Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI₂-mediated reduction of barbituric acids: vinylogous Nacyliminium additions to α-alkoxy-N-Ac-carbamides

Michal Szostak,* Brice Sautier and David J. Procter*

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

michal.szostak@manchester.ac.uk; david.j.procter@manchester.ac.uk

Supplementary Information

Table of Contents	1
List of Known Compounds/General Methods	2
Experimental Procedures and Characterization Data	3
Crystal Data and Structure Refinement Summaries	10
Large ORTEP Structures of Hemiaminals 1-4	11
Selected Bond Lengths and Angles of Hemiaminals 1-4	13
Summary of NMR and IR Analysis	18
References	20
¹ H and ¹³ C NMR Spectra	21

Corresponding Author:

Dr. Michal Szostak Professor David J. Procter School of Chemistry University of Manchester Oxford Road Manchester, M13 9PL United Kingdom

Structural Analysis and Vinylogous N-Acyliminium Addition

Szostak, Sautier and Procter

List of Known Compounds/General Methods

All starting materials reported in the manuscript have been previously described.¹⁻² Samarium(II) iodide was prepared by standard methods and titrated prior to use.³⁻⁷ All experiments involving SmI₂ were performed using standard techniques under argon or nitrogen atmosphere unless stated otherwise. All solvents were purchased at the highest commercial grade and used as received or after purification by passing through activated alumina columns or distillation from sodium/benzophenone (tetrahydrofuran) or calcium hydride (dichloromethane) under nitrogen. All solvents were deoxygenated prior to use. All other chemicals were purchased at the highest commercial grade and used as received. Reaction glassware was oven-dried at 140 °C for at least 24 h or flame-dried prior to use, allowed to cool under vacuum and purged with argon (three cycles). All yields refer to isolated yields unless stated otherwise. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on Bruker spectrometers at 300, 400 and 500 MHz (¹H NMR) and 75, 100 and 125 MHz (¹³C NMR). All shifts are reported in parts per million (ppm) relative to residual CHCl₃ peak (7.27 and 77.2 ppm, ¹H NMR and ¹³C NMR, respectively). All coupling constants (J) are reported in hertz (Hz). Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; br s, broad singlet. GC-MS chromatography was performed using Agilent 7890A GC System and Agilent 5975C inert XL EI/CI MSD with Triple Axis Detector equipped with Agilent HP-5MS column (19091S-433) (length 30 m, internal diameter 0.25 mm, film 0.25 µm) using helium as the carrier gas at a flow rate of 1 mL/min and an initial oven temperature of 40 °C or 50 °C. The injector temperature was 250 °C. The detector temperature was 250 °C. For runs with the initial oven temperature of 50 °C, temperature was increased with a 25 °C/min ramp after 50 °C hold for 3 min to a final temperature of 300 °C, then hold at 300 °C for 5 min (splitlesss mode of injection, total run time of 18 min). All flash chromatography was performed using silica gel, 60 Å, 230–400 mesh. TLC analysis was carried out on aluminium sheets coated with silica gel 60 F254, 0.2 mm thickness. The plates were visualized using a 254 nm ultraviolet lamp or aqueous potassium permanganate solutions. ¹H NMR and ¹³C NMR data are given for all compounds in the Supporting Experimental for characterization purposes. ¹H NMR, ¹³C NMR, IR and HRMS data are reported for all new compounds. All compounds have been prepared as racemates.

Structural Analysis and Vinylogous N-Acyliminium Addition

Experimental Procedures and Characterization Data

General procedure for the vinylogous N-acyliminium additions. An oven-dried vial equipped with a stir bar was charged with hemiaminal substrate (neat), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Dichloromethane was added, followed by silicon-based nucleophile (neat, typically, 10 equiv) and the mixture was stirred vigorously under argon. Lewis acid (BF₃•Et₂O, typically, 3 equiv) was added at room temperature, and the reaction mixture was stirred for the indicated time. The reaction was diluted with CH₂Cl₂ (20 mL) and HCl (0.1 *N*, 20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL), the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated. The sample was analyzed by ¹H NMR (CDCl₃, 400 and 500 MHz) to obtain 1,4/1,2 selectivity, conversion and yield using internal standard and comparison with authentic samples. Purification by chromatography using silica gel afforded the title product.

Vinylogous N-Acyliminium Addition to alpha-Alkoxy-N-Acylcarbamides

Table 2, Entry 1

7-(But-3-en-1-yl)-4a-isobutyl-1,3-dimethyl-5,6-dihydro-1*H*-cyclopenta[d]pyrimidine-2,4(3*H*,4a*H*)-dione (7a). To a solution of allylic hemiaminal (4a*S*,7a*R*)-7a-hydroxy-4a-isobutyl-1,3-dimethyl-7-methylenetetrahydro-1*H*-cyclopenta[*d*]pyrimidine-2,4(3*H*,4a*H*)-dione **6a** (37.6 µmol, 1.0 equiv) and allyltrimethylsilane (0.38 mmol, 10 equiv) in CH₂Cl₂ (1.0 mL), BF₃•OEt₂ (24 µL, 0.19 mmol, 5.0 equiv) was added dropwise at room temperature and the reaction mixture was stirred for 3 hours. The reaction was diluted with NH₄Cl (aq, sat., 2.0 mL), extracted with CH₂Cl₂ (3 × 2.0 mL), dried and concentrated. Purification by chromatography on silica gel (20% EtOAc/petroleum ether) afforded the title compound as a colorless oil. Yield 89%. 1,4/1,2 selectivity >95:5. ¹H NMR (500 MHz, CD₃C(O)CD₃) δ 0.83 (d, *J* = 6.6 Hz, 3 H), 0.91 (d, *J* = 6.6 Hz, 3 H), 1.41 (dd, *J* = 14.0, 6.6 Hz, 1 H), 1.51 (dd, *J* = 14.0, 5.0 Hz, 1 H), 1.60-1.69 (m, 1 H),

