Supplementary Information

A Lysosome-Specific Two-Photon Phosphorescent Binuclear Cyclometalated Platinum(II) Probe for *In Vivo* Imaging of Live Neuron

Yu-Man Ho,^{a†} Ngan-Pan Bennett Au,^{a,b†} Ka-Leung Wong,^c Chris Tsz-Leung Chan,^d Wai-Ming Kwok,^d Ga-Lai Law,^d Kwong-Kit Tang^e, Wai-Yeung Wong,^c Chi-Him Eddie Ma,^{*a,b} Michael Hon-Wah Lam^{*a}

^a Department of Biology & Chemistry, City University of Hong Kong, Tat Chee Ave., Kowloon, Hong Kong

^b Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Tat Chee Avenue, Hong Kong

^c Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong

^d Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong

^e LSD - HK Division, Leica Microsystems Ltd, Hong Kong

[†]Y.M.H. and B.N.P.A. contributed equally

* Corresponding authors: Dr. Michael H. W. Lam Department of Biology & Chemistry City University of Hong Kong Tat Chee Ave., Kowloon Hong Kong SAR, China Tel: (852)-3442-7329 Fax: (852)-3442-0522 Email: <u>bhmhwlam@cityu.edu.hk</u>

Dr. C. H. Eddie Ma Department of Biology & Chemistry City University of Hong Kong Tat Chee Ave., Kowloon Hong Kong SAR, China Tel: (852)-3442-9328 Fax: (852)-3442-0522 Email: <u>eddiema@cityu.edu.hk</u>

Content List

Experimental Section			
Figures			
Fig. S1	Molecular structure and crystal packing of 2 with the numbering scheme adopted. Thermal ellipsoids are shown at the 50% probability level.	P. 8	
Fig. S2	Spectroscopic properties of $\{[Pt(L_1)]_2(\mu\text{-dppm})\}(ClO_4)_2 \ 1 \cdot (ClO_4)_2$ in acetonitrile at 298 K: (a) UV-vis absorption spectra, with solvent dependence of the absorption band at 385 – 450 nm shown in the inset; (b) normalized excitation and emission spectra (concentration = 5×10^{-5} M).	P. 9	
Fig. S3	Spectroscopic properties of $\{[Pt(L_2)]_2(\mu\text{-dppm})\}(ClO_4)_2 \ 2 \cdot (ClO_4)_2$ in acetonitrile at 298 K: (a) UV-vis absorption spectra, with solvent dependence of the absorption band at 375 – 440 nm shown in the inset; (b) normalized excitation and emission spectra (concentration = 5×10^{-5} M).	P. 10	
Fig. S4	Luminescent responses of $\{[Pt(L_2)]_2(\mu\text{-dppm})\}(ClO_4)_2 \ 2 \cdot (ClO_4)_2$ in 2:1 (v/v) DMF / aqueous buffer (5 × 10 ⁻⁵ M) to changes in media pH at 298 K. (Excitation λ = 355 nm)	P. 11	
Fig. S5	Two-photon induced luminescent spectra of complex 1 (a) and 2 (b), both at 5×10^{-4} M, in DMF at 298 K with and without the addition of 5% triethylamine for the deprotonation of the imidazolyl- <i>NH</i> on the cyclometalating ligands. ($\lambda_{ex} = 750$ nm)	P. 12	
Fig. S6	MTT assays of cytotoxicity of complexes 1 & 2 on HeLa cells with 2 h exposure.	P. 13	
Fig. S7	Two-photon microscopy images of acute brain slice after 2 h of exposure to 5 μ M of complex 1: (a) Image ($\lambda_{ex} = 750$ nm) of acute brain slice stained with complex 1. Lysosomes were localized inside the cell body and axons. (b) Time-lapse images from the white box in (a) showing the vesicle trafficking along the axons of brain tissue. White arrowheads indicated the movement of lysosomes. Scale bar: 10 μ m.	P. 14	
Tables			
Table S1	Selected bond lengths (Å) and angles (deg) of complex 2.	P. 15	
Table S2	Crystal data and structure refinement details of complex 2.	P. 16	
Table S3	Summary of photophysical properties of the cycloplatinated complexes 1 & 2.	P. 17	
References		P. 18	
Movies			
Movie M1	Time-lapse two-photon images ($\lambda_{ex} = 750 \text{ nm}$) of postnatal DRG neurons stained with complex 1 showed the transportation of lysosomes along the axon.		

