-2590-2629; Tel+91-020-2590-2082; E-mail: <u>gj.sanjayan@ncl.res.in</u> ^bCentral NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.

^cCenter for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.

Contents	S1
General methods	S2
Synthetic schemes	S3-S4
Experimental procedure	S-5-S10
Mass spectra of 1a , 2a , e , b , 3 , 4a , 5a , 6 , 8 and 10	S11-S15
¹ H NMR spectra of 1a , 2a , e , b , 3 , 4a , 5a , 6 , 8 and 10	S16-S20
¹³ C and DEPT-135 spectra of 1a , 2a , e , b , 3 , 4a , 5a , 6 , 8 and 10	S21-S30
DMSO Titration and Variable Temperature study of compounds 2a , 2b , and 5a . Dilution study of 2a , and 5a .	S31-S34
2D COSY, TOCSY, HSQC, HMBC and NOESY spectra of 2a	\$35-\$37
2D COSY, TOCSY, HSQC, HMBC and NOESY spectra of 2f	S38-S39
2D COSY, HSQC, HMBC, and NOESY spectra of 5a	S40-S43
CD spectra of $(Aib-^{S}Ant-Pro)_{n}$ oligomers 4a , 5a and 6	S43

General Methods

Unless otherwise stated, all the chemicals and reagents were obtained commercially. Dry solvents were prepared by the standard procedures. Analytical Thin Layer Chromatography was done on precoated silica gel plates (Kieselgel $60F_{254}$, Merck). Unless otherwise stated Column Chromatographic purifications were done with 100-200 and 230-400 Mesh Silica gel. NMR spectra were recorded in CDCl₃ on 400 MHz and 500 MHz spectrometers. All chemical shifts are reported in δ ppm downfield to TMS and peak multiplicities as singlet (s), doublet (d), quartet (q), broad singlet (bs), and multiplet (m). The titration studies were done in CDCl₃ and CD₃CN. Elemental analyses were performed on an Elmentar-Vario-EL (Heraeus Company Ltd., Germany). IR spectra were recorded in CHCl₃ using Shimadzu FTIR-8400 spectrophotometer. Melting points were determined on a Buchi Melting Point B-540. All the spectra has been arranged according to scheme 1 and 2.

Scheme 1. Synthesis of (Ant-^SAnt-Aib)_n oligomers

Reagents and conditions: (i) H_2 , Pd/C, 60 psi, 12 h; (ii) 2-bromo-2-methylpropanoyl bromide, Et₃N, DCM, rt, 12 h; (iii) NaN₃, DMF, 70 °C, 12 h; (iv) LiOH, MeOH-H₂O, 50 °C, 24 h; (v) H₂, Pd/C, 1 atm, 8 h; (vi) HATU, HOBt, DIPEA, CH₃CN, rt, 12 h; (vii) Methanolic methylamine, rt, 3 day.

Scheme 2. Synthesis of $(Ant-{}^{S}Ant-Pro)_{n}$ oligomers

Reagents and conditions: (i) H_2 , Pd/C, 60 psi, 12 h; (ii) 2-bromo-2-methylpropanoyl bromide, Et₃N, DCM, rt, 12 h; (iii) NaN₃, DMF, 70 °C, 12 h; (iv) LiOH, MeOH-H₂O, 50 °C, 24 h; (v) H₂, Pd/C, 1 atm, 8 h; (vi) EDC.HCl, HOBt, CH₃CN, rt, 12 h; (vii) EDC.HCl, HOBt, dry DCM, rt, 12 h.

Experimental procedures

Crystal data for 2a:

Single crystals of **2a** were grown by slow evaporation of the solution in MeOH, colorless needle like crystal of approximate size 0.4 x 0.22 x 0.16 mm³, was used for data collection. Multirun data acquisition. Total scans = 8, total frames = 2391, exposure / frame = 10.0 sec / frame, θ range = 1.61 to 25.00°, completeness to θ of 25.00 ° is 99.9%, C₂₉H₄₀N₈O₉S₂, *MW* = 708.81, Crystals belong to triclinic, space group P-1, *a* = 11.0060(1), *b* = 12.6495(2), *c* = 13.3854(2) Å, V = 1765.00(4) Å³, Z = 2, D_c = 1.334 g/cc, μ (Mo–K_{α}) = 0.212 mm⁻¹, 24792 reflections measured, 6201 unique [I>2 σ (I)], R1 = 0.0427, wR2 = 0.1186. Largest diff. peak and hole 0.321 and -0.281 e.Å⁻³.

Crystal data for 5b:

Single crystals of **5b** were grown by slow evaporation of the solution in DCM, colorless needle like crystal of approximate size 0.4 x 0.2 x 0.09 mm³, was used for data collection. Multirun data acquisition. Total scans = 3, total frames = 1059, frame = 25.0 sec / frame, θ range = 1.58 to 25.00°, completeness to θ of 25.00° is 100.0 %, C₃₀H₃₈N₈O₉S₂, *MW* = 718.80, Crystals belong to monoclinic, space group P21, *a* = 12.9152(3), *b* = 7.5313(2), *c* = 17.4463(4) Å, V = 1691.71(7) Å³, *Z* = 2, D_c = 1.411 g/cc, μ (Mo–K_{α}) = 0.222 mm⁻¹, 13097 reflections measured, 5613 unique [I>2 σ (I)], R value *R1* = 0.0486, *wR2* = 0.0919. Largest diff. peak and hole 0.352 and -0.322 e.Å⁻³. Flack parameter = -0.0596. The proline at C-terminal has disorder and the disorder of C28 and C28' have been refined isotropically.

