Electronic Supporting Information

Dinuclear ruthenium(II) polypyridyl complexes as one and two-photon luminescence cellular imaging probes

Wenchao Xu, Jiarui Zuo, Lili Wang, Liangnian Ji and Hui Chao*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China. E-mail: ceschi@mail.sysu.edu.cn; Fax: 86-20-84112245; Tel: 86-20-84110613

Experimental section

Instruments

Microanalysis (C, H, and N) was carried out with a Vario EL cube elemental analyzer. ¹H NMR spectra were recorded on a Bruke 500 Nuclear Magnetic Resonance Spectrometer at 25 °C. All chemical shifts are given relative to tetramethylsilane (TMS). Electrospray mass spectra (ES-MS) were recorded on a LCQ system (Finnigan MAT, USA). Fast atom bombardment mass spectra (FAB-MS) were acquired on a VG ZAB-HS spectrometer in a 3-nitrobenzyl alcohol matrix. UV–Vis spectra were recorded on a PerkinElmer Lambda 850 spectrophotometer. Emission spectra were recorded on a PerkinElmer LS 55 fluorescence spectrometer at room temperature. Time-resolved emission measurements were conducted on an FLS 920 combined fluorescence lifetime and steady state spectrometer. Quantum yields of luminescence at room temperature were calculated according to literature procedures,¹ using an aerated aqueous solution of [Ru(bpy)₃]²⁺ ($\phi = 0.042$)² as reference emitter. All data were dealed with using the OriginPro 7.5 software package.

Materials

All materials were commercially available and of reagent grade. PBS buffer (pH 7.4) was prepared using doubly distilled water.

Synthesis

The compounds 1,10-phenanthroline-5,6-dione,³ and cis-[Ru(phen)₂Cl₂]·2H₂O⁴ and were synthesized according to the literature methods.

Syntheses of 1,3-bis(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (L_1)

A mixture of 1,10-phenanthroline-5,6-dione (0.63 g, 3 mmol), ammonium acetate (4.62 g, 60 mmol), isophthalic aldehyde (0.201 g, 1.5 mmol) \rightarrow aniline (0.27 g, 3 mmol) and glacial acetic acid (35 cm³) was refluxed under argon for 24 h. The reaction mixture was then cooled to room temperature and poured into water (50 cm³). The solution was neutralized with a 25% NH₃ solution. A yellow precipitate was obtained and washed by water and ether. The crude product was recrystallized from CH₃OH and produced a yellow powder. Yield: 85%. Anal. Calcd for C₄₄H₂₆N₈: C, 79.26; H, 3.93; N, 16.81. Found: C, 79.12; H, 3.45; N, 24.39%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.11 (d, *J* = 5.0 Hz, 2H), δ 9.03 (d, *J* = 5.0 Hz, 2H), δ 8.97 (d, *J* = 5.0 Hz, 2H), 8.17 (s, 1H), 7.93 (m, 2H), 7.76 (m, 8H), 7.66 (m, 2H), 7.56 (d, *J* = 5.0 Hz, 2H), 7.48 (d, *J* = 5.0 Hz, 2H), 7.36 (t, *J*₁ = *J*₂=5.0 Hz, 2H) , 7.28 (t, *J*₁=*J*₂=5.0 Hz, 1H). FAB-MS: m/z = 667 [M+1].

Syntheses of 1,3-bis(1-p-tolyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (L₂)

A mixture of 1,10-phenanthroline-5,6-dione (0.63 g, 3 mmol), ammonium acetate (4.62 g, 60 mmol), isophthalic aldehyde (0.201 g, 1.5 mmol) \cdot p-toluidine (0.32 g, 3 mmol) and glacial acetic acid (35 cm³) was refluxed under argon for 24 h. The reaction mixture was then cooled to room temperature and poured into water (50 cm³). The solution was neutralized with a 25% NH₃ solution. A dark yellow precipitate was obtained and washed by water and ether. The crude product was recrystallized from CH₃OH and produced a dark yellow powder. Yield: 83%. Anal. Calcd for C₄₆H₃₀N₈: C, 79.52; H, 4.35; N, 16.13. Found: C, 79.48; H, 4.42; N, 16.10%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.10 (d, *J* = 5.0 Hz, 2H), δ 8.96 (d, *J* = 5.0 Hz, 2H), 8.25 (s, 1H), 7.91 (m, 2H), 7.63 (d, *J* = 5.0 Hz, 4H), 7.53 (d, *J* = 5.0 Hz, 4H), 7.51 (m, 2H), 7.47 (d, *J* = 5.0 Hz, 2H), 7.40 (d, *J* = 5.0 Hz, 2H), 7.30 (t, *J*=*J*_2=5.0 Hz, 1H), 2.52 (s, 6H). FAB-MS: m/z = 695 [M+1].