2.01 (ddd, J = 13.3, 8.5, 1.6 Hz, 1 H), 2.15 (dt, J = 13.3, 9.4 Hz, 1 H), 2.19-2.33 (m, 4 H), 2.40-2.48 (m, 1 H), 2.48-2.55 (m, 1 H), 3.07 (s, 3 H), 3.32 (s, 3 H), 4.95 (ddt, J = 10.2, 2.0, 0.9 Hz, 1 H), 5.05 (dq, J = 17.1, 1.6 Hz, 1 H), 5.84 (ddt, J = 17.1, 10.2, 6.6 Hz, 1 H). ¹³C NMR (125 MHz, CD₃C(O)CD₃) δ 24.5, 24.9, 25.9, 28.5, 28.9, 30.1, 32.7, 32.9, 35.7, 45.6, 57.1, 115.6, 125.8, 133.7, 138.9, 153.2, 175.3. IR (neat) 754, 912, 995, 1031, 1090, 1162, 1281, 1310, 1374, 1414, 1447, 1668, 1718, 2847, 2866, 2917, 2955. HRMS calcd for C₁₇H₂₇N₂O₂ (M⁺ + H) 291.2073, found 291.2080.

Table 2, Entry 2

7-(But-3-en-1-yl)-4a-(but-3-yn-1-yl)-1,3-dimethyl-1,4a,5,6-tetrahydro-2*H***-cyclopenta[***d***] pyrimidine-2,4(3***H***)-dione (7b).** According to the general procedure, the reaction of allylic hemiaminal (4*aR*,7*aR*)-4a-(but-3-yn-1-yl)-7a-hydroxy-1,3-dimethyl-7-methylenetetrahydro-1*H*cyclopenta[*d*]pyrimidine-2,4(3*H*,4*aH*)-dione **6b** (38.1 µmol, 1.0 equiv), allyltrimethysilane (0.38 µmol, 10 equiv) and BF₃•OEt₂ (0.19 mmol, 5.0 equiv) in CH₂Cl₂ (1.0 mL) at room temperature for 3 h, afforded after purification by chromatography (40% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 82%. 1,4/1,2 selectivity >95:5. ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 1.75-1.83 (m, 2 H), 2.06-2.11 (m, 1 H), 2.13-2.21 (m, 3 H), 2.23-2.33 (m, 4 H), 2.36 (t, *J* = 2.6 Hz, 1 H), 2.43-2.59 (m, 2 H), 3.08 (s, 3 H), 3.34 (s, 3 H), 4.96 (ddt, *J* = 1.1, 2.0, 10.2 Hz, 1 H), 5.06 (dq, *J* = 1.6, 17.1 Hz, 1 H), 5.86 (ddt, *J* = 6.5, 10.2, 17.1 Hz, 1 H). ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 14.6, 28.5, 28.9, 29.6, 32.8, 33.0, 35.6, 36.1, 56.9, 70.3, 84.3, 115.7, 126.3, 132.3, 138.9, 152.8, 174.7. IR (neat) 638, 751, 914, 964, 997, 1050, 1073, 1142, 1281, 1374, 1415, 1450, 1665, 1716, 2851, 2925, 2953, 3269. HRMS calcd for C₁₇H₂₃N₂O₂ (M⁺ + H) 287.1760, found 287.1754.

Structural Analysis and Vinylogous N-Acyliminium Addition

2-(4a-(But-3-yn-1-yl)-1,3-dimethyl-2,4-dioxo-2,3,4,4a,5,6-hexahydro-1*H*-cyclopenta[*d*]

pyrimidin-7-yl)acetonitrile (7c). According to the general procedure, the reaction of allylic hemiaminal (4*aR*,7*aR*)-4a-(but-3-yn-1-yl)-7a-hydroxy-1,3-dimethyl-7-methylenetetrahydro-1*H*-cyclopenta[*d*]pyrimidine-2,4(3*H*,4*aH*)-dione **6b** (38.1 μmol, 1.0 equiv), trimethylsilyl cyanide (0.38 μmol, 10 equiv) and BF₃•OEt₂ (0.19 mmol, 5.0 equiv) in CH₂Cl₂ (1.0 mL) at room temperature for 3 h afforded after purification by chromatography (40% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 74%. 1,4/1,2 selectivity >95:5. Note that the title compound is unstable. ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 1.70-1.76 (m, 2 H), 2.00-2.13 (m, 4 H), 2.24 (t, *J* = 2.6 Hz, 1 H), 2.29-2.38 (m, 1 H), 2.46-2.59 (m, 1 H), 2.97 (s, 3 H), 3.29 (s, 3 H), 3.43-3.62 (m, 2 H). ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 14.6, 17.8, 28.6, 29.5, 33.0, 35.2, 36.1, 57.2, 70.4, 84.1, 114.0, 117.8, 136.3, 152.7, 173.9. IR (neat) 645, 751, 1051, 1075, 1148, 1279, 1303, 1324, 1375, 1416, 1450, 1664, 1719, 2852, 2921, 3284. HRMS (EI) calcd for C₁₅H₁₇N₃O₂ (M⁺) 271.1315, found 271.1313.