Methyl-2-(2-(2-bromo-2-methylpropanamido) phenylsulfonamido)-2-methyl propanoate 8:

To a solution of **7b** (3.0 g, 11.0 mmol) in dry DCM (25 mL) was added dry Et₃N (1.99 mL, 14.3 mmol) at 0 °C followed by slow addition of 2-bromo-2-methylpropanoyl bromide (1.49 mL, 12.1 mmol). The solution was warm to room temperature and stirred for 12 h. The reaction mixture was washed sequentially with sat. NaHCO₃, water and brine. Organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which on purification by column chromatography (eluent: pet ether/ethyl acetate: 50:50, R*f*: 0.55) yielded **8** (3.9 g, 84%); IR (CHCl₃) v (cm⁻¹) 3445, 3020, 1739, 1695, 1641, 1588, 1399, 1216, 1021, 770; ¹H NMR (500 MHz, CDCl₃) δ : 9.83 (s, 1H), 8.27-8.25 (d, *J* = 8 Hz, 1H), 7.92-7.90 (d, *J* = 8 Hz, 1H), 7.60-7.57 (t, *J* = 7 Hz, 1H), 7.26-7.23 (t, *J* = 7 Hz, 1H), 5.73 (s, 1H), 3.58 (s, 3H), 2.08 (s, 6H), 1.41 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ : 173.7, 170.1, 135.3, 133.9, 130.2, 129.1, 124.4, 123.4, 60.9, 59.2, 53.0, 31.7, 25.6; LC-MS: 443.01 (M+Na)⁺; Anal. Calcd. for C₁₅H₂₁BrN₂O₅S: C, 42.76; H, 5.02; N, 6.65; Found: C, 43.12; H, 4.79; N, 6.23.

Tripeptide 1a:

To a stirred solution of **8** (0.28 g, 0.66 mmol) in dry DMF (5 mL) was added NaN₃ (0.13 g, 2.0 mmol) and resulting reaction mixture was heated to 70 °C for 12 h. The reaction mixture was cooled to room temperature, EtOAc (25 mL) was added to reaction mixture and organic layer was washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which on purification by column chromatography (eluent: pet ether/ethyl acetate: 50:50, R*f*: 0.55) yielded **1a** (0.18 g, 71%); mp: 78-80 °C; IR (CHCl₃) v (cm⁻¹) 3436, 3020, 2119, 1731, 1698, 1585, 1328, 1217, 1159, 770; ¹H NMR (400 MHz, CDCl₃) δ : 9.87 (s, 1H), 8.31-8.29 (d, *J* = 8 Hz, 1H), 7.91-7.89 (d, *J* = 8 Hz, 1H), 7.58-7.54 (t, *J* = 7 Hz, 1H), 7.24-7.20 (t, *J* = 7 Hz, 1H), 5.76 (s, 1H), 3.61 (s, 3H), 1.65 (s, 6H), 1.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 174.0, 170.9, 134.9, 133.8, 130.4, 129.0, 124.3, 123.2, 64.8, 59.1, 53.0, 25.5, 24.4; LC-MS: 406.06 (M+Na)⁺; Anal. Calcd. for C₁₅H₂₁N₅O₅S: C, 46.99; H, 5.52; N, 18.27; Found: C, 47.31; H, 5.48; N, 17.85.

Tripeptide acid 1b:

To the solution of ester **1a** (0.12 g, 0.3 mmol) in THF (6 mL), LiOH·H₂O (0.05 g, 1.2 mmol) was added in water (1 mL) at room temperature. Reaction was heated at 50 °C for 24 h. The solvent was evaporated under vacuum and free acid was liberated by treating with dil. HCl solution followed by extraction with DCM (2 × 10 mL). The residue of **1b** obtained after evaporation of the solvent under vacuum was carried forward for the next reaction.

Tripeptide amine 1c:

To a solution of 1a (0.13 g, 0.34 mmol) in methanol (6 mL) was added 10% Pd/C (0.015 g). The reaction mixture was stirred at 1 atm under hydrogen atmosphere for 8 h. The catalyst was filtered through celite and filtrate was evaporated to get product 1c, which was carried forward to the next reaction without further purification.

Hexapeptide 2a:

A solution containing acid **1b** (1.45 g, 3.93 mmol) and amine **1c** (1.54 g, 4.32 mmol) in dry CH₃CN (20 mL) was cooled to 0 °C. To the reaction mixture was added HATU (2.24 g, 5.89 mmol) followed by HOBt (0.3 g, 1.9 mmol) and DIPEA (1.34 mL, 7.85 mmol). The reaction mixture was stirred at 0 °C for 10 minutes then at room temperature for 12 h. After completion of reaction solvent was stripped off to furnish thick liquid which was dissolved in 30 mL DCM and washed sequentially with sat. NaHCO₃, water, dil. HCl and brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which on purification by column chromatography (eluent: pet ether/ethyl acetate: 50:50, R*f*: 0.3) yielded **2a** (1.71 g, 62%); mp: 143-145 °C; IR (CHCl₃) v (cm⁻¹) 3368, 3027, 2121, 1739, 1698, 1657, 1580, 1322, 1217, 1020, 770; ¹H NMR (500 MHz, CDCl₃) δ : 9.75 (s, 1H), 9.36 (s, 1H), 8.34-8.32 (d, *J* = 8 Hz, 1H), 8.04-8.02 (d, *J* = 8 Hz, 1H), 7.99-7.97 (d, *J* = 8 Hz, 1H), 7.83-7.81