Movie M2 Time-lapse two-photon images ($\lambda_{ex} = 750$ nm) of acute brain slice stained with complex 1 showed the transportation of lysosomes along the axons of brain tissue.

Movie M3 Time-lapse two-photon images ($\lambda_{ex} = 750$ nm) of acute brain slice stained with complex 1 showed the transportation of lysosomes along the axons of brain tissue.

Experimental Section

Physical measurements and instrumentation: ¹H NMR spectra were recorded by a Bruker AVANCE III system 400 MHz NMR spectrometer. Electrospray (ESI) mass spectra were measured by a Perkin-Elmer SCIEX API 365 LC/MS/MS system. Elementary analyses were performed on a Vario EL elementary analyzer. UV/Vis spectra were measured on a Hewlett Packard 8452A UV/Vis diode array spectrophotometer. Infrared spectra in the range 500 – 4000 cm⁻¹ in KBr plates were recorded on a Perkin-Elmer Model FTIR-1600 spectrometer. Emission spectra were recorded by a SPEX FluoroLog 3-TCSPC spectrofluorimeter with a slit width of 5 nm and an integration time of 0.5 s. Emission lifetime measurements were carried out either with the SPEX FluoroLog 3-TCSPC, equipped with a N-370 NanoLED as the excitation source under the Fast MCS mode, or by a Spectra Physics nitrogen laser (excitation wavelength = 337 nm) at a maximum power of 15 mW. In the latter case, luminescence from samples was dispersed by a monochromator and was detected using a cooled Hamamastu R636-10 photon-multiplier in combination with a lock-in amplifier system. Decay spectra were monitored by a Hewlett Packard 54522A, 500 MHz oscilloscope. Emission quantum yields were measured by the method of Demas and Crosby with $[Ru(bpy)_3](PF_6)_2$ in degassed acetonitrile as standard ($\Phi_r =$ 0.062).¹ Sample and standard solutions were degassed with at least three freeze-pump-thaw cycles. For two-photon experiments, the 750 nm pump source was from the fundamental of a femtosecond mode-locked Ti:Sapphire laser system (output beam was of ca. 150 fs in duration with a repetition rate of 1 kHz). The lasers were focused to spot size of ca. 50 μ m via an f = 10 cm lens onto the sample. The emitting light was collected with a backscattering configuration into a 0.5 m spectrograph and detected by a liquid nitrogen-cooled CCD detector. A power meter was used to monitor the uniform excitation. For two photon absorption cross-section

measurements, the theoretical framework and experimental protocol outlined by Webb and Xu 2 was adopted. The two-photon excitation (TPE) ratios of the reference and sample systems were given by Equation 1:

(1)
$$\frac{\sigma_2^S \cdot \phi^S}{\sigma_2^R \cdot \phi^R} = \frac{C_R \cdot n_S \cdot F^S(\lambda)}{C_S \cdot n_R \cdot F^R(\lambda)}$$

where ϕ is the quantum yield, *C* is the concentration, *n* is the refractive index, and *F*(λ) is the integrated photoluminescent spectrum. In our measurements, we have ensured that the excitation flux and the excitation wavelengths are the same for both the sample and the reference. The two-photon absorption cross-sections σ_2 of the cycloplatinated complexes were determined using Rhodamine 6G as a reference.^{3,4}

Crystal Structure Determination: Crystallographic data for complex $2 \cdot (CIO_4)_2$ are tabulated in Table S1 & S2 in the Supporting Information. All intensity data were collected on a Bruker Axs SMART 1000 CCD area detector using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). All collected frames were processed with the software SAINT ⁵ and absorption correct was applied (SADABS)⁶ to the collected reflections. The structure of the complex was solved by direct methods (SHELXTL)⁷ in conjunction with standard difference Fourier syntheses. All non-hydrogen atoms were assigned with anisotropic displacement parameters. The hydrogen atoms were generated in their idealized positions and allowed to ride on the respective carbon atoms.