4a-(But-3-yn-1-yl)-1,3-dimethyl-2,4-dioxo-2,3,4,4a,5,6-hexahydro-1*H*-cyclopenta[*d*] pyrimidine-7-carbaldehyde (7d). According to the general procedure, the reaction of allylic hemiaminal (4a*R*,7a*R*)-4a-(but-3-yn-1-yl)-7a-hydroxy-1,3-dimethyl-7-methylenetetrahydro-1*H*cyclopenta[*d*]pyrimidine-2,4(3*H*,4a*H*)-dione **6b** (38.1 µmol, 1.0 equiv), trimethylsilylazide (0.38 µmol, 10 equiv) and BF₃•OEt₂ (0.19 mmol, 5.0 equiv) in CH₂Cl₂ (1.0 mL) at room temperature for 3 h afforded after purification by chromatography (40% EtOAc/petroleum ether) the title

compound as a colorless oil. Yield 51%. 1,4/1,2 selectivity >95:5. Note that the title compound is unstable. ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 1.95-2.02 (m, 2 H), 2.06-2.10 (m, 1 H), 2.13-2.35 (m, 3 H), 2.39 (t, *J* = 2.8 Hz, 1 H), 2.50 (ddd, *J* = 7.5, 10.3, 15.8 Hz, 1 H), 2.62-2.71 (m, 1 H), 3.17 (s, 3 H), 3.66 (s, 3 H), 10.16 (s, 1 H). ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 14.9, 26.9, 28.9, 29.3, 37.0, 38.2, 58.5, 70.6, 83.8, 122.9, 151.9, 152.0, 172.5, 187.0. IR (neat) 644, 721, 750, 914, 962, 1054, 1073, 1137, 1244, 1286, 1322, 1372, 1426, 1600, 1676, 1728, 2854, 2924, 2952, 3269. HRMS calcd for C₁₄H₁₇N₂O₃ (M⁺ + H) 261.1239, found 261.1235.

Table 2, Entry 5

4a-(But-3-yn-1-yl)-7-(buta-2,3-dien-1-yl)-1,3-dimethyl-5,6-dihydro-1*H*-cyclopenta

[d]pyrimidine-2,4(3H,4aH)-dione (7e). According to the general procedure, the reaction of allylic hemiaminal (4aR,7aR)-4a-(but-3-yn-1-yl)-7a-hydroxy-1,3-dimethyl-7-methylene tetrahydro-1*H*-cyclopenta[*d*]pyrimidine-2,4(3*H*,4a*H*)-dione **6b** (38.1 umol. 1.0 equiv), trimethyl(propargyl)silane (0.38 µmol, 10 equiv) and BF₃•OEt₂ (0.19 mmol, 5.0 equiv) in CH₂Cl₂ (1.0 mL) at room temperature for 3 h afforded the title compound in 77% yield (determined by ¹H NMR analysis). Note that the title compound is unstable. Analytical sample was obtained after careful purification by chromatography (40% EtOAc/petroleum ether) to give the title compound as a colorless oil. 1,4/1,2 selectivity >95:5. ¹H NMR (400 MHz, $CD_3C(O)CD_3$ δ 1.76 - 1.83 (m, 2 H), 2.07-2.12 (m, 1 H), 2.12-2.29 (m, 4 H), 2.35 (t, J = 2.8 Hz, 1 H), 2.52-2.64 (m, 1 H), 2.76-2.90 (m, 1 H), 3.08 (s, 3 H), 3.09-3.17 (m, 1 H), 3.35 (s, 3 H), 4.78 (dt, J = 3.5, 7.0 Hz, 2 H), 5.26 (quin, J = 6.5 Hz, 1 H). ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 14.6, 28.4, 28.5, 29.6, 33.3, 35.3, 36.2, 57.1, 70.3, 76.3, 84.1, 88.4, 124.1, 133.0, 152.8, 174.6, 210.1. IR (neat) 638, 751, 848, 1050, 1074, 1146, 1285, 1374, 1415, 1449, 1664, 1717, 2851, 2923, 2953, 3290. HRMS calcd for $C_{17}H_{21}N_2O_2$ (M⁺ + H) 285.1603, found 285.1591.

Structural Analysis and Vinylogous N-Acyliminium Addition

Szostak, Sautier and Procter

4a-(But-3-yn-1-yl)-1,3-dimethyl-7-(pent-3-yn-1-yl)-1,4a,5,6-tetrahydro-2H-cyclopenta[d]