(d, J = 8 Hz, 1H), 7.66-7.63 (t, J = 8 Hz, 1H), 7.57-7.54 (m, 2H), 7.31-7.28 (t, J = 8 Hz, 1H), 7.23-7.20 (t, J = 8 Hz, 1H), 6.61 (s, 1H), 5.99 (s, 1H), 3.42 (s, 3H), 1.67 (s, 12H), 1.40 (s, 12H); ¹³C NMR (125 MHz, CDCl₃) δ : 176.0, 173.3, 171.8, 171.0, 135.1, 134.9, 134.4, 133.4, 131.1, 130.5, 129.0, 128.7, 124.7, 124.4, 123.8, 64.8, 61.1, 58.7, 58.4, 52.6, 25.7, 25.0, 24.5, 24.4; LC-MS: 731.28 (M+Na)⁺; Anal. Calcd. for C₂₉H₄₀N₈O₉S₂: C, 49.14; H, 5.69; N, 15.81; Found: C, 48.73; H, 6.01; N, 15.03.

Hexapeptide acid 2c:

The product **2c** was obtained from **2a**, following the procedure for **1b** and was carried forward to the next reaction without further purification.

Hexapeptide 2d:

The product **2d** was obtained from **2a**, following the procedure for **1c** and was carried forward to the next reaction without further purification.

Dodecapeptide 3:

A solution containing acid 2c (0.4 g, 0.57 mmol) and amine 2d (0.44 g, 0.63 mmol) in dry CH₃CN (10 mL) was cooled to 0 °C. To the reaction mixture was added HATU (0.33 g, 0.86 mmol) followed by HOBt (0.04 g, 0.28 mmol) and DIPEA (0.19 mL, 1.15 mmol). The reaction mixture was stirred at 0 °C for 10 minutes and at room temperature for 12 h. The solvent was stripped off to furnish thick liquid which was dissolved in 30 mL DCM and washed sequentially with sat. NaHCO₃, water, dil. HCl and brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which on purification by column chromatography (eluent: pet ether/ethyl acetate: 15:85, Rf: 0.35) yielded **3** (0.49 g, 62%); mp: 132-135 °C; IR (CHCl₃) v (cm⁻¹) 3368, 3020, 2120, 1734, 1693, 1663, 1583, 1328, 1216, 1127, 770; ¹H NMR (500 MHz, CDCl₃) δ: 9.67 (s, 1H), 9.20 (s, 1H), 8.93 (s, 1H), 8.89 (s, 1H), 8.28-8.26 (d, J = 8 Hz, 1H), 7.97-7.93 (m, 3H), 7.86-7.80 (m, 3H), 7.69-7.67 (d, J = 8 Hz, 1H), 7.64-7.55 (m, 3H), 7.52-7.48 (m, 2H), 7.31-7.29 (d, J = 8 Hz, 2H), 7.28-7.26 (m, 3H), 7.21-7.18 $(t, J = 7 \text{ Hz}, 1\text{H}), 6.99 (s, 1\text{H}), 6.89 (s, 1\text{H}), 6.83 (s, 1\text{H}), 5.93 (s, 1\text{H}), 3.41 (s, 3\text{H}), 1.64 (s, 3\text{$ 12H), 1.58 (s, 6H), 1.57 (s, 6H), 1.37-1.35 (m, 24H); ¹³C NMR (125 MHz, CDCl₃) δ: 176.2, 175.9, 175.8, 173.8, 172.8, 172.5, 172.2, 170.9, 135.1, 135.0, 134.8, 134.7, 134.6, 134.4, 133.9, 133.4, 133.2, 132.8, 130.6, 129.4, 129.0, 128.3, 127.5, 126.4, 125.9, 125.6, 125.5, 124.9, 124.5, 123.9, 64.8, 60.9, 60.8, 58.6, 59.3, 57.9, 52.4, 25.8, 25.3, 25.1, 25.0, 24.7, 24.4; LC-MS: 1381.69 (M+Na)⁺; Anal. Calcd. for C₅₇H₇₈N₁₄O₁₇S₄: C, 50.35; H, 5.78; N, 14.42; Found: C, 50.59; H, 6.22; N, 14.03.

Hexapeptide 2e:

To a solution of **2a** (0.3 g, 0.4 mmol) in methanol (4 mL) was added saturated solution of methanolic methylamine (8 mL) at 0 °C. Reaction mixture was warm to room temperature and