Materials and General Procedures: All starting materials, 2,6-dibromopyridine, *n*-butyl lithium (2.5 M in hexane), *N*,*N*-dimethylformamide, *N*,*N*-dimethylacetamide, phenylboronic acid, aqueous glyoxal (40%), aqueous NH₃ (30%), bromine, hydrobromic acid in acetic acid (33%), formamide, *bis*(diphenylphosphino)methane (dppm), triethylamine, and K_2PtCl_4 were purchased from Sigma-Aldrich and were used as received unless stated otherwise. Solvents used for synthesis were of analytical grade. Diethyl ether was distilled from sodium-benzophenone

and acetonitrile was distilled from anhydrous calcium hydride prior to use. Acetonitrile for photophysical measurements was distilled over potassium permanganate and calcium hydride. The synthesis of the cyclometalated ligand 2-(1*H*-imidazol-2-yl)-6-phenylpyridine (HL₁) and 2-(1*H*-imidazol-4-yl)-6-phenylpyridine (HL₂), and their cycloplatinated complexes [Pt(L₁)Cl], [Pt(L₁)(PPh₃)]⁺, [Pt(L₂)Cl] and [Pt(L₂)(PPh₃)]⁺ has already been reported in a previous publication.⁸

{ $[Pt(L_1)]_2(\mu$ -dppm)}(CIO₄)_2 1·(CIO₄)_2. To an acetonitrile solution (50 ml) of [Pt(L₁)CI] (0.1 g, 0.4 mmol) was added dpm (0.0426 g, 0.2 mmol). The mixture was stirred at room temperature for 12 h. A greenish-yellow suspension was obtained and a methanolic solution of LiClO₄ (0.43 g, 4 mmol) was added. The mixture was stirred at room temperature for another 12 h and the resulting clear yellow solution was filtered and evaporated to ca. 2 ml in volume. The desired product was precipitated by the addition of diethyl ether as a bright greenish-yellow solid. The product was collected by filtration, washed with diethyl ether and recrystallized by slow vapor diffusion of diethyl ether into its acetonitrile solution (0.11 g, 71 % yield). ESI-MS: 1216 (M+1)⁺. ¹H NMR (400MHz, DMSO-d₆): δ 14.41 – 13.98 (br, 2H), 8.35 – 7.98 (br, 4H), 8.01 – 7.97 (t, J = 8.0 Hz, 2H), 7.93 – 7.68 (br, 2H), 7.65 – 7.59 (d, J = 8.0 Hz, 2H), 7.53 – 7.44 (m, 14H), 7.25 – 7.15 (d, J = 8.0 Hz, 2H), 7.10 – 6.90 (br, 2H), 6.71 – 6.67 (t, J = 8.0 Hz, 2H), 6.53 – 6.11 (br, 4H), 5.29 – 4.82 (br, 2H), 4.66 – 4.19 (br, 2H). Elemental analysis calcd (%) for C₅₃H₄₂Cl₂N₆O₈P₂Pt₂·2MeOH : C 44.69%, H 3.41%, N 5.69%. Found: C 44.45%, H 3.37%, N 5.71%

{[Pt(L_2)]₂(μ -dppm)}(ClO₄)₂ 2·(ClO₄)₂ was synthesized using the same method as complex 1, with the use of [Pt(L_2)Cl] as starting material (yield: 73%). ESI-MS: 1214 (M – 1)⁺. ¹H NMR (400 MHz, DMSO- d_6): δ 12.90 – 12.65 (br, 2H), 8.51 – 8.20 (br, 4H), 7.92 – 7.88 (t, J = 8.0 Hz,

2H), 7.83 - 7.65 (br, 6H), 7.61 - 7.40 (br, 14 H), 7.38 - 7.36 (d, 2 H), 7.22 - 7.20 (d, J = 8.0 Hz, 2 H), 6.80 - 6.77 (t, J = 7.4 Hz, 2H), 6.71 - 6.60 (br, 2H), 6.54 - 6.46 (t, J = 6.6 Hz, 2H), 5.15 - 4.95 (br, 2H), 4.51 - 4.38 (br, 2H). Elemental analysis calcd (%) for $C_{53}H_{42}Cl_2N_6O_8P_2Pt_2\cdot 1H_2O$: C 44.45%, H 3.10%, N 5.87%. Found: C 44.60%, H 3.17%, N 5.82%.

