Supplementary Information

For

*n*Bu₄NI-Catalyzed Oxidative Imidation of Ketones with Imides:

Synthesis of a-Amino Ketones

Yunhe Lv, Yan Li, Tao Xiong, Yu Lu, Qun Liu and Qian Zhang*

Department of Chemistry, Northeast Normal University, Changchun, 130024, China

zhangq651@nenu.edu.cn

Table of Contents

I. General Considerations	S2
I . General procedure for the preparation of 3 and 4	S2
III. Control experiment on the reaction mechanism	S2
IV. Analytical data of ESI(-)-MS	S4
V. Proposed Mechanism	S5
VI Analytical data of Compounds 3, 4 and 5	S6
VII ¹ H and ¹³ C Spectra of Compounds 3, 4 and 5	S17

I.General Considerations

All reagents were purchased from commercial sources and used without further treatment, unless otherwise indicated. All reactions were run under air with no precautions taken to exclude moisture. ¹H NMR and ¹³C NMR spectra were recorded at 25 °C on a Varian (500 MHz and 125 MHz). Melting points were obtained with a micro melting point XT4A Beijing Keyi electrooptic apparatus and are uncorrected. High resolution mass spectra were recorded on Bruck microtof. All reactions were monitored by TLC with Taizhou GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

I. General procedure for the preparation of 3 and 4

1a as an example

To a solution of the saccharin **2b** (54.9 mg, 0.3 mmol) in ethyl acetate (3.0 ml) was added the acetone **1a** (111 μ L, 1.5 mmol), TBHP(109 μ L, 0.6 mmol, 5.5 M in decane), and *n*Bu₄NI (22.2 mg, 0.06 mmol) in screw-cap test tube. The test tube was then sealed off with a screw-cap and the reaction was stirred for the 3.0 h at 130 °C After the reaction finished, the reaction mixture was cooled to room temperature and quenched by the addition of a saturated solution of Na₂S₂O₃ (3.0 mL). The mixture was extracted with CH₂Cl₂ (3 × 5.0 mL), the combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The residue was purified by column chromatography to give the corresponding products **3b** (65.3 mg, 91%).

III. Control experiment on the reaction mechanism

Scheme 1. The KIE for reactions between acetone and saccharin

To a solution of the saccharin **2b** (54.9 mg, 0.3 mmol) in ethyl acetate (3.0 ml) was added the acetone **1a** (56 μ L, 0.75 mmol), acetone-d₆ **1a-d₆** (55 μ L, 0.75 mmol), TBHP(109 μ L, 0.6 mmol, 5.5 M in decane), and *n*Bu₄NI (22.2 mg, 0.06 mmol) in screw-cap test tube. The reaction mixture was stirred at 130 °C for 1.0 h. After the reaction was quenched by saturated solution of Na₂S₂O₃ (3.0 mL), the mixture was extracted with CH₂Cl₂ (3 × 5.0 mL), the combined organic

phases were dried over anhydrous Na_2SO_4 and the solvent was evaporated under vacuum. The residue was purified by flash column chromatography. The KIE value was determined by average of two runs and a representative ¹³C NMR spectrum was provided as follows.

Scheme 2 Investigation of reaction mechanism.

IV. Analytical data of ESI(-)-MS

To a solution of the saccharin **2b** (54.9 mg, 0.3 mmol) in ethyl acetate (3.0 ml) was added the acetone **1a** (111 μ L, 1.5 mmol), TBHP(109 μ L, 0.6 mmol, 5.5 M in decane), and *n*Bu₄NI (22.2 mg, 0.06 mmol) in screw-cap test tube. The reaction mixture was stirred at 130 °C for 40 min in an oil bath with vigorous stirring. The reaction was cooled to room temperature and diluted with CH₃CN (1/100) prior to the injection into the mass spectrometer.

The negative-ion mode of ESI-MS spectrum showed the signals corresponding to the anionic I_3 ⁻ species (*m*/*z* 380.7151), which might indicate the presence of I_2 (Scheme 3 in manuscript) in the proposed mechanism.

V. Proposed Mechanism

Scheme 3 Proposed Mechanism.