stirred for 3 day. The reaction mixture was stripped off the solvent and residue was purified with column chromatography (ethyl acetate/pet ether 80:20, R*f*. 0.2) to furnish **2e** (0.27 g, 90%). mp: 104-107 °C; IR (CHCl₃) v (cm⁻¹) 3372, 3019, 2120, 1700, 1667, 1584, 1521, 1438, 1386, 1328, 1150, 758; ¹H NMR (500 MHz, CDCl₃) δ : 9.70 (s, 1H), 9.08 (s, 1H), 8.31-8.29 (d, *J* = 8.2 Hz, 1H), 7.98-7.97 (d, *J* = 8.2 Hz, 1H), 7.89-7.88 (d, *J* = 8.0 Hz, 1H), 7.84-7.82 (d, *J* = 8.2 Hz, 1H), 7.65-7.62 (t, *J* = 7.7 Hz, 1H), 7.60-7.57 (m, 2H), 7.31-7.28 (m, 2H), 6.65 (s, 1H), 6.37 (bs, 1H), 6.01-5.99 (bs, 1H), 2.58-2.57 (d, *J* = 4.9 Hz, 3H), 1.66 (s, 12H), 1.37 (s, 3H), 1.63 (s, 6H), 1.35 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ : 176.0, 173.7, 172.5, 171.0, 135.0, 134.5, 133.6, 132.9, 130.6, 129.1, 126.3, 125.4, 124.9, 123.9, 64.9, 60.9, 60.4, 58.2, 26.5, 25.9, 24.9, 24.8, 24.4; LC-MS: 730.25 (M+Na)⁺; Anal. Calcd. for C₂₉H₄₁N₉O₈S₂: C, 49.21; H, 5.84; N, 17.81; Found: C, 48.85; H, 6.17; N, 17.50.

Hexapeptide 2b:

The hexapeptide **2e** was subjected for azide reduction, following the procedure for **1c** to obtained crude amine which was further converted to **2b** following the procedure for **8**, as a white solid (85%). mp: 101-103 °C; IR (CHCl₃) v (cm⁻¹) 3394, 3020, 1701, 1657, 1519, 1476, 1425, 1046, 929, 758; ¹H NMR (500 MHz, CDCl₃) δ : 9.05 (s, 1H), 8.95 (s, 1H), 7.98-7.97 (d, *J* = 7.9 Hz, 1H), 7.91-7.89 (d, *J* = 7.9 Hz, 1H), 7.84-7.82 (d, *J* = 7.6 Hz, 1H), 7.68-7.66 (d, *J* = 7.6 Hz, 1H), 7.62-7.58 (t, *J* = 7.5 Hz, 1H), 7.57-7.53 (t, *J* = 7.5 Hz, 1H), 7.31-7.28 (m, 3H), 6.98 (s, 1H), 6.81 (s, 1H), 6.80 (S, 1H), 6.56 (bs, 1H), 2.54-2.53 (d, *J* = 4.6 Hz, 3H), 2.03 (s, 6H), 1.67 (s, 3H), 1.63 (s, 3H), 1.35 (s, 12H); ¹³C NMR (125 MHz, CDCl₃) δ : 175.9, 174.0, 173.9, 173.1, 171.7, 134.5, 133.8, 133.2, 132.9, 129.3, 129.0, 127.5, 126.2, 125.7, 125.4, 60.7, 60.6, 60.2, 58.6, 57.7, 31.6, 26.4, 26.1, 25.3, 25.0; LC-MS: 854.22 (M+Na+2)⁺; Anal. Calcd. for C₃₃H₄₈BrN₇O₉S₂: C, 47.71; H, 5.82; N, 11.80; Found: C, 47.30; H, 6.23; N, 11.99.

(S)-methyl-1-(2-(2-bromo-2-methylpropanamido) phenylsulfonyl)pyrrolidine-2-carboxylate 10:

To a solution of **9b** (4.0 g, 14.1 mmol) in dry DCM (25 mL) was added dry Et₃N (2.55 mL, 18.3 mmol) at 0 °C followed by slowly addition of 2-bromo-2-methylpropanoyl bromide (1.92 mL, 15.5 mmol). The reaction mixture was warm to room temperature and stirred for 12 h. The reaction mixture was washed sequentially with sat. NaHCO₃, water and brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which on purification by column chromatography (eluent: pet ether/ethyl acetate: 50:50, R*f*: 0.5) yielded **10** (5.5 g, 90%); $[\alpha]_{26}^{\text{D}}$: -63.08° (c 1.3, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3349, 3020, 1740, 1688, 1588, 1338, 1215, 1154, 759; ¹H NMR (400 MHz, CDCl₃) δ : 10.41 (s, 1H), 8.55-8.53 (d, *J* = 8 Hz, 1H), 7.91-7.89 (dd, *J* = 8.0, 1.6 Hz, 1H) 7.61-7.57 (t, *J* = 7 Hz, 1H), 7.26-7.22 (t, *J* = 7 Hz, 1H), 4.39-4.36 (dd, *J* = 8.0, 2.5 Hz, 1H), 3.64-3.59 (m, 4H), 3.49-3.43 (m, 1H), 2.13-2.09 (m, 1H), 2.06 (s, 6H), 2.04-1.98 (m, 2H), 1.93-1.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 171.9, 170.4, 136.5, 134.2, 129.6, 125.8, 124.0, 122.1, 60.4, 59.9, 52.5, 48.4, 31.7,

31.0, 24.5; ESI MS: 455.01 $(M+Na)^+$; Anal. Calcd. for $C_{16}H_{21}BrN_2O_5S$: C, 44.35; H, 4.88; N, 6.46; Found: C, 44.62; H, 5.26; N, 6.08.