pyrimidine-2,4(3*H***)-dione (7f).** According to the general procedure, the reaction of allylic hemiaminal (4a*R*,7a*R*)-4a-(but-3-yn-1-yl)-7a-hydroxy-1,3-dimethyl-7-methylenetetrahydro-1*H*-cyclopenta[*d*]pyrimidine-2,4(3*H*,4a*H*)-dione **6b** (38.1 μmol, 1.0 equiv), 3-(trimethylsilyl)-1,2-butadiene (0.38 μmol, 10 equiv) and BF₃•OEt₂ (0.19 mmol, 5.0 equiv) in CH₂Cl₂ (1.0 mL) at room temperature for 3 h afforded the title compound in 64% yield (determined by ¹H NMR analysis). Careful purification by chromatography (40% EtOAc/petroleum ether) afforded the title compound as a colorless oil. The title compound was inseparable from an unidentified impurity. 1,4/1,2 selectivity >95:5. Assigned through a combination of 1D and 2D NMR experiments: ¹H NMR (500 MHz, CD₃C(O)CD₃) δ 1.73 (t, *J* = 2.4 Hz, 3 H), 1.78-1.84 (m, 2 H), 2.06-2.11 (m, 1 H), 2.12-2.29 (m, 4 H), 2.29-2.35 (m, 3 H), 2.36 (t, *J* = 2.8 Hz, 1 H), 2.49-2.57 (m, 1 H), 2.57-2.64 (m, 1 H), 3.08 (s, 3 H), 3.41 (s, 3 H). ¹³C NMR (125 MHz, CD₃C(O)CD₃) δ 3.0, 14.4, 17.9, 28.5, 28.5, 29.6, 32.5, 35.6, 36.2, 57.1, 70.3, 77.4, 78.9, 84.3, 125.7, 132.7, 153.0, 175.2. IR (neat) 638, 752, 836, 1051, 1072, 1129, 1148, 1247, 1282, 1375, 1415, 1451, 1662, 1716, 2851, 2918, 2950, 3279. HRMS calcd for C₁₈H₂₃N₂O₂ (M⁺ + H) 299.1754, found 299.1758.

4a-(But-3-yn-1-yl)-7-(3-(chloromethyl)but-3-en-1-yl)-1,3-dimethyl-1,4a,5,6-tetrahydro-2*H***cyclopenta[***d***]pyrimidine-2,4(3***H***)-dione (7g). According to the general procedure, the reaction of allylic hemiaminal (4***aR***,7***aR***)-4a-(but-3-yn-1-yl)-7a-hydroxy-1,3-dimethyl-7-methylene tetrahydro-1***H***-cyclopenta[***d***]pyrimidine-2,4(3***H***,4***aH***)-dione 6b** (38.1 µmol, 1.0 equiv), 2-(chloromethyl)allyl-trimethylsilane (0.38 µmol, 10 equiv) and BF₃•OEt₂ (0.19 mmol, 5.0 equiv) in CH₂Cl₂ (1.0 mL) at room temperature for 3 h afforded after purification by chromatography (40% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 76%. 1,4/1,2 selectivity >95:5. ¹H NMR (500 MHz, CD₃C(O)CD₃) δ 1.77-1.83 (m, 2 H), 2.06-2.11 (m, 1 H), 2.11-2.22 (m, 3 H), 2.29-2.35 (m, 1 H), 2.36 (t, *J* = 2.7 Hz, 1 H), 2.37-2.48 (m, 3 H), 2.51-2.61 (m, 2 H), 3.07-3.09 (m, 3 H), 3.37 (s, 3 H), 4.20 (br. d, *J* = 0.9 Hz, 2 H), 5.05 (d, *J* = 1.3 Hz, 1 H), 5.20 (br. s, 1 H). ¹³C NMR (125 MHz, CD₃C(O)CD₃) δ 14.6, 27.7, 28.6, 29.6, 32.1, 32.8, 35.5, 36.1, 48.8, 57.0, 70.3, 84.0, 115.3, 126.1, 132.8, 146.0, 153.4, 174.2. IR (neat) 637, 750, 857, 909, 965, 1051, 1075, 1126, 1144, 1280, 1376, 1415, 1448, 1664, 1715, 2851, 2925, 2950, 3291. HRMS calcd for C₁₈H₂₄N₂O₂Cl (M⁺ + H) 335.1526, found 335.1513.

Table 2, Entry 8

Methyl 3-(4a-(but-3-yn-1-yl)-1,3-dimethyl-2,4-dioxo-2,3,4,4a,5,6-hexahydro-1*H*-cyclopenta [*d*]pyrimidin-7-yl)-2,2-dimethylpropanoate (7h). According to the general procedure, the reaction of allylic hemiaminal (4a*R*,7a*R*)-4a-(but-3-yn-1-yl)-7a-hydroxy-1,3-dimethyl-7-methylenetetrahydro-1*H*-cyclopenta[*d*]pyrimidine-2,4(3*H*,4a*H*)-dione **6b** (38.1 µmol, 1.0 equiv), 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (0.38 µmol, 10 equiv) and BF₃•OEt₂ (0.19 mmol, 5.0 equiv) in CH₂Cl₂ (1.0 mL) at room temperature for 3 h afforded after purification by chromatography (40% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 81%. 1,4/1,2 selectivity >95:5. ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 1.17 (s, 3 H), 1.23 (s, 3 H), 1.79 (ddd, *J* = 4.0, 7.2, 8.7 Hz, 2 H), 2.06-2.09 (m, 2 H), 2.13-2.21 (m, 3 H), 2.38 (t, *J* = 2.8 Hz, 1 H),

2.33-2.42 (m, 1 H), 2.55 (d, J = 14.5 Hz, 1 H), 2.65 (d, J = 14.5 Hz, 1 H), 3.07 (s, 3 H), 3.34 (s, 3 H), 3.61 (s, 3 H). ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 14.6, 26.0, 26.2, 28.5, 29.6, 33.4, 35.6, 35.6, 39.3, 43.2, 52.1, 56.5, 70.4, 84.1, 124.8, 134.8, 153.1, 174.7, 178.1. IR (neat) 643, 752, 857, 959, 982, 998, 1050, 1075, 1140, 1192, 1281, 1367, 1415, 1450, 1666, 1716, 2846, 2923, 2952, 3270. HRMS calcd for C₁₉H₂₆N₂O₄Na (M⁺ + Na) 369.1785, found 369.1785.