Although an in-depth discussion should await further investigations, at present we support the radical imidation mechanism as described in Scheme 3.¹ At the beginning, the *tert*-butoxyl radical and hydroxide form catalytically from TBHP with the assistance of the iodide anion. Next, hydroxide reacts with saccharin in the presence of I₂ to form a imidyl radical 7,^{2,3} which might be stabilized by its resonance structures 7' and 7". Then in the presence of hydroxide, enol form of ketone will perform a addition reaction with nitrogen-centered radical intermediate 7 to give a tertiary carbon radical **8**, which was oxidized to the imidated product **3b**.^{1d,4}

References

- (a) M. Uyanik, K. Ishihara, ChemCatChem 2012, 4, 177; (b) P. Finkbeiner, B. J. Nachtsheim, Synthesis 2013, 45, 979; (c) Z. J. Liu, J. Zhang, S. L. Chen, E. Shi, Y. Xu, X. B. Wan, Angew. Chem. Int. Ed. 2012, 51, 3231; (d) B. Tan, N. Toda, C. F. Barbas III, Angew. Chem. Int. Ed. 2012, 51, 12538; (e) W. Mai, H. Wang, Z. Li, J. Yuan, Y. Xiao, L. Yang, P. Mao, L. Qu, Chem. Commun. 2012, 48, 10117.
- 2 For reviews about nitrogen-centered radicals, see: (a) L. Stella, Angew. Chem. Int. Ed. 1983, 22, 337; (b) S. Z. Zard, Synlett 1996, 1148; (c) A. G. Fallis, I. M. Brinza, Tetrahedron 1997, 53, 17543; (d) L. Stella, in Radicals in Organic Synthesis, Vol. 2 (Eds.: R.Renaud, M. P. Sibi), Wiley-VCH, Weinheim, 2001, pp. 407; (e) S. Z. Zard, Chem. Soc. Rev. 2008, 37, 1603.
- 3 Selected examples for generation of imidyl radicals from saccharin and phthalimide, see: (a) H. Togo, Y. Hoshina, T. Muraki, H. Nakayama, M. Yokoyama, J. Org. Chem. 1998, 63, 5193; (b) H. Hettler. Advances in Heterocyclic Chemistry, 1973, 15, 233; (c) C. Sánchez-Sánchez, E. Pérez-Inestrosa, R. García-Segura, R. Suau, Tetrahedron 2002, 58, 7267.

VI Analytical data of Compounds 3, 4 and 5

N-(2-oxopropyl)-N-(phenylsulfonyl)benzenesulfonamide 3a

White solid. mp:103-104 °C ¹H NMR (500 MHz; CDCl₃): δ = 2.11 (s, 3H), 4.48 (s, 2H), 7.54-7.57 (m, 4H), 7.67 (t, *J* = 7.5 Hz, 2H), 8.03 (d, *J* = 7.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl3): δ = 26.6, 56.1, 128.6, 129.0, 134.2, 139.0, 200.1. HRMS (ESI-TOF) Calcd for C₁₅H₁₆NO₅S₂, [M+H]⁺ *m/z* 354.0464; Found 354.0472.

2-(2-oxopropyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 3b

White solid. mp:146-147 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 2.29$ (s, 3H), 4.50 (s, 2H), 7.85 - 7.92 (m, 2H), 7.95 (d, J = 7.5 Hz, 1H), 8.07 (d, J = 7.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 26.8$, 46.9, 121.1, 125.3, 126.9, 134.5, 135.0, 137.5, 158.7, 198.3. HRMS (ESI-TOF) Calcd for C₁₀H₉NNaO₄S, [M+Na]⁺ *m/z* 262.0150; Found 262.0158.

4-methyl-N-(2-oxopropyl)-N-(phenylsulfonyl)benzenesulfonamide 3c

White solid. mp:84-85 °C ¹H NMR (500 MHz; CDCl₃): δ = 2.10 (s, 3H), 2.44 (s, 3H), 4.47 (s, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 8.02 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.6, 26.5, 56.0, 128.5, 128.6, 128.9, 129.5, 134.0, 135.8, 138.9, 145.3, 200.3. HRMS (ESI-TOF) Calcd for C₁₆H₁₇NNaO₅S₂, [M+Na]⁺ *m/z* 390.0440; Found 390.0448.

4-methyl-N-(2-oxopropyl)-N-tosylbenzenesulfonamide 3d

White solid. mp:124-125 °C ¹H NMR (500 MHz; CDCl₃): δ = 2.10 (s, 3H), 2.44 (s, 6H), 4.45 (s, 2H), 7.33 (d, *J* = 8.0 Hz, 4H), 7.89 (d, *J* = 8.0 Hz, 4H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.6, 26.5, 56.0, 128.6, 129.5, 136.0, 145.2, 200.4. HRMS (ESI-TOF) Calcd for C₁₇H₁₉NNaO₅S₂, [M+Na]⁺ *m/z* 404.0602; Found 404.0594.

4-methoxy-N-(2-oxopropyl)-N-(phenylsulfonyl)benzenesulfonamide 3e

White solid. mp:97-98 °C ¹H NMR (500 MHz; CDCl₃): δ = 2.12 (s, 3H), 3.89 (s, 3H), 4.46 (s, 2H), 7.00 (d, *J* = 8.5 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.95 (d, *J* = 9.0 Hz, 2H), 8.02 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 26.6, 55.7, 56.0, 114.1, 128.5, 128.9, 130.2, 131.1, 134.0, 139.1, 164.1, 200.3. HRMS (ESI-TOF) Calcd for C₁₆H₁₇NNaO₆S₂, [M+Na]⁺ *m/z* 406.0395; Found 406.0386.