Tripeptide 4a:

To a stirred solution of **10** (1.2 g, 3.5 mmol) in dry DMF (10 mL) was added NaN₃ (0.68 g, 10.5 mmol) and reaction mixture was heated to 70 °C for 12 h. The reaction mixture was cooled to room temperature, EtOAc (40 mL) was added to reaction mixture and the organic layer was washed with water and brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which on purification by column chromatography (eluent: pet ether/ethyl acetate: 50:50, R*f*: 0.5) yielded **4a** (0.88 g, 81%); $[\alpha]_{26}^{D}$: -50.53° (c 0.95, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3436, 3020, 2120, 1739, 1685, 1585, 1340, 1217, 1140, 770; ¹H NMR (400 MHz, CDCl₃) δ : 10.39 (s, 1H), 8.52-8.50 (d, *J* = 8 Hz, 1H), 7.89-7.87 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.58-7.54 (t, *J* = 7 Hz, 1H), 7.24-7.20 (t, *J* = 7 Hz, 1H), 4.39-4.36 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.60-3.54 (m, 4H), 3.46-3.40 (m, 1H), 2.15-2.07 (m, 1H), 2.05-1.95 (m, 1H), 1.93-1.84 (m, 1H), 1.62 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 171.9, 171.1, 136.1, 134.1, 129.7, 126.2, 124.0, 122.2, 64.6, 60.2, 52.4, 48.3, 31.0, 24.5; ESI MS: 418.07 (M+Na)⁺; Anal. Calcd. for C₁₆H₂₁N₅O₅S: C, 48.60; H, 5.35; N, 17.71; Found: C, 48.29; H, 5.11; N, 17.09.

Tripeptide acid 4b:

To the solution of **4a** (0.4 g, 0.1 mmol) in methanol (10 mL), LiOH·H₂O (0.17 g, 0.4 mmol) was added in water (2 mL) at 0 °C. After the complete consumption of ester (4 h), the solvent was evaporated under vacuum, and free acid was liberated by treating with dil. HCl solution followed by extraction with DCM (2 × 15 mL). The residue of **4b** obtained after evaporation of the solvent under vacuum was carried forward for the next reaction.

Tripeptide amine 4c:

The product **4c** was obtained from **4a**, following the procedure for **1c** and was carried forward to the next reaction without further purification.

Hexapeptide 5a:

A solution containing acid **4b** (2.0 g, 5.2 mmol) and amine **4c** (2.13 g, 5.77 mmol) in dry CH₃CN (30 mL) was cooled to 0 °C. To the reaction mixture was added EDC.HCl (1.56 g, 7.87 mmol) followed by HOBt (0.36 g, 2.6 mmol). Reaction mixture was stirred at 0 °C for 10 minutes and at room temperature for 12 h. The solvent was stripped off to furnish thick liquid which was dissolved in 30 mL DCM and washed sequentially with sat. NaHCO₃, water, dil. HCl and brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which on purification by column chromatography (eluent: pet ether/ethyl acetate: 40:60, R*f*: 0.4) yielded **5a** (3.48 g, 90%); mp: 73-75 °C; $[\alpha]_{26}^{D}$: -103.85° (c 1.56, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3260, 3413, 2918, 2118, 1742, 1698, 1585, 1336, 1155, 1020, 769;

¹H NMR (400 MHz, CDCl₃) δ: 10.61 (s, 1H), 10.09 (s, 1H), 8.65-8.61 (t, J = 8 Hz, 2H), 7.92-7.90 (d, J = 8 Hz, 1H), 7.82-7.80 (d, J = 8 Hz, 1H), 7.64-7.60 (t, J = 8 Hz, 1H), 7.58-7.54 (t, J = 8 Hz, 1H), 7.29-7.26 (m, 2H), 7.20-7.16 (t, J = 7 Hz, 1H), 4.34-4.32 (dd, J = 8.0, 3.0 Hz, 1H), 4.14-4.11 (dd, J = 8.0, 3.0 Hz, 1H), 3.72-3.67 (m, 4H), 3.56-3.51 (m, 1H), 3.38-3.29 (m, 2H), 2.28-2.23 (m, 1H), 2.11-1.79 (m, 7H), 1.68 (s, 3H), 1.63 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 172.8, 172.0, 171.2, 170.6, 137.1, 136.5, 134.8, 134.4, 130.1, 129.4, 124.7, 123.9, 123.5, 122.4, 122.1, 64.7, 62.5, 60.3, 58.0, 52.5, 49.9, 48.4, 30.9, 29.9, 25.8, 24.6, 24.5, 23.7; ESI MS: 755.20 (M+Na)⁺; Anal. Calcd. for C₃₁H₄₀N₈O₉S₂: C, 50.81; H, 5.50; N, 15.29; Found: C, 50.47; H, 5.20; N, 15.71.

Hexapeptide acid 5b:

The product **5b** was obtained from **5a**, following the procedure for **4b** and was carried forward to the next reaction without further purification.

Hexapeptide amine 5c:

The product **5c** was obtained from **5a**, following the procedure for **1c** and was carried forward to the next reaction without further purification.

