Supporting Information

Catalytic asymmetric synthesis of 1,3-enyne scaffolds: design and synthesis of conjugated nitro dienynes as novel Michael acceptors and development of new synthetic methodology

Xiang Li, Fangzhi Peng,* Mingtao Zhou, Mingjie Mo, Ruirui Zhao, and Zhihui Shao*

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China

1. General Information

¹H-NMR and ¹³C-NMR spectra were recorded at 300 MHz and 400 MHz MHz spectrophotometer. Chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz. The enantiomeric excess was determined by chiral HPLC with *n*-hexane and *i*-propanol as eluents. High resolution mass spectrometry (HRMS) was recorded on a VG Auto Spec-3000 spectrometer. Optical rotations were measured on a JASCO DIP-370 polarimeter. All chemicals and solvents were used as received without further purification unless otherwise stated. Flash column chromatography was performed on silica gel (230–400 mesh).

2. Representative Procedure for the Synthesis of Alcohols 3

To a solution of (*E*)-(2-bromovinyl)benzene **2a** (1.82 g, 10 mmol) in dry diethylamine (25 mL) was added Pd(PPh₃)₄ (46 mg, 0.04 mmol, 0.004 eq), CuI (25 mg, 0.13 mmol, 0.013 eq) and propargylic alcohol (560 mg, 10 mmol) and the resulting mixture was stirred for 36 h at room temperature. The solvent was removed under reduced pressure, and the crude was purified by flash silica gel chromatography to give the desired alcohol **3a** (1.34 g, 85%). ¹H NMR (300 MHz, CDCl₃): δ = 7.24 (m, 5H), 6.92 (d, *J* = 16.2 Hz, 1H), 6.13 (m, 1H), 4.44 (s, 2H), 2.44 (brs, 1H); ¹³C NMR (75 MHz, CDCl₃), δ = 141.9, 136.0, 128.8, 126.3, 107.5, 89.5, 84.9, 51.6. HRMS: calcd for C₁₁H₁₀O [M]⁺ 158.0732, found 158.0735.

3. Representative Procedure for the Synthesis of Aldehydes 4

To a solution of **3a** (790 mg, 5 mmol) in THF/DMSO (14 mL, $V_{THF}/V_{DMSO} = 6/1$) was added IBX (1.68 g, 6 mmol, 1.2 eq) and the resulting mixture was stirred for 8 h at room temperature. The organic layer was

washed with saturated aqueous Na₂S₂O₃ solution and brine. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure, and the crude was purified by flash silica gel chromatography to give the desired aldehyde **4a** (640 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ = 9.35 (s, 1H), 7.45 (m, 2H), 7.38 (m, 3H), 7.29 (m, 1H), 6.27 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 176.5, 149.0, 134.9, 130.4, 129.0, 127.2, 104.7, 95.0, 90.4. HRMS: calcd for C₁₁H₈O [M]⁺ 156.0568, found 156.0575.

4. Representative Procedure for the Synthesis of Conjugated Nitro Dienynes 1

A slurry of LiAlH₄ (3.8 mg, 0.1 mmol, 0.1 eq) in dry THF (4 mL) was stirred for 30 min at 0°C, and then nitromethane (305 mg, 5 mmol, 5eq) was added. After 30 min, 4 (1 mmol) was added in one portion. The mixture was stirred until the reaction was complete (monitored by TLC). Then 1N HCl was added and the reaction mixture was extracted with dichloromethane. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the nitro alcohol product which was used without purification for the next step. To a solution of the nitro alcohol (0.9 mmol, 1eq) in dry dichloromethane (3 mL) was added trifluoroacetic anhydride (198 mg, 0.945 mmol, 1.05 eq) and triethylamine (190 mg, 1.89 mmol, 2.1 eq) at 0°C. The reaction mixture was stirred at 0°C until the reaction was complete (monitored by TLC). Then the organic layer was washed with saturated aqueous NH₄Cl solution and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure, and the crude was purified by flash silica gel chromatography to give **1**.