Compound	1	2	3	4
Empirical Formula	$[C_{12}H_{18}N_2O_3]$	$[C_{17}H_{30}N_2O_3Si]$	$[C_{15}H_{20}N_2O_4]$	$[C_{14}H_{24}N_2O_3]$
Fw	238.28	338.52	292.33	268.35
T (K)	100(2)	100(2)	100(2)	100(2)
λ (Å)	1.54178	1.54178	1.54178	1.54178
Cryst. Syst.	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space Group	P2(1) /c	P2(1) /c	P2(1) /c	P-1
a (Å)	8.3649(4)	24.0386(14)	9.9234(8)	10.6950(4)
b (Å)	6.9926(4)	17.4493(11)	11.5741(8)	11.6833(4)
c (Å)	19.9506 (10)	18.3975(13)	25.7812(19)	13.3792(5)
α (deg)	90	90	90	81.732
β (deg)	93.726(3)	90	92.474	67.685
γ (deg)	90	90	90	66.432
V (Å ³)	1164.49(10)	7717.0(9)	2958.3	1417.50(9)
Z	4	16	8	4
$d_{calcd} (mg/m^3)$	1.359	1.165	1.313	1.257
Abs coeff (mm ⁻¹)	0.807	1.198	0.791	0.715
F(000)	512	2944	1248	584
Crystal size (mm)	0.18 x 0.16 x 0.03	0.18 x 0.13 x 0.07	0.22 x 0.19 x 0.06	0.12 x 0.04 x 0.02
θ range (deg)	5.30-72.96	1.84-69.89	3.43-70.11	4.13-68.21
limiting indices	-10<=h<=8 -8<=k<=6 -23<=l<=24	-28<=h<=27 -21<=k<=21 -22<=l<=22	-11<=h<=11 -13<=k<=14 -31<=l<=27	-12<=h<=12 -14<=k<=14 -16<=l<=16
Reflns collected	7587	13438	11362	15959
Independent reflections/R _{int}	2266/0.0537	13438/0.0000	5181/0.0514	4999/0.0616
Completeness [%]	98.8	94.4	94.6	96.8
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max, Min Transm.	0.9762, 0.660645	0.9209, 0.628481	0.9541, 0.623021	0.9859, 0.761355
Refinement method	Full-matrix least squares on F ²			
Data/Restraints/ Params	2266/0/157	13438/0/862	5181/0/387	4999/0/355
$GOF(F^2)$	1.059	0.977	1.033	1.016
Final R indices (R1, wR2)	0.1005, 0.2615	0.0912, 0.2155	0.0545, 0.1413	0.0487, 0.1220
R indices (all data)	0.1118, 0.2736	0.1642, 0.2779	0.0664, 0.1491	0.0622, 0.1313
Largest diff. peak and hole $(e.Å^{-3})$	1.520 and -0.384	0.554 and -0.625	0.323 and -0.369	0.311 and -0.261

Table SI-1. Crystal Data and Structure Refinement Summaries for 1-	-4
--	----

Structural Analysis and Vinylogous N-Acyliminium Addition

Figure SI-1. ORTEP Structure of 1 (CCDC 972705).

Figure SI-2. ORTEP Structure of 2 (CCDC 972704).

Structural Analysis and Vinylogous N-Acyliminium Addition

Figure SI-3. ORTEP Structure of 3 (CCDC 948381).

Figure SI-4. ORTEP Structure of 4 (CCDC 948382).

bond	[Å]	angle	[Å]
C1–C2	1.522	N1-C2-O1-H1	-43.5
C201	1.407	H2C2O1H1	77.4
С2-Н2	1.000	С1-С2-О1-Н1	-164.1
N1-C2	1.463	C11-N1-C2-O1	95.1
O1-H1	0.839	C3-N1-C2-O1	-70.8
N1-C3	1.338	С5-С1-С2-Н2	-59.8
C3–O2	1.224	C5-C1-C2-O1	-178.3
N1-C11	1.464	С10-С1-С2-Н2	63.6
N2-C3	1.413	C10-C1-C2-O1	-54.9
N2C12	1.477	C10-C1-C2-N1	-177.7
N2C4	1.389	H2C2C1C4	-175.8
C4–O3	1.215	N1-C3-N2-C4	-9.5
C1–C4	1.528	C3-N2-C4-C1	-3.6

 Table SI-2. Selected bond lengths and angles of 1.

Table SI-3A. Selected bond lengths of 2.^{*a*}

bond ^a	[Å]	bond ^b	[Å]
C2–C5	1.53	C2–C5	1.530
C2–C1	1.52	C2–C1	1.524
C2–O1	1.422	C2–O1	1.409
N1-C2	1.47	N1-C2	1.470
O1–H1	0.840	O1–H1	0.840
N1-C3	1.37	N1-C3	1.344
C3–O2	1.231	C3–O2	1.230
N1-C12	1.465	N1-C12	1.458
N2-C3	1.386	N2-C3	1.399
N2-C13	1.48	N2-C13	1.472
N2-C4	1.36	N2-C4	1.381

Structural Analysis and Vinylogous N-Acyliminium Addition

C4–O3	1.21	C4–O3	1.206
C5–C4	1.53	C5–C4	1.524
C1–C8	1.34	C1–C8	1.331
С8-Н8	0.948	С8-Н8	0.949
C8–Si1	1.862	C8–Si1	1.868

^{*a*}Four molecules in the unit cell (representative bond lengths and angles are shown). ^{*b*}Refers to an independent determination of crystallographic structure of **2**.