Dodecapeptide 6:

A solution containing acid **5b** (0.127 g, 0.18 mmol) and amine **5c** (0.125 g, 0.178 mmol) in dry DCM (10 mL) was cooled to 0 °C. To the reaction mixture was added EDC.HCl (0.53 g, 0.26 mmol) followed by HOBt (0.12 g, 0.09 mmol). The reaction mixture was stirred at 0 °C for 10 minutes and at room temperature for 12 h. The reaction mixture was washed sequentially with sat. NaHCO₃, water, dil. HCl and brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to get the crude product which on purification by column chromatography (eluent: pet ether/ethyl acetate: 10:90, Rf: 0.3) yielded 6 (0.13 g, 52%); mp: 145-147 °C; $[\alpha]_{26}^{D}$: -133.30° (c 1.05, CHCl₃); IR (CHCl₃) v (cm⁻¹) 3421, 3019, 2115, 1698, 1657, 1583, 1340, 1215, 1147, 1045, 757; ¹H NMR (400 MHz, CDCl₃) δ: 10.62 (s, 1H), 10.21 (s, 2H), 10.07 (s, 1H), 8.72-8.70 (d, J = 8 Hz, 1H), 8.69-8.66 (d, J = 8 Hz, 1H), 8.62-8.60 (d, J = 8 Hz, 1H), 8.60 (d, J = 8 Hz, 8 Hz, 2H), 7.89-7.80 (m, 4H), 7.68-7.54 (m, 4H), 7.46 (s, 1H), 7.35 (s, 2H), 7.26-7.16 (m, 4H), 4.33-4.30 (dd, J = 8.0, 3.0 Hz, 1H), 4.13-4.06 (m, 3H), 3.75-3.71 (m, 1H), 3.68-3.63 (m, 5H),3.56-3.51 (m, 1H), 3.38-3.26 (m, 4H), 2.25-2.12 (m, 4H), 2.07-1.97 (m, 5H), 1.88-1.71 (m, 7H), 1.65-1.54 (m, 24 H); ¹³C NMR (100 MHz, CDCl₃) δ: 170.9, 171.7, 172.6, 172.0, 172.0, 171.2, 171.1, 170.8, 170.7, 137.4, 137.1, 136.9, 136.5, 135.0, 134.9, 134.8, 134.4, 130.1, 129.7, 129.6, 129.3, 124.7, 124.3, 124.0, 123.7, 123.5, 122.9, 122.9, 122.7, 122.5, 122.4, 122.3, 122.2, 64.6, 62.5, 62.4, 61.9, 60.4, 58.0, 57.8, 57.6, 52.5, 50.2, 50.1, 49.9, 48.4, 30.9, 30.5, 30.2, 30.0, 26.0, 25.2, 24.9, 24.8, 24.6, 24.5, 24.4, 24.3, 23.6; ESI MS: 1429.54 (M+Na)⁺; Anal. Calcd. for C₆₁H₇₈N₁₄O₁₇S₄: C, 52.05; H, 5.59; N, 13.93; Found: C, 52.49; H, 5.88; N, 13.60.

Volume of DMSO- <i>d</i> ₆	Chemical Shift δ (ppm)						
(in µL)	NH1	NH2	NH3	NH4	NH5		
0	9.74	5.99	7.59	9.39	6.62		
5	9.81	6.30	7.60	9.34	6.65		
10	9.85	6.48	7.60	9.31	6.66		
15	9.87	6.62	7.60	9.27	6.68		
20	9.90	6.80	7.60	9.24	6.69		
25	9.91	6.88	7.60	9.22	6.70		
30	9.91	6.99	7.59	9.18	6.70		
35	9.92	7.07	7.59	9.16	6.71		
40	9.92	7.13	7.58	9.13	6.71		
45	9.91	7.20	7.57	9.10	6.71		
50	9.90	7.25	7.56	9.07	6.71		

Table S1. Titration Study of 2a in CDCl₃ (10 mM) with DMSO- d_6 (volume of DMSO- d_6 added at each addition = 5 μ L)

Table S2. Titration Study of 2b in CDCl₃ (10 mM) with DMSO- d_6 (volume of DMSO- d_6 added at each addition = 5 μ L)

Volume of	Chemical Shift δ (ppm)						
$\frac{\text{DMSO-}}{d_6}$	NH1	NH2	NH3	NH4	NH5	NH6	NH7
$(\ln \mu L)$							
0	6.69	8.99	6.82	7.32	9.06	6.81	6.57
5	7.10	8.97	6.86	7.30	9.03	6.81	6.56
10	7.20	8.95	6.89	7.28	9.01	6.80	6.56
15	7.28	8.94	6.9	7.26	8.99	6.79	6.55
20	7.34	8.92	6.92	7.25	8.97	6.79	6.54
25	7.39	8.91	6.92	7.23	8.95	6.78	6.54
30	7.44	8.89	6.93	7.22	8.94	6.77	6.53
35	7.46	8.88	6.93	7.21	8.92	6.76	6.52
40	7.49	8.87	6.93	7.20	8.91	6.75	6.52
45	7.52	8.85	6.93	7.19	8.89	6.74	6.51
50	7.54	8.84	6.92	7.18	8.88	6.73	6.50

Volume of DMSO- <i>d</i> ₆	Chemical Shift ð (ppm)				
added (in μL)	NH1	NH2	NH3		
0	10.62	7.30	10.10		
5	10.60	7.29	10.07		
10	10.57	7.28	10.05		
15	10.54	7.27	10.02		
20	10.52	7.27	10.00		
25	10.49	7.26	9.97		
30	10.47	7.25	9.94		
35	10.44	7.25	9.92		
40	10.42	7.25	9.90		
45	10.39	7.25	9.87		
50	10.37	7.25	9.85		

Table S3. Titration Study of 5a in CDCl₃ (10 mM) with DMSO- d_6 (volume of DMSO-d6 added at each addition = 5 μ L)