Syntheses of 1,3-bis(1-(4-tert-butylphenyl)-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (L₃)

A mixture of 1,10-phenanthroline-5,6-dione (0.63 g, 3 mmol), ammonium acetate (4.62 g, 60 mmol), isophthalic aldehyde (0.201 g, 1.5 mmol) \cdot 4-tert-butylaniline (0.45 g, 3 mmol) and glacial acetic acid (35 cm³) was refluxed under argon for 24 h. The reaction mixture was then cooled to room temperature and poured into water (50 cm³). The solution was neutralized with a 25% NH₃ solution. A pale yellow precipitate was obtained and washed by water and ether. The crude product was recrystallized from

CH₃OH and produced a pale yellow powder. Yield: 80%. Anal. Calcd for C₅₂H₄₂N₈: C, 80.18; H, 5.43; N, 14.39. Found: C, 80.09; H, 5.48; N, 14.43%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.11 (d, *J* = 5.0 Hz, 2H), δ 9.03 (d, *J* = 5.0 Hz, 2H), δ 8.97 (d, *J* = 5.0 Hz, 2H), 8.00 (s, 1H), 7.91 (m, 2H), 7.72 (d, *J* = 5.0 Hz, 4H), 7.62 (d, *J* = 5.0 Hz, 2H), 7.52 (m, 2H), 7.46 (d, *J* = 5.0 Hz, 2H), 7.39 (d, *J* = 5.0 Hz, 1H), 7.33 (t, *J*₁=*J*₂=5.0 Hz, 1H), 7.29 (d, *J* = 5.0 Hz, 3H), 1.25 (s, 18H). FAB-MS: m/z = 779 [M+1].

Syntheses of 1,3-bis(1-(4-fluorophenyl)-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (L_4)

A mixture of 1,10-phenanthroline-5,6-dione (0.63 g, 3 mmol), ammonium acetate (4.62 g, 60 mmol), isophthalic aldehyde (0.201 g, 1.5 mmol) \cdot 4-fluoroaniline (0.33 g, 3 mmol) and glacial acetic acid (35 cm³) was refluxed under argon for 24 h. The reaction mixture was then cooled to room temperature and poured into water (50 cm³). The solution was neutralized with a 25% NH₃ solution. A light blue precipitate was obtained and washed by water and ether. The crude product was recrystallized from CH₃OH and produced a light blue powder. Yield: 73%. Anal. Calcd for C₄₄H₂₄N₈F₂: C, 75.20; H, 3.44; N, 15. 95. Found: C, 75.18; H, 3.48; N, 15.93%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.98 (d, *J* = 25.0 Hz, 2H), δ 9.06 (m, 4H), 8.13 (s, 1H), 7.96 (d, *J*=5.0 Hz, 2H), 7.90 (d, *J*=5.0 Hz, 2H), 7.85 (d, *J*=5.0 Hz, 2H), 7.63 (t, *J*₁=*J*₂=5.0 Hz, 1H),7.58 (m, 4H), 7.45 (d, *J* = 5.0 Hz, 2H), 7.11 (m, 4H). FAB-MS: m/z = 703 [M+1].

Syntheses of 1,3-bis(1-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (L₃) A mixture of 1,10-phenanthroline-5,6-dione (0.63 g, 3 mmol), ammonium acetate (4.62 g, 60 mmol), isophthalic aldehyde (0.201 g, 1.5 mmol) , 4-methoxyaniline (0.37 g, 3 mmol) and glacial acetic acid (35 cm³) was refluxed under argon for 24 h. The reaction mixture was then cooled to room temperature and poured into water (50 cm³). The solution was neutralized with a 25% NH₃ solution. A dark blue precipitate was obtained and washed by water and ether. The crude product was recrystallized from CH₃OH and produced a dark blue powder. Yield: 75%. Anal. Calcd for C₄₆H₃₀N₈O₂: C, 76.02; H, 4.16; N, 15.42. Found: C, 76.06; H, 4.12; N, 15.38%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.10 (d, *J* = 5.0 Hz, 2H), δ 9.01 (d, *J* = 5.0 Hz, 2H), δ 8.96 (d, *J* = 5.0 Hz, 2H), 8.25 (s, 1H), 7.91 (m, 2H), 7.68 (d, *J*=10.0 Hz, 4H), 7.53 (m, 4H), 7.44 (d, *J* = 5.0 Hz, 2H), 7.34 (t, *J*₁=*J*₂=5.0 Hz, 1H), 7.28 (m, 4H), 3.92 (s, 6H). FAB-MS: m/z = 727 [M+1].