4-methoxy-N-(2-oxopropyl)-N-tosylbenzenesulfonamide 3f

White solid. mp:185-186 °C ¹H NMR (500 MHz; CDCl₃): δ = 2.11 (s, 3H), 2.44 (s, 3H), 3.88 (s, 3H), 4.44 (s, 2H), 6.99 (d, *J* = 9.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.89 (d, *J* = 8.5 Hz, 2H), 7.95 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.6, 26.5, 55.7, 55.9, 114.0, 128.5, 129.5, 130.3, 131.0, 136.0, 145.2, 164.0, 200.5. HRMS (ESI-TOF) Calcd for C₁₇H₁₉NNaO₆S₂, [M+Na]⁺ *m/z* 420.0551; Found 420.0544.

2-(2-oxopropyl)isoindoline-1,3-dione 3g

White solid. mp:139-141 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 2.28$ (s, 3H), 4.51 (s, 2H), 7.75 (dd, $J_1 = 3.5$ Hz, $J_1 = 5.5$ Hz, 2H), 7.88 (dd, $J_1 = 3.0$ Hz, $J_1 = 5.5$ Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 27.0$, 47.1, 123.6, 132.0, 134.2, 167.6, 199.7. HRMS (ESI-TOF) Calcd for C₁₁H₁₀NO₃, [M+H]⁺ m/z 204.0661; Found 204.0661.

4-nitro-2-(2-oxopropyl)isoindoline-1,3-dione 3h

White solid. mp:175-177 °C ¹H NMR (500 MHz; CDCl₃): δ = 2.30 (s, 3H), 4.55 (s, 2H), 7.95 (t, *J* = 8.0 Hz, 1H), 8.14 - 817 (m, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 27.0, 47.5, 123.8, 127.3, 128.8, 134.0, 135.6, 145.2, 162.2, 165.1, 198.7. HRMS (ESI-TOF) Calcd for C₁₁H₈N₂NaO₅, [M+Na]⁺ *m*/*z* 271.0331; Found 271.0327.

5-nitro-2-(2-oxopropyl)isoindoline-1,3-dione 3i

White solid. mp:179-181 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 2.31$ (s, 3H), 4.57 (s, 2H), 8.08 (d, J = 8.0 Hz, 1H), 8.64 (dd, $J_1 = 2.0$ Hz, $J_1 = 8.5$ Hz, 1H), 8.70 (d, J = 1.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 27.0$, 47.6, 119.0, 124.8, 129.4, 133.4, 136.4, 151.8, 165.2, 165.5, 198.6. HRMS (ESI-TOF) Calcd for C₁₁H₉N₂O₅, [M+H]⁺ *m/z* 249.0511; Found 249.0519.

4,5,6,7-tetrachloro-2-(2-oxopropyl)isoindoline-1,3-dione 3j

White solid. mp:211-214 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 2.29$ (s, 3H), 4.52 (s, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 27.0$, 47.6, 127.6, 129.9, 140.4, 162.9, 198.6. HRMS (ESI-TOF) Calcd for C₁₁H₅Cl₄NNaO₃, [M+Na]⁺ *m/z* 363.8892; Found 363.8883.

1-(2-oxopropyl)pyrrolidine-2,5-dione 3k

White solid. mp:108-110 °C ¹H NMR (500 MHz; CDCl₃): δ = 2.22 (s, 3H), 2.79 (s, 4H), 4.32 (s, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 26.9, 28.0, 47.4, 176.3, 198.8. HRMS (ESI-TOF) Calcd for C₇H₁₀NO₃, [M+H]⁺ *m*/*z* 156.0655; Found 156.0663.

2-(2-oxopropyl)hexahydro-1H-isoindole-1,3(2H)-dione 3l

White solid. mp:112-114 °C ¹H NMR (500 MHz; CDCl₃): δ = 1.49 (t, *J* = 5.5 Hz, 4H), 1.88 (d, *J* = 4.0 Hz, 4H), 2.22 (s, 3H), 2.95 (t, *J* = 4.5 Hz, 2H), 4.29 (s, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 21.5, 23.6, 27.0, 39.8, 47.2, 179.0, 199.1. HRMS (ESI-TOF) Calcd for C₁₁H₁₆NO₃, [M+H]⁺ *m/z* 210.1125; Found 210.1116.