((1*E*,5*E*)-6-Nitrohexa-1,5-dien-3-ynyl)benzene (1a): ¹H NMR (300 MHz, CDCl₃): $\delta = 7.41$ (m, 2H), 7.38 (m, 3H), 7.35 (m, 2H), 7.13 (d, J = 16.2 Hz, 1H), 6.31 (dd, J = 16.2 Hz, J = 1.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 146.2$, 145.2, 135.3, 130.0, 129.0, 127.0, 121.2, 106.4, 105.2, 84.3. HRMS: calcd for C₁₂H₉NO₂ [M]⁺ 199.0633, found 199.0637.

1-Methyl-4-((1*E***,5***E***)-6-nitrohexa-1,5-dien-3-ynyl)benzene (1b): ¹H NMR (300 MHz, CDCl₃): \delta = 7.33 (m, 4H), 7.19 (m, 3H), 6.26 (dd,** *J* **= 16.2 Hz,** *J* **= 1.8 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): \delta = 146.3, 144.9, 140.4, 132.6, 129.7, 126.9, 121.3, 105.7, 105.2, 84.1, 21.4. HRMS: calcd for C₁₃H₁₁NO₂ [M]⁺213.0790, found 213.0792.**

1-Methyl-3-((1*E***,5***E***)-6-nitrohexa-1,5-dien-3-ynyl)benzene (1c): ¹H NMR (300 MHz, CDCl₃): \delta = 7.20 (m, 2H), 7.16 (m, 3H), 7.09 (m, 1H), 7.00 (d,** *J* **= 16.5 Hz, 1H), 6.21 (dd,** *J* **= 16.2 Hz,** *J* **= 2.1 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): \delta = 146.4, 145.1, 138.7, 135.2, 130.9, 128.9, 127.6, 124.2, 121.2, 105.1, 105.4, 84.2, 21.4. HRMS: calcd for C₁₃H₁₁NO₂[M]⁺ 213.0790, found 213.0792.**

1-Methoxy-4-((1*E***,5***E***)-6-nitrohexa-1,5-dien-3-ynyl)benzene (1d): ¹H NMR (400 MHz, CDCl₃): \delta = 7.31 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 16.2 Hz, 1H), 6.81 (d, J = 8.8 Hz, 2H), 6.11 (dd, J = 16.2 Hz, J = 2.4 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) : \delta = 161.2, 146.0, 144.7, 128.6, 128.1, 121.5, 114.4, 106.3, 103.8, 84.1, 55.4. HRMS: calcd for C₁₃H₁₁NO₃ [M]⁺ 229.0739, found 229.0739.**

1-Chloro-4-((1*E***,5***E***)-6-nitrohexa-1,5-dien-3-ynyl)benzene (1e): ¹H NMR (300 MHz, CDCl₃): \delta = 7.35 (m, 4H), 7.29 (m, 2H), 7.06 (d,** *J* **= 16.2 Hz, 1H), 6.28 (d,** *J* **= 15.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): \delta = 145.2, 145.7, 135.7, 133.7, 129.1, 128.0, 120.8, 106.9, 104.4, 84.5. HRMS: calcd for C₁₂H₈ClNO₂ [M]⁺233.0244, found 233.0238.**

2-((1*E***,5***E***)-6-Nitrohexa-1,5-dien-3-ynyl)thiophene (1f): ¹H NMR (300 MHz, CDCl₃): \delta = 7.34 (m, 1H), 7.30 (m, 3H), 7.17 (d,** *J* **= 3.6 Hz, 1H), 7.05 (m, 1H), 6.13 (dd,** *J* **= 15.9 Hz,** *J* **= 2.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): \delta = 145.1, 140.6, 138.8, 129.4, 128.3, 127.8, 121.2, 105.4, 84.9. HRMS: calcd for C₁₀H₇NO₂S [M]⁺ 205.0198, found 205.0203.**

((1*E*,5*E*)-1-Nitrohepta-1,5-dien-3-yne (1g): ¹H NMR (300 MHz, CDCl₃): δ = 7.21 (m, 2H), 6.18 (m, 1H), 5.61 (m, 1H), 1.85 (dd, *J* = 6.9 Hz, *J* = 1.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 145.0, 144.3, 121.2, 109.1, 102.2, 86.3, 16.6. HRMS: calcd for C₇H₇NO₂ [M]⁺ 137.0477, found 137.0475.