Cell and acute brain slice cultures: HeLa cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% foetal bovine serum (FBS), and 1% penicillin and streptomycin.

Dissociated dorsal root ganglion (DRG) cultures were prepared from postnatal day 1 C57BL/6 mice as previously described.⁹ Briefly, DRGs were dissected out and mildly digested in collagenase and dispase II solution. Cells were trypsinized and dissociated mechanically using three flame-polished Pasteur pipette with different diameters. 3,000 DRG neurons were plated onto a poly-D-lysine (Sigma-Aldrich) and laminin-coated (Invitrogen) 35mm glass-bottomed petri dish (MatTek) containing Full Neurobasal (NB) medium (Gibco) supplemented with B27, 200 mM L-glutamine, penicillin/streptomycin, 50ng/ml NGF (Gibco), 2ng/ml GDNF and 10µM Ara-C (Sigma-Aldrich). All cells were kept in a humidified chamber with 5% CO₂ at 37 °C.

Acute brain slices were prepared from postnatal day 1 C57BL/6 mice. The slices were cut into 200 μm-thick using a vibrating blade microtome (Leica VT-1000 S) in artificial cerebrospinal fluid (ACSF; composition in mM: 138 NaCl, 3.5 KCl, 21 NaHCO₃, 0.6 NaH₂PO₄, 10 D-glucose, 1 CaCl₂, 3 MgCl₂).

MTT cell viability assay: HeLa cells were plated in triplicates into 96-well tissue culture plates. After 24 h, cells were treated with complex **1** at concentrations of 0, 1, 5.5 and 10 μ M with 5% DMSO for 24 h. After that, the cells were incubated with 0.5 mg/ml of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) for 1 h before the addition of 10% Triton-X 100 in acidic isopropanol (0.1 M HCl). They were further incubated for 1 h for the dissolution of blue crystals formed. Finally, absorption was measured at 570 nm by using a microplate reader (PowerWave XS, BioTek). Relative viability was calculated by comparing absorbance of cells with and without the complex.

Microscopy: HeLa cells were grown on a glass-bottomed dish (MatTek) and maintained with CO_2 independent medium (Gibco), supplemented with 10% FBS. DRG neurons were grown in Full NB medium as described above for 17 h. After 17 h, the medium was replaced with CO_2 independent medium for fluorescent imaging. Acute brain slices were kept in ACSF for 2 h and transferred to a glass-bottomed dish (MatTek) just before fluorescent microscopy. All the cell and tissue cultures were maintained at 37 °C by using a CO_2 microscope cage incubation system (Okolab) during fluorescent microscopy.

For single-photon microscopy, images were either obtained by a Carl Zeiss Axioplan 2 fluorescent microscope using a UV light source, or a Leica TCS SP5 spectral confocal microscope equipped with a diode laser. Specimens were imaged by using either an Argon laser with excitation wavelength of 458 nm (for complex 1) or a HeNe laser with excitation wavelength of 543 nm (for LysoTracker Red) through an ACS APO $40 \times$ NA 1.15 objective. Average laser power of 40% and gain level of 900V were used in image acquisition. Detection bandwidth was ranged from 500-600 nm (for complex 1) or 600-700 nm (for LysoTracker Red).

For multi-photon microscopy, images were collected by a Leica TCS SP5 spectral confocal microscope equipped with a Ti:sapphire laser. An excitation wavelength of 750 nm, a HCX PL APO CS $40 \times$ NA 1.25 (for HeLa cells), or an HCX PL APO CS $63 \times$ NA 1.30 (for both DRG neuron and acute brain slice culture) objective, average multi-photon power of 2310W and gain

level of 900V were used in image acquisition. Detection bandwidth was ranged from 500-650 nm.