2-(2-oxopropyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione 3m

White solid. mp:213-215 °C ¹H NMR (500 MHz; CDCl₃): δ = 2.34 (s, 3H), 5.02 (s, 2H), 7.75 (t, *J* = 8.0 Hz, 2H), 8.23 (d, *J* = 8.0 Hz, 2H), 8.58 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 27.3, 49.3, 122.2, 126.9, 128.3, 131.5, 131.6, 134.3, 163.8, 200.6. HRMS (ESI-TOF) Calcd for C₁₅H₁₂NO₃, [M+H]⁺ *m/z* 254.0812; Found 254.0819.

2-(2-oxo-2-phenylethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4b

White solid. mp:196 °C ¹H NMR (500 MHz; CDCl₃): δ = 5.16 (s, 2H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.65 (t, *J* = 7.0 Hz, 1H), 7.85 - 7.92 (m, 2H), 7.97 (d, *J* = 7.5 Hz, 1H), 8.02 (d, *J* = 7.5 Hz, 2H), 8.10 (d, *J* = 7.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 44.4, 121.2, 125.4, 127.3, 128.2, 129.0, 134.0, 134.2, 134.4, 134.9, 137.9, 159.1, 188.7. HRMS (ESI-TOF) Calcd for C₁₅H₁₂NO₄S, [M+H]⁺ *m/z* 302.0487; Found 302.0480.

2-(2-(4-chlorophenyl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4c

White solid. mp:194-196 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 5.12$ (s, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.88 - 7.92 (m, 2H), 7.94 - 7.99 (m, 3H), 8.12 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 44.3$, 121.2, 125.5, 127.2, 129.4, 129.6, 132.3, 134.5, 135.0, 137.8, 140.8, 159.1, 187.8. HRMS (ESI-TOF) Calcd for C₁₅H₁₀ClNNaO₄S, [M+Na]⁺ *m/z* 357.9917; Found 357.9923.

2-(2-(4-iodophenyl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4d

White solid. mp:233-235 °C ¹H NMR (500 MHz; DMSO): δ = 5.46 (s, 2H), 7.84 (d, *J* = 8.5 Hz, 2H), 7.98 (d, *J* = 8.0 Hz, 2H), 8.04 (d, *J* = 7.0 Hz, 1H), 8.09 (d, *J* = 7.5 Hz, 1H), 8.15 (d, *J* = 7.5 Hz, 1H), 8.35 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (125 MHz; DMSO): δ = 45.2, 103.8, 122.3, 125.7, 126.6, 130.5, 133.6, 135.9, 136.6, 137.7, 138.4, 159.3, 190.4. HRMS (ESI-TOF) Calcd for C₁₅H₁₀INNaO₄S, [M+Na]⁺ *m/z* 449.9267; Found 449.9252.

2-(2-(4-methoxyphenyl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4e

White solid. mp:194-196 °C ¹H NMR (500 MHz; CDCl₃): δ = 3.90 (s, 3H), 5.11 (s, 2H), 6.99 (d, *J* = 8.5 Hz, 2H), 7.85 - 7.92 (m, 2H), 7.96 - 8.00 (m, 3H), 8.11 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 44.1, 55.6, 114.2, 121.2, 125.4, 127.1, 127.4, 130.5, 134.4, 134.9, 137.9, 159.2, 164.3, 187.1. HRMS (ESI-TOF) Calcd for C₁₆H₁₃NNaO₅S, [M+Na]⁺ *m/z* 354.0412; Found

2-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4f

White solid. mp:216-218 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 5.19$ (s, 2H), 7.43 (d, J = 7.0 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H) 7.64 (d, J = 7.5 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.85 - 7.92 (m, 2H), 7.97 (d, J = 7.5 Hz, 1H), 8.08 - 8.12 (m, 3H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 44.4$, 121.2, 125.4, 127.3, 127.5, 128.5, 128.8, 129.0, 132.7, 134.5, 134.9, 137.9, 139.5, 146.9, 159.1, 188.3. HRMS (ESI-TOF) Calcd for C₂₁H₁₆NO₄S, [M+H]⁺ *m/z* 378.0800; Found 378.0790.

2-(2-(4-hydroxyphenyl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4g

White solid. mp:251-252 °C ¹H NMR (500 MHz; DMSO): $\delta = 5.32$ (s, 2H), 6.89 (d, J = 9.0 Hz, 2H), 7.96 (d, J = 8.5 Hz, 2H), 8.04 (d, J = 7.5 Hz, 1H), 8.09 (t, J = 7.5 Hz, 1H), 8.14 (d, J = 7.5 Hz, 1H), 8.34 (d, J = 8.0 Hz, 1H), 10.57 (s, 1H). ¹³C NMR (125 MHz; DMSO): $\delta = 44.9$, 116.0, 122.2, 125.6, 125.9, 126.8, 131.5, 135.8, 136.5, 137.7, 159.4, 163.4, 188.3. HRMS (ESI-TOF) Calcd for C₁₅H₁₂NO₅S, [M+H]⁺ *m/z* 318.0431; Found 318.0421.