Syntheses of 4,4'-(2,2'-(1,3-phenylene)bis(1H-imidazo[4,5-f][1,10]phenanthroline-2,1-diyl))bis(N,N-dimethylaniline) (L₆)

A mixture of 1,10-phenanthroline-5,6-dione (0.63 g, 3 mmol), ammonium acetate (4.62 g, 60 mmol), isophthalic aldehyde (0.201 g, 1.5 mmol) \cdot N₁,N₁-dimethylbenzene-1,4-diamine (0.41 g, 3 mmol) and glacial acetic acid (35 cm³) was refluxed under argon for 24 h. The reaction mixture was then cooled to room temperature and poured into water (50 cm³). The solution was neutralized with a 25% NH₃ solution. A dark red precipitate was obtained and washed by water and ether. The crude product was recrystallized from CH₃OH and produced a dark red powder. Yield: 72%. Anal. Calcd for C₄₈H₃₆N₁₀: C, 76.58; H, 4.82; N, 18.60. Found: C, 76.66; H, 4.78; N, 18.56%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.10 (d, *J* = 5.0 Hz, 2H), δ 9.01 (d, *J* = 5.0 Hz, 2H), δ 8.96 (d, *J* = 5.0 Hz, 2H), 8.38 (s, 1H), 7.90 (m, 2H), 7.56 (m, 8H), 7.47 (d, *J* = 10.0 Hz, 2H), 7.34 (t, *J*₁=*J*₂=5.0 Hz, 1H), 6.95 (m, 4H), 3.06 (s, 12H). FAB-MS: m/z = 753 [M+1].

Syntheses of 1,3-bis(1-(4-phenoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (L₇) A mixture of 1,10-phenanthroline-5,6-dione (0.63 g, 3 mmol), ammonium acetate (4.62 g, 60 mmol), isophthalic aldehyde (0.201 g, 1.5 mmol) , 4-phenoxyaniline (0.56 g, 3 mmol) and glacial acetic acid (35 cm³) was refluxed under argon for 24 h. The reaction mixture was then cooled to room temperature and poured into water (50 cm³). The solution was neutralized with a 25% NH₃ solution. A blue precipitate was obtained and washed by water and ether. The crude product was recrystallized from CH₃OH and produced a blue powder. Yield: 70%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.10 (d, *J* = 5.0 Hz, 2H), δ 9.06 (d, *J* = 5.0 Hz, 2H), δ 9.01 (d, *J* = 5.0 Hz, 2H), 7.99 (s, 1H), 7.86 (m, 2H), 7.75 (d, *J* = 5.0 Hz, 2H), 7.69 (t, *J*₁=*J*₂=5.0 Hz, 1H), 7.62 (m, 4H), 7.58 (t, *J*₁=*J*₂=5.0 Hz, 2H), 7.48 (m, 2H), 7.33 (m, 4H) , 7.26 (m, 4H) , 7.07 (m, 4H) , 6.96 (m, 2H). Anal. Calcd for C₅₆H₃₄N₈O₂: C, 79.04; H, 4.03; N, 13.17. Found: C, 79.01; H, 4.11; N, 13.12%. FAB-MS: m/z = 851 [M+1].

Syntheses of $[(phen)_2Ru(L_1)Ru(phen)_2](ClO)_4)_4$ (RuL₁)

A mixture of cis-[Ru(phen)₂Cl₂]·2H₂O (0.104 g, 0.2 mmol) and L₁ (0.068 g, 0.1 mmol) in ethylene glycol (12 cm³) was refluxed under argon for 12 h to give a clear red solution. Upon cooling, a brown

red precipitate was obtained by dropwise addition of saturated aqueous NaClO₄ solution. The crude product was purified by column chromatography on alumina with CH₃CN-Toluene (3:1, v/v) as eluent. Yield: 63%. Anal. Calcd for C₉₂H₅₈Cl₄N₁₆O₁₆Ru₂: C, 55.60; H, 2.94; N, 11.28. Found: C, 55.83; H, 2.91; N, 11.39%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.14 (d, *J* = 10.0 Hz, 2H), 8.78 (m, 8H), 8.39 (d, *J* = 10.0 Hz, 8H), 8.11 (m, 7H), 8.08 (d, *J* = 5.0 Hz, 2H), 8.04 (t, *J* = 5.0 Hz, 2H), 7.98(d, *J* = 10.0 Hz, 2H), 7.78 (m, 12H), 7.75 (m, 6H), 7.59 (d, *J* = 10.0 Hz, 2H), 7.51 (d, *J* = 15.0 Hz, 2H), 7.41 (m, 3H). ES-MS [CH₃CN, m/z]: 397 ([M-4ClO₄]⁴⁺), 563 ([M-3ClO₄]³⁺).