5. Catalytic Enantioselective Conjugate Addition of 1,3-Dicarbonyl Compounds to Nitro Dienynes

(A) Attempts with Bifunctional Tertiary Amine-Thiourea Catalysts

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

(B) Representative Procedure for Ni(II)-Catalyzed Enantioselective Conjugate Addition of 1,3-Dicarbonyl Compounds to Nitro Dienynes

To a solution of catalyst NiBr₂/2L3 (5 mol %) in *m*-xylene (0.5 mL) was added 1,3-dicarbonyl compounds 5 (0.3 mmol, 1.5 eq) and nitro dienynes 1 (0.2 mmol). The reaction mixture was stirred at room temperature until the reaction was complete (monitored by TLC). The solvent was removed under reduced pressure and the crude was purified by flash silica gel chromatography to give 6.

(*S,E*)-Di-*tert*-butyl 2-(1-nitro-6-phenylhex-5-en-3-yn-2-yl)malonate (6a): $[α]_D^{20} = +14.1$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.29 (m, 5H), 6.87 (d, J = 16.2 Hz, 1H), 6.04 (dd, J = 16.2 Hz, J = 1.8Hz, 1H), 4.77-4.71 (m, 2H), 4.04-4.00 (m, 1H), 3.54 (d, J = 7.8 Hz, 1H), 1.46 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): δ = 166.1, 165.8, 142.4, 135.9, 128.8, 128.7, 128.3, 126.3, 107.1, 85.8, 84.5, 83.1, 82.9, 76.4, 55.0, 30.9, 27.9, 27.9. HRMS: calcd for C₂₃H₂₉NO₆ [M]⁺ 415.1995, found 415.1985. HPLC (Chiralcel OJ-H, *i*-propanol/*n*-hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm): t_{major} = 14.489 min, t_{minor} = 26.307 min.

(*S,E*)-Di-*tert*-butyl 2-(1-nitro-6-p-tolylhex-5-en-3-yn-2-yl)malonate (6b): $[α]_D^{20} = + 2.1$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.23$ (m, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.84 (d, *J* = 16.5 Hz, 1H), 5.98 (dd, *J* = 16.2 Hz, *J* = 2.1 Hz, 1H), 4.80-4.65 (m, 2H), 4.04-3.97 (m, 1H), 3.53 (d, *J* = 8.1 Hz, 1H), 2.33 (s, 3H), 1.49 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.1$, 165.8, 142.3, 138.9, 133.2, 129.4, 129.0, 128.6, 126.2, 106.0, 85.4, 84.7, 83.0, 82.9, 76.5, 55.0, 31.0, 27.9, 27.8, 21.3. HRMS: calcd for C₂₄H₃₁NO₆ [M]⁺ 429.2151, found 429.2141. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 15/85, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 12.377 min, t_{minor} = 17.939 min.

(*S,E*)-Di-*tert*-butyl 2-(1-nitro-6-m-tolylhex-5-en-3-yn-2-yl)malonate (6c): $[\alpha]_D^{20} = +53.9$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.00$ (m, 4H), 6.75 (d, J = 16.2 Hz, 1H), 5.94 (dd, J = 16.5 Hz, J = 1.8 Hz, 1H), 4.73-4.58 (m, 2H), 3.97-3.92 (m, 1H), 3.45 (d, J = 7.8 Hz, 1H), 2.25 (s, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.1$, 165.8, 142.5, 138.3, 135.9, 129.7, 128.6, 127.0, 123.5, 106.8, 85.7, 84.5, 83.0, 82.9, 76.5, 54.9, 30.9, 27.9, 27.8, 21.3. HRMS: calcd for C₂₄H₃₁NO₆ [M]⁺ 429.2151, found 429.2141. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 10/90, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 11.085 min, t_{minor} = 14.531 min.