2-(2-(3-nitrophenyl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4h

White solid. mp:216-217 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 5.20$ (s, 2H), 7.77 (t, J = 8.0 Hz, 1H), 7.90 - 7.96 (m, 2H), 8.00 (d, J = 7.0 Hz, 1H), 8.13 (d, J = 7.0 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H), 8.52 (dd, $J_1 = 1.5$ Hz, $J_1 = 8.5$ Hz, 1H), 8.85 (t, J = 2.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 44.5$, 121.3, 123.1, 125.6, 127.1, 128.4, 130.4, 133.7, 134.6, 135.2, 135.2, 137.8, 148.5, 159.0, 187.3. HRMS (ESI-TOF) Calcd for C₁₅H₁₀N₂NaO₆S, [M+Na]⁺ *m/z* 369.0517; Found 369.0518.

2-(2-(3-methoxyphenyl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4i

White solid. mp:185 °C ¹H NMR (500 MHz; CDCl₃): δ = 3.86 (s, 3H), 5.15 (s, 2H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.53 (s, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.86 - 7.93 (m, 2H), 7.97 (d, *J* = 8.0 Hz, 1H), 8.11 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 44.5, 55.5, 112.3, 120.6, 120.9, 121.2, 125.4, 127.3, 129.9, 134.5, 134.9, 135.3, 137.9, 159.1, 160.0, 188.6. Calcd for C₁₆H₁₄NO₅S, [M+H]⁺ *m/z* 332.0593; Found 332.0580.

2-(2-(2-fluorophenyl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4j

White solid. mp:158-160 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 5.09$ (d, J = 3.5 Hz, 2H), 7.21 - 7.25 (m, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.63 (d, J = 7.0 Hz, 1H), 7.85 - 7.93 (m, 2H), 7.97 (d, J = 7.5 Hz, 1H), 8.00 - 8.03 (m, 1H), 8.11 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 47.8$, 47.9, 116.6, 116.8, 121.2, 122.1, 122.2, 125.0, 125.0, 125.4, 127.3, 131.2, 134.4, 134.9, 136.1, 136.2, 137.9, 159.1, 161.5, 163.5, 187.0, 187.0. Calcd for C₁₅H₁₁FNO₄S, [M+H]⁺ *m/z* 320.0387; Found 320.0397.

2-(2-(2-chlorophenyl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4k

White solid. mp:159-161 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 5.13$ (s, 2H), 7.38 - 7.42 (m, 1H), 7.49 (d, J = 4.0 Hz, 2H), 7.75 (d, J = 7.5 Hz, 1H), 7.86 - 7.93 (m, 2H), 7.97 (d, J = 7.0 Hz, 1H), 8.11 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 47.1$, 121.2, 125.4, 127.1, 127.3, 130.5, 130.9, 131.9, 133.4, 134.5, 135.0, 135.4, 137.8, 159.0, 191.4. Calcd for C₁₅H₁₀ClNNaO₄S, [M+Na]⁺ *m/z* 357.9917; Found 357.9909.

2-(1-(4-chlorophenyl)-1-oxopropan-2-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4l

White solid. mp:212 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 1.77$ (d, J = 7.0 Hz, 3H), 6.40 (q, J = 7.0 Hz, 1H), 7.49 - 7.51 (m, 2H), 7.74 - 7.78 (m, 1H), 7.78 - 7.81 (m, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.92 (d, J = 8.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 17.6$, 77.7, 122.0, 123.7, 126.3, 129.4, 129.9, 132.0, 133.5, 134.4, 140.8, 143.6, 168.4, 193.3. HRMS (ESI-TOF) Calcd for C₁₆H₁₂CINNaO₄S, [M+Na]⁺ *m/z* 372.0073; Found 372.0074.

2-(2-(naphthalen-1-yl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4m

White solid. mp:216-217 °C ¹H NMR (500 MHz; CDCl₃): δ = 5.18 (s, 2H), 7.56 (t, *J* = 7.5 Hz, 2H), 7.60 - 7.63 (m, 1H), 7.86 - 7.92 (m, 3H), 7.98 (d, *J* = 7.0 Hz, 1H), 8.03 (d, *J* = 7.0 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 7.0 Hz, 1H), 8.72 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 46.2, 121.2, 124.2, 125.5, 125.8, 126.9, 127.3, 128.1, 128.5, 128.6, 130.3, 132.0, 134.0, 134.1, 134.5, 135.0, 137.9, 159.2, 192.1. HRMS (ESI-TOF) Calcd for C₁₉H₁₄NO₄S, [M+H]⁺ *m/z* 352.0638; Found 352.0640.