Syntheses of $[(phen)_2Ru(L_2)Ru(phen)_2](ClO)_4)_4$ (RuL₂)

A mixture of *cis*-[Ru(phen)₂Cl₂]·2H₂O (0.104 g, 0.2 mmol) and L₂ (0.070 g, 0.1 mmol) in ethylene glycol (12 cm³) was refluxed under argon for 12 h to give a clear red solution. Upon cooling, a brown red precipitate was obtained by dropwise addition of saturated aqueous NaClO₄ solution. The crude product was purified by column chromatography on alumina with CH₃CN-Toluene (7:2, v/v) as eluent. Yield: 66%. Anal. Calcd for C₉₄H₆₂Cl₄N₁₆O₁₆Ru₂: C, 56.01; H, 3.10; N, 11.12. Found: C, 55.93; H, 3.13; N, 11.20%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.14 (d, *J* = 10.0 Hz, 2H), 8.78 (m, 8H), 8.39 (d, *J* = 10.0 Hz, 8H), 8.24(s, 1H), 8.11 (m, 6H), 8.08 (d, *J*=5.0 Hz, 2H), 8.04 (t, *J* = 5.0 Hz, 2H), 7.98(d, *J* = 10.0 Hz, 2H), 7.88(d, *J* = 15.0 Hz, 2H), 7.76 (m, 8H), 7.66(d, *J* = 5.0 Hz, 2H), 7.60 (m, *4*H), 7.53 (m, 6H), 7.45 (d, *J* = 5.0 Hz, 2H), 7.42 (t, *J*₁=*J*₂=10.0 Hz, 1H), 2.08(s, 6H). ES-MS [CH₃CN, m/z]: 404.5 ([M-4ClO₄]⁴⁺), 573 ([M-3ClO₄]³⁺).

Syntheses of $[(phen)_2Ru(L_3)Ru(phen)_2](ClO)_4)_4$ (RuL₃)

A mixture of *cis*-[Ru(phen)₂Cl₂]·2H₂O (0.104 g, 0.2 mmol) and L₃ (0.078 g, 0.1 mmol) in ethylene glycol (12 cm³) was refluxed under argon for 12 h to give a clear red solution. Upon cooling, a brown red precipitate was obtained by dropwise addition of saturated aqueous NaClO₄ solution. The crude product was purified by column chromatography on alumina with CH₃CN-Toluene (3:1, v/v) as eluent. Yield: 65%. Anal. Calcd for C₁₀₀H₇₄Cl₄N₁₆O₁₆Ru₂: C, 57.20; H, 3.55; N, 10.67. Found: C, 57.08; H, 3.60; N, 10.72%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.14 (d, *J* = 10.0 Hz, 2H), 8.78 (m, 8H), 8.39 (d, *J* = 10.0 Hz, 8H), 8.11 (m, 6H), 8.06 (d, *J* = 5.0 Hz, 4H), 7.99 (t, *J* = 5.0 Hz, 3H), 7.88(d, *J* = 15.0 Hz, 2H), 7.80 (m, 4H), 7.76 (m, 6H), 7.68(m, 4H), 7.63(d, *J* = 10.0 Hz, 2H), 7.56 (d, *J* = 5.0 Hz, 2H), 7.50

(d, J = 5.0 Hz, 2H), 7.47 (d, J = 5.0 Hz, 2H), 7.38 (t, $J_1=J_2=10.0$ Hz, 1H), 1.25(s, 18H). ES-MS [CH₃CN, m/z]: 425.5 ([M-4ClO₄]⁴⁺), 600.5 ([M-3ClO₄]³⁺), 950 ([M-2ClO₄]²⁺).