(*S,E*)-Di-*tert*-butyl 2-(6-(4-methoxyphenyl)-1-nitrohex-5-en-3-yn-2-yl)malonate (6d): $[α]_D^{20} = + 21.5$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.30$ (m, 2H), 6.81 (m, 3H), 5.89 (dd, *J* = 16.2 Hz, *J* = 1.8 Hz, 1H), 4.76-4.70 (m, 2H), 4.01-3.99 (m, 1H), 3.80 (s, 3H), 3.53 (d, *J* = 8.1 Hz, 1H), 1.47 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.2$, 165.8, 160.2, 141.9, 128.8, 127.6, 114.2, 104.6, 85.0, 84.8, 83.0, 82.9, 76.5, 55.3, 55.0, 31.1, 27.9, 27.8. HRMS: calcd for C₂₄H₃₁NO₇ [M]⁺ 445.2101, found 445.2111. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane =15/85, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 19.327 min, t_{minor} = 29.451 min.

(*S,E*)-Di-*tert*-butyl 2-(6-(4-chlorophenyl)-1-nitrohex-5-en-3-yn-2-yl)malonate (6e): $[α]_D^{20} = + 18.5$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.28 (m, 4H), 6.82 (dd, J = 16.2 Hz, J = 1.2 Hz, 1H), 6.02 (dd, J = 16.2 Hz, J = 1.2 Hz, 1H), 4.82-4.71 (m, 2H), 4.05-3.99 (m, 1H), 3.60 (d, J = 8.1 Hz, 1H), 1.46 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): δ = 166.1, 165.7, 141.0, 134.5, 134.4, 128.9, 127.5, 107.7, 86.5, 84.1,

83.1, 82.9, 76.4, 54.9, 30.9, 27.8. HRMS: calcd for $C_{23}H_{28}CINO_6[M]^+$ 449.1605, found 449.1607. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 15/85, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{major} = 16.253$ min, $t_{minor} = 21.103$ min.

(*S,E*)-Di-*tert*-butyl 2-(1-nitro-6-(thiophen-2-yl)hex-5-en-3-yn-2-yl)malonate (6f): $[α]_D^{20} = + 14.8$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.18 (d, J = 4.8 Hz, 1H), 6.95 (m, 3H), 5.84 (dd, J = 15.9 Hz, J = 2.1 Hz, 1H), 4.80-4.64 (m, 2H), 4.05-3.97 (m, 1H), 3.52 (d, J = 7.8 Hz, 1H), 1.49 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): δ = 166.1, 165.7, 140.9, 135.2, 127.7, 127.3, 125.7, 106.1, 86.2, 84.2, 83.0, 82.9, 76.4, 54.9, 30.9, 27.9, 27.8. HRMS: calcd for C₂₁H₂₇NO₆S [M]⁺ 421.1559, found 421.1551. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 8/92, flow rate 0.8 mL/min, λ = 254 nm): t_{major} = 16.895 min, t_{minor} = 28.858 min.

(*S*,*E*)-Di-*tert*-butyl 2-(1-nitrohept-5-en-3-yn-2-yl)malonate (6g): $[α]_D^{20} = + 12.0$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 5.86 (m, 1H), 5.31 (m, 1H), 4.72-4.58 (m, 2H), 3.96-3.89 (m, 1H), 3.46 (d, J = 7.8 Hz, 1H), 1.73 (dd, J = 6.9 Hz, J = 1.5 Hz, 3H), 1.41 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): δ = 166.1, 165.8, 139.8, 109.0, 88.1, 83.0, 82.8, 82.0, 76.6, 55.1, 30.9, 27.8, 27.8, 15.9. HRMS: calcd for C₁₈H₂₇NO₆ [M]⁺: 354.1917, found 354.1924. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 5/95, flow rate 0.8 mL/min, λ = 220 nm): t_{major} = 10.784 min, t_{minor} = 12.733 min.