$\label{eq:linear} 2-(2-oxo-2-(thiophen-2-yl)ethyl) benzo[d] isothiazol-3(2H)-one 1,1-dioxide 4n$

White solid. mp:209-211 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 5.08$ (s, 2H), 7.21 (t, J = 4.5 Hz, 1H), 7.76 (d, J = 5.0 Hz, 1H), 7.86 - 7.93 (m, 3H), 7.97 (d, J = 7.0 Hz, 1H), 8.11 (d, J = 7.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 44.2$, 121.2, 125.5, 127.2, 128.4, 132.6, 134.5, 135.0, 135.0, 137.8, 140.2, 159.0, 181.9. HRMS (ESI-TOF) Calcd for C₁₃H₉NNaO₄S₂, [M+Na]⁺ *m/z* 329.9871; Found 329.9876.

2-(2-(furan-2-yl)-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 40

White solid. mp:185-186 °C ¹H NMR (500 MHz; CDCl₃): δ = 5.03 (s, 2H), 6.62 (d, *J* = 2.0 Hz, 1H), 7.35 (d, *J* = 3.5 Hz, 1H), 7.67 (s, 1H), 7.85 - 7.92 (m, 2H), 7.96 (d, *J* = 7.5 Hz, 1H), 8.10 (d, *J* = 7.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 43.7, 112.8, 118.3, 121.2, 125.4, 127.2, 134.4, 135.0, 137.8, 147.1, 150.6, 159.0, 178.4. HRMS (ESI-TOF) Calcd for C₁₃H₁₀NO₅S, [M+H]⁺ *m/z* 292.0274; Found 292.0267.

2-(2-oxocyclopentyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4p

White solid. mp:173 °C ¹H NMR (500 MHz; CDCl₃): δ = 1.91 - 1.97 (m, 1H), 2.26 - 2.31 (m, 1H), 2.44 - 2.55 (m, 4H), 4.35 - 4.39 (m, 1H), 7.82 - 7.93 (m, 3H),8.02 (d, *J* = 7.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 19.0, 26.7, 35.5, 56.2, 121.0, 125.2, 127.0, 134.4, 134.9, 137.7, 158.1, 209.4. HRMS (ESI-TOF) Calcd for C₁₂H₁₁NNaO₄S, [M+Na]⁺ *m/z* 288.0301; Found 288.0302.

2-(2-oxocyclohexyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4q

White solid. mp:162-163 °C ¹H NMR (500 MHz; CDCl₃): δ = 1.69 - 1.74 (m, 1H), 1.83 - 1.91 (m, 1H), 1.96 - 2.02 (m, 1H), 2.04 - 2.09 (m, 1H), 2.16 - 2.18 (m, 1H), 2.45 - 2.52 (m, 1H), 2.60 - 2.62 (m, 2H), 5.59 - 5.63 (m, 1H),7.72 (t, *J* = 7.5 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.84 (d, *J* = 7.0 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 23.5, 26.9, 33.1, 40.7, 82.8, 121.8, 123.6, 126.5, 133.4, 134.2, 143.5, 168.5, 201.7. HRMS (ESI-TOF) Calcd for C₁₃H₁₄NO₄S, [M+H]⁺ *m/z* 280.0638; Found 280.0638.

2-(2-oxocycloheptyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4r

White solid. mp:138-139 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 1.41$ (t, J = 10.0 Hz, 1H), 1.73 - 1.83 (m, 2H), 1.93 - 2.02 (m, 4H), 2.26 - 2.29 (m, 1H), 2.48 - 2.55 (m, 1H), 2.73 - 2.78 (m, 1H), 5.71 (dd, $J_1 = 3.0$ Hz, $J_1 = 10.0$ Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.83 -7.88 (m, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 22.8$, 26.2, 28.2, 30.5, 40.6, 84.7, 121.8, 123.6, 126.5, 133.4, 134.2, 143.5, 168.3, 204.6. HRMS (ESI-TOF) Calcd for C₁₄H₁₆NO₄S, [M+H]⁺ m/z 294.0795; Found 294.0803.

2-(4-methyl-2-oxocyclohexyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4s

White solid. mp:207-208 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 1.12$ (d, J = 7.0 Hz, 3H), 1.44 - 1.48 (m, 1H), 1.73 - 1.80 (m, 1H), 2.08 - 2.13 (m, 1H), 2.18 - 2.22 (m, 1H), 2.51 - 2.55 (m, 1H), 2.55 - 2.57 (m, 2H), 5.64 - 5.68 (m, 1H), 7.71 - 7.74 (m, 1H), 7.77 - 7.80 (m, 1H), 7.83 (d, J = 7.5 Hz, 1H), 7.88 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 20.9$, 30.7, 34.8, 39.5, 40.7, 81.8, 121.9, 123.6, 126.6, 133.4, 134.2, 143.6, 168.5, 201.9. HRMS (ESI-TOF) Calcd for C₁₄H₁₆NO₄S, [M+H]⁺ *m/z* 294.0795; Found 294.0791.