Syntheses of $[(phen)_2Ru(L_4)Ru(phen)_2](ClO)_4)_4$ (RuL₄)

A mixture of *cis*-[Ru(phen)₂Cl₂]·2H₂O (0.104 g, 0.2 mmol) and L₄ (0.070 g, 0.1 mmol) in ethylene glycol (12 cm³) was refluxed under argon for 12 h to give a clear red solution. Upon cooling, a brown red precipitate was obtained by dropwise addition of saturated aqueous NaClO₄ solution. The crude product was purified by column chromatography on alumina with CH₃CN-Toluene (3:1, v/v) as eluent. Yield: 68%. Anal. Calcd for C₉₂H₅₆Cl₄F₂N₁₆O₁₆Ru₂: C, 54.61; H, 2.79; N, 11.08. Found: C, 54.58; H, 2.73; N, 11.22%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.14 (d, *J* = 10.0 Hz, 2H), 8.78 (m, 8H), 8.40 (d, *J* = 10.0 Hz, 8H), 8.10 (m, 6H), 8.08 (d, *J* =5.0 Hz, 2H), 8.05 (t, *J* = 5.0 Hz, 3H), 8.01(d, *J* = 5.0 Hz, 2H), 7.89(d, *J* = 5.0 Hz, 2H), 7.87 (m, 4H), 7.80 (m, 4H), 7.76 (m, 4H), 7.63 (m, 6H), 7.56(d, *J* = 10.0 Hz, 2H), 7.50(m,3H). ES-MS [CH₃CN, m/z]: 407 ([M-4ClO₄]⁴⁺), 576 ([M-3ClO₄]³⁺).

Syntheses of $[(phen)_2Ru(L_5)Ru(phen)_2](ClO)_4)_4$ (RuL₅)

A mixture of *cis*-[Ru(phen)₂Cl₂]·2H₂O (0.104 g, 0.2 mmol) and **L**₅ (0.073 g, 0.1 mmol) in ethylene glycol (12 cm³) was refluxed under argon for 12 h to give a clear red solution. Upon cooling, a brown red precipitate was obtained by dropwise addition of saturated aqueous NaClO₄ solution. The crude product was purified by column chromatography on alumina with CH₃CN-Toluene (4:1, v/v) as eluent. Yield: 60%. Anal. Calcd for C₉₄H₆₂Cl₄N₁₆O₁₈Ru₂: C, 55.14; H, 3.05; N, 10.95. Found: C, 55.11; H, 3.08; N, 10.89%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.14 (d, *J* = 10.0 Hz, 2H), 8.78 (m, 8H), 8.40 (d, *J* = 10.0 Hz, 8H), 8.24(s, 1H), 8.09 (m, 6H), 8.08 (d, *J*=5.0 Hz, 2H), 8.05 (t, *J* = 10.0 Hz, 2H), 7.99(d, *J* = 10.0 Hz, 2H), 7.50 (d, *J* = 10.0 Hz, 2H), 7.77 (m, 8H), 7.69 (m, 4H), 7.62(d, *J* = 10.0 Hz, 2H), 7.55 (d, *J* = 5.0 Hz, 2H), 7.50 (d, *J* = 10.0 Hz, 2H), 7.45 (t, *J*₁=*J*₂=10.0 Hz, 1H), 7.28 (m, 4H), 3.88(s, 6H). ES-MS [CH₃CN, m/z]: 413 ([M-4ClO₄]⁴⁺), 583 ([M-3ClO₄]³⁺).

Syntheses of $[(phen)_2Ru(L_6)Ru(phen)_2](ClO)_4)_4$ (RuL₆)

A mixture of cis-[Ru(phen)₂Cl₂]·2H₂O (0.104 g, 0.2 mmol) and L₆ (0.075 g, 0.1 mmol) in ethylene glycol (12 cm³) was refluxed under argon for 12 h to give a clear red solution. Upon cooling, a brown

red precipitate was obtained by dropwise addition of saturated aqueous NaClO₄ solution. The crude product was purified by column chromatography on alumina with CH₃CN-Toluene (5:2, v/v) as eluent. Yield: 56%. Anal. Calcd for C₉₆H₆₈Cl₄N₁₈O₁₆Ru₂: C, 55.60; H, 3.31; N, 12.16. Found: C, 55.52; H, 3.38; N, 12.18%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.14 (d, *J* = 10.0 Hz, 2H), 8.78 (m, 8H), 8.40 (d, *J* = 15.0 Hz, 8H), 8.09 (m, 10H), 7.98(d, *J* = 5.0 Hz, 2H), 7.87(d, *J* = 10.0 Hz, 2H), 7.77 (m, 8H), 7.62 (d, *J* = 10.0 Hz, 2H), 7.57 (d, *J* = 5.0 Hz, 2H), 7.52 (m, 2H), 7.46 (m, 3H), 7.24 (s, 1H), 6.95 (m, 4H), 3.03(s, 12H). ES-MS [CH₃CN, m/z]: 419 ([M-4ClO₄]⁴⁺), 592 ([M-3ClO₄]³⁺).