(*S,E*)-3-(1-Nitro-6-phenylhex-5-en-3-yn-2-yl)pentane-2,4-dione (6h): $[α]_D^{20} = +107.4$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.19 (m, 5H), 6.79 (d, J = 16.2 Hz, 1H), 5.94 (dd, J = 16.2 Hz, J = 1.8 Hz, 1H), 4.55-4.37 (m, 1H), 4.37 (m, 1H), 4.09 (d, J = 9.6 Hz, 1H), 4.03-3.98 (m, 1H), 2.27 (s, 3H), 2.22 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 200.9, 200.5, 142.9, 135.7, 129.0, 128.8, 106.5, 85.5, 85.2, 76.2, 68.3, 30.7, 30.2, 29.9. HRMS: calcd for C₁₇H₁₇NO₄ [M]⁺ 299.1158, found 299.1154. HPLC (Chiralcel OD-H, *i*-propanol/*n*-hexane = 20/80, flow rate 0.8 mL/min, λ = 254 nm): t_{minor} = 30.673 min, t_{major} = 43.743 min.

(*S,E*)-Diethyl 2-(1-nitro-6-phenylhex-5-en-3-yn-2-yl)malonate (6i): $[\alpha]_D^{20} = + 10.9$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.18$ (m, 5H), 6.79 (d, J = 16.2 Hz, 1H), 5.96 (dd, J = 16.4 Hz, J = 2.0 Hz, 1H), 4.74-4.62 (m, 2H), 4.21-4.03 (m, 4H), 4.00 (m, 1H), 3.69 (d, J = 7.6 Hz, 1H), 1.20 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.8$, 166.5, 142.7, 135.8, 128.9, 128.7, 128,3, 126.3, 106.9, 85.2, 84.7, 76.2, 62.3, 53.2, 30.9, 14.0. HRMS: calcd for C₁₉H₂₁NO₆ [M]⁺ 359.1369, found 359.1367. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 10/90, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 23.013 min, t_{minor} = 24.885 min.

(*S*,*E*)-diethyl 2-(1-nitrohept-5-en-3-yn-2-yl)malonate (6j): $[α]_D^{20} = + 11.2$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 5.95 (m, 1H), 5.37 (d, J = 10.8 Hz, 1H), 4.78-4.67 (m, 2H), 4.20 (q, J = 6.9 Hz, 4H), 4.10-4.04 (m, 1H), 3.74 (d, J = 7.6 Hz, 1H), 1.78 (d, J = 7.6 Hz, 3H), 1.25 (t, J = 7.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ = 166.8, 166.5, 140.1, 108.9, 87.5, 82.3, 76.3, 62.2, 53.3, 30.9, 15.8, 14.0. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 10/90, flow rate 0.8 mL/min, λ = 220 nm): t_{major} = 11.133 min, t_{minor} = 13.044 min.

(2*S*,3*S*,*E*)-tert-Butyl 2-acetyl-3-(nitromethyl)-7-phenylhept-6-en-4-ynoate (6k): $[\alpha]_D^{20} = +193.4$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28$ (m, 5H), 6.87 (dd, J = 16.4 Hz, J = 2.4 Hz, 1H), 6.10-6.04 (m, 1H), 4.76-4.59 (m, 2H), 4.02 (m, 1H), 3.84 (m, 1H), 2.35 (s, 3H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.6$, 200.4, 166.0, 165.7, 142.6, 142.5, 135.9, 135.8, 128.9, 128.7, 126.3, 107.0, 106.8, 85.9, 85.8, 84.6, 84.5, 83.7, 83.5, 76.4, 76.3, 61.3, 60.7, 30.3, 30.2, 29.9, 27.8, 27.8. HRMS: calcd for C₂₀H₂₃NO₅ [M]⁺ 357.1576, found 357.1587. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 10/90, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 18.698 min, t_{major} = 20.253 min, t_{minor} = 23.325 min, t_{minor} = 32.434 min.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