Table SI-3B.	Selected	angles	of 2 . ^{<i>a</i>}
--------------	----------	--------	-----------------------------------

angle ^a	[deg]	angle ^b	[deg]
N1-C2-O1-H1	74.9	N1-C2-O1-H1	-100.6
С1-С2-О1-Н1	-51.0	С1С2О1Н1	26.2
С5-С2-О1-Н1	-163.9	С5-С2-О1-Н1	139.2
C12-N1-C2-O1	-31.5	C12-N1-C2-O1	32.8
C3-N1-C2-O1	156.9	C3-N1-C2-O1	-155.5
C14-C5-C2-O1	-50.1	C14-C5-C2-O1	49.7
C14C5C2C1	-166.7	C14-C5-C2-C1	167.5
C6-C5-C2-O1	74.6	C6C5C2O1	-75.1
C6-C5-C2-C1	-42.4	C6C5C2C1	42.7
C6-C5-C2-N1	-166.5	C6C5C2N1	166.2
01-C2-C5-C4	-172.0	01C2C5C4	170.6
N1-C3-N2-C4	-11	N1-C3-N2-C4	11.4
C3-N2-C4-C5	-8	C3-N2-C4-C5	8.2
N2-C4-C5-C2	39.3	N2-C4-C5-C2	-39.2
C4-C5-C2-N1	-52.7	C4C5C2N1	51.9
C5-C2-N1-C3	37.9	C5-C2-N1-C3	-37.1
C2-N1-C3-N2	-5	C2-N1-C3-N2	4.6
C8–C1–C7–C6	169.3	C8-C1-C7-C6	-167.5
C8-C1-C2-N1	-23	C8-C1-C2-N1	23.5
C8-C1-C2-O1	99.8	C8-C1-C2-O1	99.8
C8–C1–C2–C5	-144.8	C8-C1-C2-C5	144.4

Structural Analysis and Vinylogous N-Acyliminium Addition

Н8-С8-С1-С2	-1	H8-C8-C1-C2	-0.3
Н8С8С1С7	-176.5	H8-C8-C1-C7	177.3
Si1-C8-C1-C2	178.7	Si1-C8-C1-C2	179.6
Si1-C8-C1-C7	4	Si1-C8-C1-C7	-2.8

^{*a*}Four molecules in the unit cell (representative bond lengths and angles are shown). ^{*b*}Refers to an independent determination of crystallographic structure of **2** ($N_{lp} \rightarrow \sigma^*_{C-O} = 61.4^\circ$; $O_{lp1} \rightarrow \sigma^*_{C-N} = 139.4^\circ$; $O_{lp2} \rightarrow \sigma^*_{C-C(ext)} = 146.2^\circ$; $O_{lp2} \rightarrow \sigma^*_{C-C(int)} = 100.8^\circ$)

bond	[Å]	bond	[Å]
C1–C4	1.518	C16–C19	1.519
C4–H4A	1.00	С19-Н19	1.00
C4–O4	1.413	C19–O8	1.411
N2-C4	1.461	N4-C19	1.458
O4–H4	0.840	O8–H8	0.840
N2-C3	1.343	N4-C18	1.352
C3–O3	1.229	C18–O7	1.236
N2-C15	1.467	N4-C30	1.463
N1-C3	1.401	N3-C18	1.395
N1-C14	1.471	N3-C29	1.469
N1-C2	1.390	N3-C17	1.392
C2–O2	1.210	C17–O6	1.214
C2C1	1.514	C17–C16	1.511

Table SI-4A. Selected bond lengths of **3**.^{*a*}

^aTwo molecules in the unit cell.

Table SI-4B. Selected angles of 3.^{*a*}

angle	[deg]	angle	[deg]
N2-C4-O4-H4	109.5	N4-C19-O8-H8	103.0
H4AC4O4H4	-10.7	Н19-С19-О8-Н8	-17.4
C1C4O4H4	-130.8	С16-С19-О8-Н8	-136.9
C15-N2-C4-O4	-87.6	C30-N4-C19-O8	-81.8
C3-N2-C4-O4	72.9	C18-N4-C19-O8	72.5

H1-C1-C4-H4A	57.0	H16-C16-C19-H19	60.9
H1C1C4O4	177.2	H16-C16-C19-O8	-179.7
С5-С1-С4-Н4А	-61.1	С20-С16-С19-Н19	-58.0
C5-C1-C4-O4	59.1	C20-C16-C19-O8	61.4
C5-C1-C4-N2	179.6	C20-C16-C19-N4	-177.6
H4A-C4-C1-C2	173.8	H19-C19-C16-C17	177.4
N2-C3-N1-C2	9.5	N4-C18-N3-C17	7.0
C3-N1-C2-C1	1.4	C18-N3-C17-C16	7.7
N1-C2-C1-C4	-33.7	N3-C17-C16-C19	-39.6
C2C1C4N2	54.5	C17-C16-C19-N4	57.8
C1C4N2C3	-47.5	C16-C19-N4-C18	-47.5
C4-N2-C3-N1	15.6	C19-N4-C18-N3	14.4

^aTwo molecules in the unit cell.

bond	[Å]	bond	[Å]
C1–C4	1.549	C15–C18	1.552
C1–C7	1.561	C15–C21	1.553
C101	1.407	C15–O4	1.407
N1-C1	1.466	N3-C15	1.466
O1-H1	0.840	O4–H4	0.840
N1-C2	1.350	N3-C16	1.354
C2–O2	1.222	C16-O5	1.218
N1-C8	1.471	N3-C22	1.469
N2-C2	1.423	N4C16	1.421
N2C9	1.465	N4-C23	1.468
N2-C3	1.366	N4C17	1.370
C3–O3	1.227	C17–O6	1.225
C4–C3	1.514	C18–C17	1.514

Table SI-5A. Selected bond lengths of 4.^{*a*}

^aTwo molecules in the unit cell.