All confocal images of HeLa cells were obtained using the same scanning parameters including the scan speed (400Hz), scanning mode (*xyz*), line averaging (2), frame averaging (3) and resolution (512×512 pixels).

Time-lapse images were obtained with 1 sec (primary DRG neurons) or 0.7 sec (acute brain slice) intervals. 120 to 200 frames of images were collected from each series of time-lapse imaging using *xyt* mode at 600 Hz scan speed.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

Fig. S1 Molecular structure and crystal packing of **2** with the numbering scheme adopted. Thermal ellipsoids are shown at the 50% probability level.

Fig. S2 Spectroscopic properties of $\{[Pt(L_1)]_2(\mu\text{-dppm})\}(ClO_4)_2 \ 1 \cdot (ClO_4)_2$ in acetonitrile at 298 K: (a) UV-vis absorption spectra, with solvent dependence of the absorption band at 385 – 450 nm shown in the inset; (b) normalized excitation and emission spectra (concentration = 5 × 10⁻⁵ M).

Fig. S3 Spectroscopic properties of $\{[Pt(L_2)]_2(\mu\text{-dppm})\}(ClO_4)_2 \ 2 \cdot (ClO_4)_2$ in acetonitrile at 298 K: (a) UV-vis absorption spectra, with solvent dependence of the absorption band at 375 – 440 nm shown in the inset; (b) normalized excitation and emission spectra (concentration = 5×10^{-5} M).

Fig. S4 Luminescent responses of $\{[Pt(L_2)]_2(\mu-dppm)\}(ClO_4)_2 \ 2 \cdot (ClO_4)_2$ in 2:1 (v/v) DMF / aqueous buffer (5 × 10⁻⁵ M) to changes in media pH at 298 K. (Excitation $\lambda = 355$ nm)

Fig. S5 Two-photon induced luminescent spectra of complex 1 (a) and 2 (b), both at 5×10^{-4} M, in DMF at 298 K with and without the addition of 5% triethylamine for the deprotonation of the imidazolyl-*NH* on the cyclometalating ligands. ($\lambda_{ex} = 750$ nm)

Fig. S6 MTT assays of cytotoxicity of complexes 1 & 2 on HeLa cells with 2 h exposure.

Fig. S7 Two-photon microscopy images of acute brain slice after 2 h exposure to 5 μ M of complex 1: (a) Image ($\lambda_{ex} = 750$ nm) of acute brain slice stained with complex 1. Lysosomes were localized inside the cell bodies and axons. (b) Time-lapse images from the white box in (a) showed the vesicle trafficking along the axons of brain tissue. White arrowheads indicated the movement of lysosomes. Scale bar: 10 μ m.

{[Pt(L_2)] ₂ (μ -dppm)}(ClO ₄) ₂ 2 ·(ClO ₄) ₂							
Pt(1) - C(1)	2.035(9)	Pt(2) - C(40)	2.043(11)				
Pt(1) - N(1)	2.027(6)	Pt(2) - N(4)	2.019(9)				
Pt(1) - N(2)	2.128(7)	Pt(2) - N(5)	2.114(9)				
Pt(1) - P(1)	2.237(19)	Pt(2) - P(2)	2.245(3)				
Pt(1) - Pt(2)	3.135 (2)						
C(1)-Pt(1)-N(1)	80.78(3)	N4 Pt2 C40	81.34(4)				
N1 Pt1 N2	78.15(3)	N4 Pt2 N5	78.05(4)				
C1 Pt1 N2	158.78(3)	C40 Pt2 N5	159.39(4)				

Table S1 Selected bond lengths (\AA) and angles (deg) of complex 2.