Syntheses of $[(phen)_2 Ru(L_7) Ru(phen)_2](ClO)_4)_4$ (RuL₇)

A mixture of *cis*-[Ru(phen)₂Cl₂]·2H₂O (0.104 g, 0.2 mmol) and L₇ (0.085 g, 0.1 mmol) in ethylene glycol (12 cm³) was refluxed under argon for 12 h to give a clear red solution. Upon cooling, a brown red precipitate was obtained by dropwise addition of saturated aqueous NaClO₄ solution. The crude product was purified by column chromatography on alumina with CH₃CN-Toluene (4:1, v/v) as eluent. Yield: 58%. Anal. Calcd for C₁₀₄H₆₆Cl₄N₁₆O₁₈Ru₂: C, 57.52; H, 3.06; N, 10.32. Found: C, 57.48; H, 3.12; N, 10.29%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.14 (d, *J* = 10.0 Hz, 2H), 8.78 (m, 8H), 8.40 (d, *J* = 10.0 Hz, 8H), 8.10 (m, 10H), 8.02(d, *J* = 5.0 Hz, 2H), 7.84(d, *J* = 10.0 Hz, 2H), 7.77 (m, 11H), 7.68 (d, *J* = 5.0 Hz, 2H), 7.63 (m, 4H), 7.55 (d, *J*₁=*J*₂=10.0 Hz, 1H), 7.35 (m, 4H), 7.25 (m, 6H), 7.06 (m, 6H). ES-MS [CH₃CN, m/z]: 444 ([M-4ClO₄]⁴⁺), 625 ([M-3ClO₄]³⁺).

Determination of two-photon absorption cross sections

The two-photon absorption spectra of probes determined over a broad spectral region by the typical two-photon induced fluorescence (TPF) method relative to Rhodamine B in methanol as standard.⁵ The two-photon fluorescence data were acquired using a OpoletteTM 355II (pulse width ≤ 100 fs, 80 MHz repetition rate, tuning range 750-1000 nm, Spectra Physics Inc., USA). Two-photon fluorescence measurements were performed in fluorometric quartz cuvettes with **RuL**₁₋₇ at 2×10⁻⁴ M in in aqueous media (DMSO/H₂O, v/v = 1:99) at 298K. The experimental fluorescence excitation and detection conditions were conducted with negligible reabsorption processes which can affect TPA measurements. The quadratic dependence of two-photon induced fluorescence intensity on the excitation power was

verified for excitation wavelength at 830 nm. The two-photon absorption cross section of the probes was calculated at each wavelength according to equation $(1)^6$

$$\delta_2 = \delta_1 \frac{\phi_1 C_1 I_2 n_2}{\phi_2 C_2 I_1 n_1} \tag{1}$$

where *I* is the integrated fluorescence intensity, C is the concentration, n is the refractive index, and Φ is the quantum yield, subscript '1' stands for reference samples, '2' stands for samples.

Cell line and cell culture

HeLa cells were obtained from the Cell Bank (Cell Institute, Sinica Academica Shanghai, Shanghai, China). All cell lines were maintained in either RPMI-1640 or DMEM media supplemented with fetal bovine serum (10%), penicillin (100 units/mL) and streptomycin (50 units/mL) at 37 °C in CO₂ incubator (95% relative humidity, 5% CO₂).

Flow cytometry analysis

HeLa cells in a density of 1×10^5 cells/mL were cultured in 6-well plates for 24 h in incubator, then **RuL**₄ (10 μ M) was added with fresh DMEM and were further incubated for 2 h in incubator. Then the cells were trypsinized and washed with PBS. The cell uptake samples were analyzed with FACSCanto II (BD Biosciences, USA).

ICP-MS analysis

HeLa cells were plated at a density of 1×10^5 cells per ml in a volume of 5 mL of DMEM medium, **RuL**₁₋₇ (10 μ M) was added to the culture medium and incubated for varying amounts of time at 37 °C. After digestion, HeLa cells were counted and divided into two parts. One part: the nuclei were extracted using a nucleus extraction kit; the second part: the cytoplasms were extracted using a cytoplasm extraction kit (Shanghai Sangon Biological Engineering Technology & Services Co. Ltd.). The samples were digested by 60% HNO₃ at RT for one day. Each sample diluted with DDW to obtain 2% HNO₃ sample solutions. The ruthenium concentration in the two parts was determined by an inductively coupled plasma mass spectrometry (ICP-MS Thermo Elemental Co., Ltd.).