(E)-2-(2-hydroxy-4-oxopent-2-en-3-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4t

White solid. mp:175-176 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 2.17$ (s, 6H), 7.93 - 8.01 (m, 2H), 8.04 (d, J = 8.0 Hz, 1H), 8.19 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 22.1$, 102.7, 121.5, 125.8, 126.4, 134.6, 135.5, 137.7, 158.3, 194.3. HRMS (ESI-TOF) Calcd for C₁₂H₁₁NNaO₅S, [M+Na]⁺ m/z 304.0256; Found 304.0266.

2-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)-1-phenylbutane-1,3-dione 4u

White solid. mp:189-190 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 2.24$ (s, 3H), 7.30 (t, J = 7.5 Hz, 2H), 7.39 (d, J = 7.5 Hz, 1H) 7.55 (d, J = 7.5 Hz, 2H), 7.86 - 7.88 (m, 3H), 8.17 (t, J = 3.5 Hz, 1H), 17.23 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 23.2$, 101.7, 121.5, 125.8, 126.1, 127.1, 128.2, 131.6, 134.2, 134.5, 135.4, 137.6, 159.4, 188.7, 197.9. HRMS (ESI-TOF) Calcd for C₁₇H₁₃NNaO₅S, [M+Na]⁺ *m/z* 366.0412; Found 366.0416.

2-(2-cyclopropyl-2-oxoethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4v

White solid. mp:166-167 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 1.02 - 1.06$ (m, 2H), 1.18 - 1.21 (m, 2H), 2.04 - 2.07 (m, 1H), 4.65 (s, 2H), 7.84 - 7.91 (m, 2H), 7.95 (d, J = 7.5 Hz, 1H), 8.08 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 12.0$, 18.1, 47.0, 121.1, 125.4, 127.2, 134.4, 134.9, 137.8, 158.9, 200.4. HRMS (ESI-TOF) Calcd for C₁₂H₁₂NO₄S, [M+H]⁺ *m/z* 266.0482; Found 266.0482.

2-(3-methyl-2-oxobutyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4w

White solid. mp:143 °C ¹H NMR (500 MHz; CDCl₃): δ = 1.23 (d, *J* = 7.0 Hz, 6H), 2.79 - 2.82 (m, 1H), 4.56 (s, 2H), 7.84 - 7.91 (m, 2H), 7.94 (d, *J* = 7.5 Hz, 1H), 8.07 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 18.0, 38.4, 44.8, 121.1, 125.3, 127.2, 134.4, 134.9, 137.7, 158.9, 203.5. HRMS (ESI-TOF) Calcd for C₁₂H₁₃NNaO₄S, [M+Na]⁺ *m/z* 290.0463; Found 290.0454.

2-(2-oxobutyl)benzo[d]isothiazol-3(2H)-one1,1-dioxide4xand2-(3-oxobutan-2-yl)benzo[d]isothiazol-3(2H)-one1,1-dioxide (3:2) 4x'

White solid. mp:150-151 °C. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.14$ (t, J = 7.5 Hz, 3H), 1.78 (d, J = 7.0 Hz, 3H), 2.26 (s, 3H), 2.60 (q, J = 7.0 Hz, 2H), 4.49 (s, 2H), 4.62 (q, J = 7.5 Hz, 1H), 7.85 - 7.93 (m, 4H), 7.96 (d, J = 7.5 Hz, 2H), 8.08 (t, J = 7.0 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 7.2$, 13.6, 26.0, 32.9, 46.2, 56.4, 121.0, 121.2, 125.3, 125.4, 126.8, 127.1, 134.5, 135.0, 135.1, 137.7, 137.8, 158.7, 158.9, 201.0, 201.8. HRMS (ESI-TOF) Calcd for C₁₁H₁₁NNaO₄S, [M+Na]⁺ m/z 276.0306; Found 276.0310.

3-((1,1-dioxidobenzo[d]isothiazol-3-yl)oxy)butan-2-one 4x"

White solid. mp:137-138 °C ¹H NMR (500 MHz; CDCl₃): δ = 1.68 (d, *J* = 7.0 Hz, 3H), 2.30 (s, 3H), 5.55 (d, *J* = 7.0 Hz, 1H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.79 - 7.85 (m, 2H), 7.89 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 16.2, 26.0, 81.2, 122.0, 123.5, 126.3, 133.5, 134.4, 143.5, 168.4, 202.5. HRMS (ESI-TOF) Calcd for C₁₁H₁₂NO₄S, [M+H]⁺ *m/z* 254.0482; Found 254.0476.