	2		
Empirical formula	C ₅₅ H ₅₀ Cl ₂ N ₆ O ₁₀ P ₂ Pt ₂		
Colour	Yellow		
Formula weight	1478.03		
Temperature, K	133(2)		
Wavelength, Å	1.54178		
Crystal system	Monoclinic		
Space group	C 1 2/c 1 (15)		
a, Å	21.4316(10)		
b, Å	18.6779(8)		
c, Å	28.2587(11)		
a, deg	90.00		
β, deg	92.868(4)		
γ, deg	90.00		
Volume, Å ³	11297.71(84)		
Z	8		
Density (calculated), g cm ⁻³	1.73782		
Absorption coefficient, mm ⁻¹	11.053		
F(000)	5776		
Crystal dimensions, mm	-		
θ range for data collection, deg	3.33 to 24.99		
Limiting indices	$-10 \le h \le 10, -18 \le k \le 18,$		
Paflactions collected	$-12 \le 1 \le 12$		
Independent reflections (D)	22222 (0.0227)		
$C_{\text{and}} = 25.00^{\circ} \text{ M}$	22322 (0.0237)		
Completeness to $\theta = 25.00^{\circ}$, %	99.0		
Max and min transmission	9808		
Data / restraints / noremators	-		
Coodness of fit on E2	1 250		
Final D indians $[L \ge 2 \alpha(L)]$	1.239		
r mai K muices $[1 \ge 2 \alpha(1)]$ P indices (all data)	$K_1 = 0.0311 \text{ wK2} = 0.1033$ $P_1 = 0.0520 \text{ wP2} = 0.1042$		
K mutces (all data)	$R_1 = 0.0550 \text{ wR2} = 0.1045$		
Largest different peak and note, eA	1.821 and -1.482		

 Table S2 Crystal data and structure refinement details of complex 2.

	Emission in fluid solution (at 298K)			
Complex	$\lambda_{\rm max}$ / nm ^a	τ_{o} / μs^{b}	P _{lum} ^c	TPA Cross Section / GM ^d
$ \{ [Pt(\boldsymbol{L}_{1})]_{2}(\mu - dppm) \} (ClO_{4})_{2} 1 \cdot (ClO_{4})_{2} $	621	2.06	0.19	56
$ \{ [Pt(\boldsymbol{L}_2)]_2(\mu - dppm) \} (ClO_4)_2 \ \boldsymbol{2} \cdot (ClO_4)_2 $	574	2.10	0.21	35

 Table S3 Summary of photophysical properties of the cycloplatinated complexes 1 & 2.

^{*a,b*} Measured in acetonitrile (5 × 10⁻⁵ M), with excitation λ at 355 nm.

^{*c*} Using [Ru(bpy)₃](PF₆)₂ in degassed acetonitrile at 298K ($\phi_r = 0.062$) as reference.

^d Using Rhodamine 6G as reference.

References

- 1. J. N. Demas and G. A. Crosby, *Journal of Physical Chemistry*, 1971, 75, 991-&.
- C. Xu and W. W. Webb, *Journal of the Optical Society of America B-Optical Physics*, 1996, 13, 481-491.
- M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu and C. Xu, *Science*, 1998, 281, 1653-1656.
- 4. T. Kohl, K. G. Heinze, R. Kuhlemann, A. Koltermann and P. Schwille, *Proceedings of the National Academy of Sciences of the United States of America*, 2002, 99, 12161-12166.
- 5. *SAINT*, Siemens Energy and Automation, Madison, WI, 1994 1996.
- G. M. Sheldrick, SADABS, Empirical Absorption Correction Program, University of Göttingen, Germany, 1997.
- G. M. Sheldrick, *SHELXTLTM Reference Manual, version 5.1*, Siemens Energy and Automation, Madison, WI, 1997.
- Y. M. Ho, C. K. Koo, K. L. Wong, H. K. Kong, C. T. L. Chan, W. M. Kwok, C. F. Chow, M. H. W. Lam and W. Y. Wong, *Dalton Transactions*, 2012, 41, 1792-1800.
- C. H. Ma, T. Omura, E. J. Cobos, A. Latremoliere, N. Ghasemlou, G. J. Brenner, E. van Veen, L. Barrett, T. Sawada, F. Gao, G. Coppola, F. Gertler, M. Costigan, D. Geschwind and C. J. Woolf, *J Clin Invest*, 2011, 121, 4332-4347.