Structural Analysis and Vinylogous N-Acyliminium Addition

angle	[deg]	angle	[deg]
N1-C1-O1-H1	51.0	N3-C15-O4-H4	-52.1
С7-С1-О1-Н1	175.1	С21-С15-О4-Н4	-176.3
С4-С1-О1-Н1	-71.5	C18-C15-O4-H4	70.8
C8-N1-C1-O1	40.1	C22-N3-C15-O4	-40.6
C2-N1-C1-O1	-154.8	C16-N3-C15-O4	155.1
C10-C4-C1-O1	48.6	C24-C18-C15-O4	-48.9
C10-C4-C1-C7	161.9	C24-C18-C15-C21	-161.9
C5-C4-C1-O1	-75.5	C19-C18-C15-O4	74.6
C5–C4–C1–C7	37.7	C19-C18-C15-C21	-38.4
C5-C4-C1-N1	163.5	C19-C18-C15-N3	-163.9
01C1C4C3	167.8	O4-C15-C18-C17	-167.8
N1-C2-N2-C3	4.6	N3-C16-N4-C17	-3.6
C2-N2-C3-C4	14.2	C16-N4-C17-C18	-14.6
N2-C3-C4-C1	-39.2	N4-C17-C18-C15	39.0
C3-C4-C1-N1	46.8	C17-C18-C15-N3	-46.2
C4-C1-N1-C2	-32.9	C18-C15-N3-C16	32.9
C1-N1-C2-N2	6.2	C15-N3-C16-N4	-6.9

Table SI-5B. Selected angles of 4.^a

^aTwo molecules in the unit cell.

entry	aminal or derivative	δ^{13}_{C-OH}	$\delta^{13}_{C=O1}a$	$\delta^{13}_{C=O2}a$	$\Delta \delta_{\mathrm{C-OH}}{}^{b}$	$v_{C=O1}^{c}$	$v_{C=O2}^{c}$
1	1	84.6	153.7	175.0	4.0	1658	1709
2	2	93.2	153.6	174.2	12.6	1645	1709
3	3	80.6	154.1	171.5	-	1657	1711
4	4	95.4	153.1	173.9	14.8	1644	1704
5	SI-A	-	153.4	166.5	-	1659.1	1690.1
6	SI-B	-	-	173.0	-	1671.5	1725.8
7	SI-C	-	157.0	-	-	1623.7	-
8	SI-D	-	-	169.1	-	1655.2	1678.7
9	SI-E	-	153.9	174.9	-	1672.3	1712.4
10^{8}	5	86.1	-	-	-	-	-

Table SI-6. Selected Spectroscopic Properties of 1-4 and Related Carbonyl Derivatives.

^{*a*δ¹³C NMR C–OH and δ¹³C NMR C=O [ppm]; entries 1-4: measured at 100 MHz in CD₃C(O)CD₃; entries 5-9: measured at 75 MHz in CD₃C(O)CD₃. Entry 9: in CDCl₃. For α-Me/α-C₁₀H₂₁ analogue of **SI-E**: δ¹³C=O 154.2 and 175.3 in CD₃C(O)CD₃. Entry 10: measured in CDCl₃ at 100 MHz. $^{b}\Delta\delta^{13}$ C–OH = [δ¹³C–OH - 80.6]. $^{c}\nu_{C=0}$ [cm⁻¹].}

Figure SI-5. Reference Carbonyl and α-Amino Alcohol Derivatives A-E and 5.

1,3-Dimethylpyrimidine-2,4,6(1*H***,3***H***,5***H***)-trione (SI-A). Table SI-6, Entry 5. ¹H NMR (300 MHz, CD₃C(O)CD₃) δ 3.19 (s, 6 H), 3.70 (s, 2 H); ¹³C NMR (75 MHz, CD₃C(O)CD₃) δ 28.3, 40.2, 153.4, 166.5; IR (neat) 2967, 1690, 1659, 1526, 1463, 1442, 1419, 1386, 1359, 1312, 1277, 1213, 1150, 1115, 1031, 985, 934, 730.**

1-Dodecylpiperidine-2,6-dione (SI-B). Table SI-6, Entry 6. ¹H NMR (300 MHz, $CD_3C(O)CD_3$) δ 0.89 (t, J = 6.6 Hz, 3 H), 1.21-1.37 (m, 18 H), 1.39-1.51 (m, 2 H), 1.89-1.98 (m, 2 H), 2.63 (t, J = 6.6 Hz, 4 H), 3.77 (t, J = 7.5 Hz. 2 H); ¹³C NMR (75 MHz, $CD_3C(O)CD_3$) δ

14.4, 18.0, 23.4, 27.7, 28.8, 30.1, 30.1, 30.3, 30.4, 30.4, 30.4, 32.7, 33.3, 39.7, 173.0; IR (neat) 2922, 2853, 1726, 1672, 1464, 1435, 1389, 1353, 1261, 1165, 1120, 1055, 926, 722.