Table S4. Temperature variation study of 2a (10 mM, 400 MHz, CDCl₃)

Temperat ure	chemical Shift δ (pp			δ (ppm)	pm)		
(in K)	NH1	NH2	NH3	NH4	NH5		
268	9.72	6.07	7.64	9.40	6.65		
273	9.73	6.06	7.63	9.40	6.64		
278	9.73	6.04	7.62	9.40	6.64		
283	9.73	6.03	7.61	9.39	6.63		
288	9.74	6.01	7.60	9.39	6.63		
293	9.74	5.99	7.59	9.39	6.62		
298	9.74	5.99	7.59	9.38	6.62		
303	9.75	5.98	7.57	9.38	6.61		
308	9.75	5.96	7.56	9.38	6.60		
313	9.75	5.95	7.54	9.38	6.59		
318	9.76	5.94	7.53	9.38	6.58		
323	9.76	5.93	7.52	9.37	6.57		

Temper ature	Chemical Shift δ (ppm)						
(in K)	NH1	NH2	NH3	NH4	NH5	NH6	NH7
268	6.99	8.99	6.88	7.34	9.05	6.88	6.66
273	6.98	8.99	6.87	7.34	9.05	6.87	6.64
278	6.98	8.99	6.86	7.33	9.05	6.86	6.62
283	6.97	8.99	6.84	7.33	9.05	6.84	6.60
288	6.97	8.99	6.83	7.32	9.05	6.83	6.58
293	6.97	8.99	6.82	7.32	9.06	6.81	6.57
298	6.96	8.99	6.81	7.32	9.06	6.80	6.55
303	6.96	8.99	6.80	7.32	9.06	6.79	6.54
308	6.95	8.99	6.79	7.31	9.06	6.78	6.52
313	6.95	9.00	6.77	7.31	9.06	6.76	6.51
318	6.94	9.00	6.76	7.31	9.06	6.75	6.49
323	6.94	9.00	6.75	7.31	9.06	6.74	6.48

Table S5 Temperature variation study of 2b (10 mM, 400 MHz, CDCl₃)

Table S6. Temperature variation study of 5a (10 mM, 400 MHz, CDCl₃)

Temperat ure	Chemical Shift δ (ppm)				
(in K)	NH1	NH2	NH3		
268	10.66	7.34	10.14		
273	10.65	7.33	10.13		
278	10.65	7.32	10.12		
283	10.64	7.32	10.12		
288	10.63	7.31	10.11		
293	10.63	7.31	10.10		
298	10.62	7.30	10.10		
303	10.61	7.29	10.09		
308	10.60	7.28	10.08		
313	10.60	7.27	10.07		
318	10.59	7.26	10.07		
323	10.58	7.25	10.06		

Concentration	Chemical Shift δ (ppm)					
(in mM)	NH1	NH2	NH3	NH4	NH5	
2	9.74	5.98	7.58	9.39	6.62	
4	9.74	5.98	7.58	9.39	6.62	
6	9.74	5.98	7.58	9.39	6.62	
8	9.74	5.98	7.58	9.39	6.62	
10	9.74	5.98	7.58	9.39	6.62	
20	9.74	5.98	7.58	9.39	6.62	
40	9.74	5.98	7.58	9.38	6.61	
60	9.74	5.99	7.58	9.38	6.61	
80	9.74	5.99	7.57	9.38	6.61	
100	9.74	5.99	7.57	9.37	6.61	

Table S7. Dilution study of 2a (400 MHz, CDCl₃)

Table S8. Dilution study of 5a (400 MHz, CDCl₃)

Concentration (in mM)	Chemical Shift δ (ppm)				
	NH1	NH2	NH3		
2	10.63	7.30	10.10		
4	10.63	7.30	10.10		
6	10.62	7.30	10.10		
8	10.62	7.30	10.10		
10	10.62	7.30	10.10		
20	10.62	7.30	10.10		
40	10.60	7.29	10.08		
60	10.60	7.29	10.08		
80	10.59	7.28	10.06		
100	10.58	7.28	10.05		

5a

Fig. S1 Partial HSQC (\mathbf{a} and \mathbf{b}) and HMBC (\mathbf{c} and \mathbf{d}) spectra of $2\mathbf{a}$ (500 MHz, CDCl₃). For better view, aromatic and aliphatic region are given separately.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2014

Fig. S2 Partial COSY (a) and NOESY (b) spectra of 2a (500 MHz, CDCl₃).

Table S9. Comparison of experimental inter-residual distances (NOE) and inter-residual distances obtained from x-ray crystal of **2a**. The reference distance between two aromatic protons was considered as 2.3 Å. Distances of 2.0 ± 0.5 Å, 3.0 ± 1.0 Å and 4.0 ± 1.5 Å were incorporated for strong, medium and weak NOE intensities, respectively.