2-(3-oxopentan-2-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4y

White solid. mp:95-96 °C. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.09$ (t, J = 7.5 Hz, 3H), 1.79 (t, J = 7.5 Hz, 3H), 2.58 (q, J = 3.0 Hz, 2H), 4.65 (q, J = 7.5 Hz, 1H), 7.87 (dd, $J_1 = 1.5$ Hz, $J_1 = 7.5$ Hz, 1H), 7.90 - 7.96 (m, 2H), 8.06 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 7.5$, 13.7, 31.5, 56.0, 121.0, 125.3, 126.8, 134.5, 135.0, 137.8, 158.8, 204.5. HRMS (ESI-TOF) Calcd for C₁₂H₁₃NNaO₄S, [M+Na]⁺ *m/z* 290.0463; Found 290.0451.

2-((1,1-dioxidobenzo[d]isothiazol-3-yl)oxy)pentan-3-one 4y'

White solid. mp:157-158 °C. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.13$ (t, J = 7.5 Hz, 3H), 1.67 (d, J = 7.0 Hz, 3H), 2.56 - 2.69 (m, 2H), 5.57 (q, J = 7.5 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.79 - 7.82 (m, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 7.1$, 16.5, 31.8, 80.9, 121.9, 123.5, 126.3, 133.5, 134.3, 143.5, 168.4, 205.5. HRMS (ESI-TOF) Calcd for C₁₂H₁₄NO₄S, [M+H]⁺ *m/z* 268.0638; Found 268.0629.

2-(4-methyl-2-oxopentyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4z

White solid. mp:150-151 °C ¹H NMR (500 MHz; CDCl₃): $\delta = 0.98$ (d, J = 6.5 Hz, 6H), 2.20 - 2.25 (m, 1H), 2.43 (d, J = 6.5 Hz, 2H), 4.45 (s, 2H), 7.85 - 7.92 (m, 2H), 7.95 (d, J = 7.0 Hz, 1H), 8.09 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 22.5$, 24.7, 47.0, 48.3, 121.2, 125.4, 127.2, 134.5, 135.0, 137.8, 158.9, 200.0. HRMS (ESI-TOF) Calcd for C₁₃H₁₅NNaO₄S, [M+Na]⁺ m/z 304.0619; Found 304.0612.

2-(2-methyl-4-oxopentan-3-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 4z'

White solid. mp:63-64 °C. ¹H NMR (500 MHz; CDCl₃): δ = 1.09 (d, *J* = 7.0 Hz, 3H), 1.16 (d, *J* = 6.5 Hz, 3H), 2.28 (s, 3H), 2.45 - 2.49 (m, 1H), 5.32 (d, *J* = 4.0 Hz, 1H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.79 - 7.85 (m, 2H), 7.90 (d, *J* = 7.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 16.6, 19.2, 27.3, 88.9, 122.0, 123.4, 126.4, 133.5, 134.3, 143.6, 168.9, 202.0. HRMS (ESI-TOF) Calcd for C₁₃H₁₅NNaO₄S, [M+Na]⁺ *m/z* 304.0619; Found 304.0612.

2-(2-oxo-1-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide 5

White solid. mp:152-154 °C ¹H NMR (500 MHz; CDCl₃): δ = 1.03 (s, 3H), 1.16 (s, 3H), 1.25 (s, 3H), 1.31 (s, 4H), 1.43 - 1.50 (m, 3H), 1.59 (s, 2H), 2.54 (s, 3H), 5.82 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.88 - 7.93 (m, 2H), 8.03 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 16.9, 20.5, 20.6, 28.0, 32.1, 33.5, 40.0, 59.9, 61.5, 88.2, 121.1, 125.5, 126.3, 134.3, 135.3, 138.1, 159.2, 200.8. HRMS (ESI-TOF) Calcd for C₁₉H₂₇N₂O₅S, [M+H]⁺ *m/z* 395.1635; Found 395.1623.

Product 3c

Product 3e

Product 3g

Product 31

Product 3m

Product 4b

Product 4d

Product 4e

Product 4f

Product 4g

Product 4h

Product 4j

Product 4k

S39

Product 4n

Product 4o

Product 4r

Product 4s

Product 4t

220 200 180 160 140 120 100 80 60 40 20 0 ppm

Product 4u

Product 4x and 4x'

Product 4x"

-1.795

2

3.48-

 $\underbrace{-1.101}_{1.086}$

3.19

-0

ppm

S54

Product 4z