MTT cell viability assay⁷

Cells were plated in 96-well microassay culture plates (1×10^4 cells per well) and grown overnight at 37 °C in a 5%CO₂ incubator. Test compounds were then added to the wells to achieve final concentrations ranging from 10⁻⁶ to 10⁻⁴ M. Control wells were prepared by addition of culture medium (100 μ L). Wells containing culture medium without cells were used as blanks. The plates were incubated at 37 °C in a 5%CO₂ incubator for 24 h. Upon completion of the incubation, stock MTT dye solution (20 μ L, 5 mg/mL) was added to each well. After 4 h incubation, buffer (100 μ L) containing N,N-dimethylformamide (50%) and sodium dodecyl sulfate (20%) was added to solubilize the MTT formazan. The optical density of each well was then measured on a microplate spectrophotometer at a wavelength of 590 nm.

One- and two-photon luminescent imaging

HeLa cell lines were incubated with \mathbf{RuL}_{1-7} (10 μ M) for 2 h at 37 °C. After being washed with fresh PBS (pH = 7.4) three times, the cells were imaged on a Zeiss LSM 710 NLO confocal microscope (63×/NA 1.4 oil immersion objective). Excitation wavelength of laser was 458 nm, and emission spectra were integrated over the range 580-630 nm (single channel). For two-photon images, excitation wavelength of laser was 800/830 nm.

Probe	$\lambda_{\max}/\lambda_{\max}{}^b$	ϵ_{max}^{c}	ϕ^d	τ/ns^e	$\delta(GM)^{f}$
RuL1	263, 282, 455/603	16.4, 10.2, 2.94	0.045	989.09	322
RuL ₂	263, 281, 456/602	17.3, 11.0, 3.10	0.041	1002.10	368
RuL3	263, 280, 457/607	14.1, 9.77, 2.57	0.050	1000.56	357
RuL4	263, 280, 455/606	18.3, 11.8, 3.25	0.044	1006.65	361
RuL5	263, 279, 455/608	14.3, 7.64, 2.08	0.050	987.71	386
RuL6	264, 280, 456/607	14.2, 8.92, 2.28	0.054	1113.69	355
RuL7	263, 279, 456/608	14.8, 10.4, 2.64	0.048	1075.99	330

Table S1 Photophysical data of RuL1-7 in DMSO/H₂O^a

^{*a*}All data were measured in aqueous media (DMSO/H₂O, v/v = 1:99) at 298K. ^{*b*} λ_{max} values of the one-photon absorption and emission spectra in nm. ^{*c*}Extinction coefficient in 1 × 10⁴ M⁻¹·cm⁻¹. ^{*d*}Luminescence quantum yield. ^{*e*}Life time. ^{*f*}Two-photon absorption cross section at 830 nm for **RuL**₄, 800 nm for **RuL**₁₋₇.

Scheme S1. Synthesis of ligands L₁₋₇ and complexes RuL₁₋₇.

Fig. S1 ¹H NMR spectrum of L_1 .

Fig. S2 ¹H NMR spectrum of L_2 .

Fig. S3 ¹H NMR spectrum of L_3 .

Fig. S5 ¹H NMR spectrum of L_5 .

Fig. S7 ¹H NMR spectrum of L_7 .

Fig. S8 ES-MS spectrum of RuL₁.

Fig. S9 ES-MS spectrum of RuL₂.

Fig. S10 ES-MS spectrum of RuL₃.

Fig. S11 ES-MS spectrum of RuL₄.

Fig. S12 ES-MS spectrum of RuL₅.

Fig. S13 ES-MS spectrum of RuL₆.

Fig. S14 ES-MS spectrum of RuL₇.

Fig. S16 ¹H NMR spectrum of \mathbf{RuL}_2 .

Fig. S17 ¹H NMR spectrum of RuL₃.

Fig. S18 ¹H NMR spectrum of RuL_4 .

Fig. S19 ¹H NMR spectrum of RuL_5 .

Fig. S20¹H NMR spectrum of RuL₆.

Fig. S21 ¹H NMR spectrum of \mathbf{RuL}_7 .

Fig. S22 Absorption spectra of RuL_{1-7} (10 μ M) in DMSO/H₂O (v/v = 1:99) solution at 298K.