Chemical Shift of Proton 1 [ppm]	Chemical Shift of Proton 2 [ppm]	NOE between	NOE Intensity	Distance obtained from X- ray crystal (Å)
7.6625	7.304	9H & 8H	Strong	2.3
7.5688	7.2207	23H & 22H	Strong	2.3
9.7598	8.3347	NH1&10H	Weak	3.34
9.3903	8.0224	NH4 & 24H	Weak	3.38
9.3903	7.5851	NH4 & NH3	Medium	2.63
9.3903	6.6168	NH4 & NH5	Strong	3.00
9.3851	6.013	NH4 & NH2	Medium	3.53
9.765	6.013	NH1 & NH2	Strong	2.69
9.7598	1.6715	NH1 & 2H/3H	Medium	3.03/3.86
9.3851	1.6611	NH4 & 16H/17H	Medium	2.99/3.86
9.765	1.4113	NH1 & 12H/13H	Medium	4.27/4.70
8.0424	1.6611	24H & 16H/17H	Weak	4.33/4.98
8.339	1.6715	10H & 2H/3H	Weak	4.54/4.80
7.9903	1.4113	7H & 12H/13H	Medium	3.07/3.26
7.8342	1.3904	21H & 26H/27H	Medium	3.85
7.5896	1.4008	NH3 &12H/13H	Medium	2.55
7.5844	1.6611	NH3 & 16H/17H	Strong	2.34
6.6268	1.3904	NH5 & 26H/27H	Strong	2.31
6.0231	1.4008	NH2 & 12H/13H	Medium	2.30
8.0372	3.4206	29H & 24H	Weak	3.96
7.5844	6.013	NH2 & NH3	Weak	3.09
3.4314	1.3904	29H & 26H/27H	Medium	4.18
3.4366	1.6715	29H & 16H/17H	Medium	5.96
1.6724	1.3904	12/13H & 16/17H	Medium	3.67

Fig. S3 Partial HSQC (a and b) and HMBC (c and d) spectra of 2b (500 MHz, CDCl₃). For better view, aromatic and aliphatic region are given separately.

Fig. S4 Partial COSY (a) and NOESY (b) spectra of 2b (500 MHz, CDCl₃).

Fig. S5 Partial COSY (a and b), HSQC (c and d) and HMBC (e and f) spectra of 5a (500 MHz, CDCl₃).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

Fig. S6 2D NOESY spectra and selected NOESY excerpt of 5a (500 MHz, CDCl₃).

Table S10. Comparison of experimental inter-residual distances (NOE) of **5a** with inter-residual distances obtained from x-ray crystal of **5b** (a close analogue of **5a**). The reference distance between two aromatic protons was considered as 2.3 Å. Distances of 2.0 ± 0.5 Å, 3.0 ± 1.0 Å and 4.0 ± 1.5 Å were incorporated for strong, medium and weak NOE intensities, respectively.

Chemical Shift of Proton 1 [ppm]	Chemical Shift of Proton 2 [ppm]	NOE between	NOE Intensity	Distance obtained from X- ray crystal (Å)
7.6324	7.2741	8H & 9H	Strong	2.30
7.5745	7.1814	23H & 24H	Strong	2.30
10.6216	8.6072	NH1 & 7H	Weak	4.52
10.0945	8.6303	NH3 & 25H	Weak	3.46
10.1002	7.3089	NH2 & NH3	Medium	4.07
10.6216	4.1328	NH1 & 11H	Weak	4.79
10.6158	3.6923	NH1 & 14A	Medium	3.00
10.6216	3.3214	NH1 & 14B	Medium	2.79
10.6216	1.6406	NH1 & 2H	Medium	2.90
10.0945	4.3298	NH3 & 26H	Medium	2.79
10.0945	3.53	NH3 & 29A	Weak	5.06
10.0945	3.3561	NH3 & 29B	Weak	5.59
10.1002	1.6174	NH3 & 18H	Strong	2.14
10.0945	1.6869	NH3 & 17H	Strong	2.29
8.6346	1.6406	10H & 3H	Medium	4.71
7.308	1.629	NH2 & 18H	Medium	3.09
7.308	1.6869	NH2 & 17H	Strong	2.99
7.308	1.9188	NH2 & 13A	Medium	2.80
7.8236	4.3414	22H & 26H	Medium	4.13
7.9221	4.1328	11H & 7H	Strong	2.36
7.9163	3.3214	7H &14B	Medium	4.19
7.8236	3.3445	22H & 29B	Strong	2.33
7.8236	3.53	22H & 29A	Medium	3.86
7.3022	4.1328	11H & NH2	Medium	3.32
7.308	3.6807	NH2 & 14A	Weak	3.33
4.342	1.6406	26H & 18H	Medium	3.29
4.342	1.9999	26H & 28A	Medium	2.79
4.342	2.0811	26H & 27A	Strong	2.27
4.342	3.3445	26H & 29B	Weak	3.72

4.342	3.6575	26H & 31H	Weak	-
4.1335	3.6807	11H & 14A	Medium	3.17
4.1393	3.3214	11H & 14B	Weak	3.88
4.1393	2.2549	11H & 12A	Strong	2.66
4.1393	1.7333	11H & 13A	Medium	3.88
4.1393	1.629	11H & 18H	Weak	4.53
3.6932	1.6406	14A & 2H	Medium	3.60
3.3341	1.629	14B & 2H	Medium	3.23
3.7048	1.9188	14A & 13A	Strong	2.51
3.5368	1.8492	29A & 28B	Medium	2.92
3.5368	1.9999	29A & 28A	Strong	2.38
3.363	1.8492	29B & 28B	Strong	2.38

Fig. S7 Representative CD spectra of $(Aib-{}^{S}Ant-Pro)_{n}$ oligomers: tetramer **4a**, hexamer **5a** and doadecamer **6** in trifluroethanol. All spectra were recorded at 298 K with a concentration of 0.2 mM.