1,3-Dimethyltetrahydropyrimidin-2(1*H***)-one (SI-C). Table SI-6, Entry 7.** ¹H NMR (300 MHz, CD₃C(O)CD₃) δ 1.89-2.00 (m, 2 H), 2.82 (s, 6 H), 3.24 (t, *J* = 6.0 Hz, 4 H); ¹³C NMR (75 MHz, CD₃C(O)CD₃) δ 23.1, 35.7, 48.6, 157.0; IR (neat) 2935, 2860, 1624, 1522, 1445, 1401, 1362, 1316, 1251, 1215, 1105, 1057, 925, 726.

5-Isobutyl-1,3-dimethyldihydropyrimidine-4,6(1*H*,5*H*)-dione (SI-D). Table SI-6, Entry 8. ¹H NMR (300 MHz, CD₃C(O)CD₃) δ 0.90 (d, *J* = 6.3 Hz, 6 H), 1.73 (t, *J* = 6.6 Hz, 2 H), 1.76-1.88 (m, 1 H), 2.99 (s, 6 H), 3.07 (t, *J* = 6.6 Hz, 1 H), 4.68 (d, *J* = 12.0 Hz, 1 H), 4.88 (d, *J* = 12.3 Hz, 1 H); ¹³C NMR (75 MHz, CD₃C(O)CD₃) δ 22.8, 26.8, 32.6, 35.2, 49.2, 63.2, 169.1; IR (neat) 2955, 2869, 1679, 1655, 1498, 1465, 1406, 1266, 1227, 1171, 1130, 1105, 1067, 909, 727.

5-Isobutyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (SI-E). Table SI-6, Entry 9. ¹H NMR (300 MHz, CDCl₃) δ 0.80 (d, *J* = 6.6 Hz, 3 H), 0.84 (d, *J* = 6.6 Hz, 3 H), 1.14 (s, 3 H), 1.46 (dd, *J* = 6.0, 8.1 Hz, 2 H), 1.52-1.67 (m, 1 H), 3.00 (s, 3 H), 3.04 (d, *J* = 12.3 Hz, 1 H), 3.09 (d, *J* = 12.6 Hz, 1 H), 3.09 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 21.4, 24.2, 24.5, 24.6, 28.1, 36.1, 41.5, 44.8, 54.3, 153.9, 174.9. IR (neat) 2957, 1712, 1672, 1493, 1442, 1380, 1289, 1178, 1094, 1038 cm⁻¹.

Spectroscopic properties of α -hydroxy amines **1-4** (**1-3**: CD₃C(O)CD₃, **4**: CDCl₃) have been previously reported.¹⁻² Characterization data of **4** in CD₃C(O)CD₃ is listed below for comparison purposes. (**4a***S*,**7***S*,**7***aR*)-**7a-Hydroxy-4a-isobutyl-1,3,7-trimethyltetrahydro-1***H***-cyclopenta[***d***] pyrimidine-2,4**(*3H*,*4aH*)-**dione (4). Table SI-6, Entry 4.** ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 0.55 (d, *J* = 7.6 Hz, 3 H), 0.68 (d, *J* = 6.0 Hz, 3 H), 0.76 (d, *J* = 6.0 Hz, 3 H), 1.00-1.10 (m, 1 H), 1.36-1.44 (m, 2 H), 1.48-1.56 (m, 2 H), 1.86-1.97 (m, 1 H), 2.18-2.27 (m, 1 H), 2.50-2.58 (m, 1 H), 2.88 (s, 3 H), 2.94 (s, 3 H), 4.84 (s, 1 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 18.0, 23.9, 25.0, 25.6, 28.3, 29.3, 29.4, 32.0, 43.8, 44.0, 56.1, 95.4, 153.1, 173.9. IR (neat) 3418, 2957, 1704, 1644, 1455, 1414, 1385, 1326, 1122, 1086, 1044, 913, 754 cm⁻¹.

References

- M. Szostak, B. Sautier, M. Spain, M. Behlendorf, D. J. Procter, *Angew. Chem. Int. Ed.*, 2013, 52, DOI: 10.1002/anie.201306484.
- For a general review on barbituric acid derivatives, see: J. T. Bojarski, J. L. Mokrosz, H. J. Barton, M. H. Paluchowska, *Adv. Heterocycl. Chem.*, **1985**, *38*, 229.
- 3. P. Girard, J. L. Namy and H. B. Kagan, J. Am. Chem. Soc., 1980, 102, 2693.
- 4. T. Imamoto and M. Ono, *Chem. Lett.*, **1987**, 501.
- 5. A. Dáhlen and G. Hilmersson, Eur. J. Inorg. Chem., 2004, 3020.
- J. A. Teprovich, Jr., P. K. S. Antharjanam, E. Prasad, E. N. Pesciotta and R. A. Flowers, II, *Eur. J. Inorg. Chem.*, 2008, 5015.
- 7. M. Szostak, M. Spain and D. J. Procter, J. Org. Chem., 2012, 77, 3049.
- 8. D. A. Evans, G. Borg, K. A. Scheidt, Angew. Chem. Int. Ed., 2002, 41, 3188.

SI-21

Structural Analysis and Vinylogous N-Acyliminium Addition

SI-27

Structural Analysis and Vinylogous N-Acyliminium Addition

SI-28