Fig. S23 Emission spectra of RuL_{1-7} (10 μ M) DMSO/H₂O (v/v = 1:99) solution at 298K.

Fig. S24 Two-photon excited spectra of RuL_{1-7} at different excitation wavelengths from 750 to 1000 nm.

Fig. S25 The logarithmic plots of the power dependence of relative two-photon induced luminescence intensity of \mathbf{RuL}_4 as a function of pump power at an excitation wavelength of 830 nm, respectively. The solid lines are the best-fit straight lines with gradient, $n = 2.10 \pm 0.11$, indicating that \mathbf{RuL}_4 is two-photon excitation active.

Fig. S26 Cell viability of HeLa cells with RuL₁₋₇.

Fig. S27 OPM (a) and TPM (b) images of HeLa cells incubated with RuL_1 (10 μ M) for 2 h at 37 °C. The wavelengths for one- and two-photon excitation were 458 and 800 nm, respectively.

Fig. S28 OPM (a) and TPM (b) images of HeLa cells incubated with RuL_2 (10 μ M) for 2h at 37 °C. The wavelengths for one- and two-photon excitation were 458 and 800 nm, respectively.

Fig. S29 OPM (a) and TPM (b) images of HeLa cells incubated with RuL_3 (10 μ M) for 2h at 37 °C. The wavelengths for one- and two-photon excitation were 458 and 800 nm, respectively.

Fig. S30 OPM (a) and TPM (b) images of HeLa cells incubated with RuL_5 (10 μ M) for 2h at 37 °C. The wavelengths for one- and two-photon excitation were 458 and 800 nm, respectively.

Fig. S31 OPM (a) and TPM (b) images of HeLa cells incubated with RuL_6 (10 μ M) for 2 h at 37 °C. The wavelengths for one- and two-photon excitation were 458 and 800 nm, respectively.

Fig. S32 OPM (a) and TPM (b) images of HeLa cells incubated with RuL_7 (10 μ M) for 2h at 37 °C. The wavelengths for one- and two-photon excitation were 458 and 800 nm, respectively.

Fig. S33 Photostability experiments of RuL_{1-7} . The images were taken under successive irradiation. The wavelength for RuL_{1-7} was 458 nm.

Fig. S34 Normalized fluorescence intensity curves of RuL_{1-7} and Mitotracker Green under successive irradiation. The wavelengths for RuL_{1-7} and Mitotracker Green irradiation were 458 and 488 nm, respectively.

Fig. S1 The emission intensity of 10 μ M RuL₁₋₇ at 608 nm under different pH in Britton-Robinson buffer.

Fig. S36. OPM images of living HeLa cells incubated with 10 μ M RuL₄ under different conditions. (a) The cells were incubated with 10 μ M RuL₄ at 37 °C for 2 h. (b) The cells were incubated with 10 μ M RuL₄ at 4 °C for 2 h. (c) The cells were preincubated with 50 mM 2-deoxy-D-glucose and 5 μ M oligomycin in PBS for 1 h at 37 °C and then incubated with 10 μ M RuL₄ at 37 °C for 2 h. (d and e) The cells were pretreated with endocytic inhibitors NH₄Cl (50 mM), and chloroquine (50 μ M) respectively, and then incubated with 10 μ M RuL₄ at 37 °C for 2 h. Pl staining is included for each to indicate cell viability.

Fig. S37. Flow cytometric histogram profile of cellular uptake of \mathbf{RuL}_4 in HeLa cells. HeLa cells were incubated with 10 μ M \mathbf{RuL}_4 for 2 h at 37 °C (blue), 4 °C (red), and 37 °C after the cells had been preincubated with metabolic inhibitors 2-deoxy-D-glucose (50 mM) and oligomycin (5 μ M) in PBS for 1 h at 37 °C (orange), endocytic inhibitors NH₄Cl (50 mM) (yellow) and chloroquine (50 μ M) (green) in PBS for 1 h at 37 °C respectively.

References

- 1 J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 99.
- 2 K. Nakamaru, Bull. Chem. Soc. Jpn., 1982, 55, 2697.
- 3 M. Yamada, Y. Tanaka, Y. Yoshimato, S. Kuroda and I. Shimao, Bull. Chem. Soc. Jpn., 1992,
- **65,** 1006.
- 4 B. P. Sullivan, D. J. Salmon and T. J. Meyer, Inorg. Chem., 1978, 17, 3334.
- 5 G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991.
- 6 C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 1996, 13, 481.
- 7 T. Mosmann, J. Immunol. Methods, 1983, 65, 55.