(2*S*,3*S*,*E*)-*tert*-Butyl 2-acetyl-3-(nitromethyl)-7-*p*-tolylhept-6-en-4-ynoate (6l): $[\alpha]_D^{20} = +49.1$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.15$ (m, 2H), 7.03 (d, J = 7.6 Hz, 2H), 6.76 (dd, J = 16.0 Hz, J = 2.8 Hz, 1H), 5.95-5.90 (m, 1H), 4.65-4.50 (m, 2H), 3.91 (m, 1H), 3.74 (m, 1H), 2.36 (m, 6H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.7$, 200.4, 166.0, 165.7, 142.6, 142.5, 139.0, 133.2, 129.4, 126.2, 105.8, 105.7, 85.4, 85.3, 84.9, 84.8, 83.7, 83.5, 76.4, 76.3, 61.4, 60.7, 30.3, 30.2, 29.9, 27.9, 27.8, 21.3. HRMS: calcd for C₂₁H₂₅NO₅ [M]⁺ 371.1733, found 371.1714. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 15/85, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 13.796 min, t_{minor} = 18.950 min, t_{major} = 22.171 min, t_{minor} = 30.138 min.

(2*S*,3*S*,*E*)-*tert*-Butyl 2-acetyl-3-(nitromethyl)-7-*m*-tolylhept-6-en-4-ynoate (6m): $[α]_D^{20} = +15.8$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.01 (m, 4H), 6.76 (dd, J = 16.4 Hz, J = 2.4 Hz, 1H), 5.99-5.94 (m, 1H), 4.65-4.50 (m, 2H), 3.91 (m, 1H), 3.75 (m, 1H), 2.26 (m, 6H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 200.6, 200.4, 166.0, 165.7, 142.7, 142.6, 138.3, 135.8, 129.7, 128.6, 127.0, 123.5, 106.7, 106.6, 85.6, 85.5, 84.8, 84.7, 83.7, 83.5, 76.3, 76.3, 61.4, 60.7, 30.3, 30.2, 29.9, 27.9, 27.8, 21.3. HRMS: calcd for C₂₁H₂₅NO₅ [M]⁺ 371.1733, found 371.1714. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 8/92, flow rate 0.8 mL /min, λ = 254 nm): t_{major} = 15.251 min, t_{major} = 16.988 min, t_{minor} = 20.623 min, t_{minor} = 25.614 min.

(2*S*,3*S*,*E*)-*tert*-Butyl 2-acetyl-7-(4-methoxyphenyl)-3-(nitromethyl)hept-6-en-4-ynoate (6n): $[α]_D^{20} = +$ 30.9 (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.19 (m, 2H), 6.75 (m, 3H), 5.86-5.80 (m, 1H), 4.65-4.49 (m, 2H), 3.93 (m, 1H), 3.73 (m, 1H), 3.72 (s, 3H), 2.26 (s, 3H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 200.7, 200.4, 166.0, 165.7, 160.3, 142.1, 142.0, 128.7, 127.7, 114.2, 104.5, 104.3, 85.0, 84.94, 84.9, 83.7, 83.5, 76.4, 76.3, 61.4, 60.7, 55.3, 30.3, 30.2, 29.9, 27.8. HRMS: calcd for C₂₁H₂₅NO₆ $[M]^+$ 387.1682, found 387.1685. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 15/85, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 22.033 min, t_{minor} = 29.813 min, t_{major} = 35.636 min, t_{minor} = 53.109 min.

(2*S*,3*S*,*E*)-*tert*-Butyl 2-acetyl-7-(4-chlorophenyl)-3-(nitromethyl)hept-6-en-4-ynoate (60): $[α]_D^{20} = +$ 25.5 (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.16 (m, 4H), 6.72 (dd, *J* =16.0 Hz, *J* = 2.8 Hz, 1H), 5.92 (m, 1H), 4.64-4.50 (m, 2H), 3.93 (m, 1H), 3.75 (m, 1H), 2.26 (s, 3H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 200.5, 200.3, 165.9, 165.6, 141.2, 141.1, 134.5, 134.4, 134.3, 128.9, 127.5, 107.6, 107.5, 86.5, 86.4, 84.3, 84.2, 83.7, 83.5, 76.3, 76.2, 61.3, 60.6, 30.3, 30.2, 29.9, 27.8, 27.8. HRMS: calcd for C₂₀H₂₂CINO₅ [M]⁺ 391.1187, found 391.1185. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 15/85, flow rate 0.8 mL/min, λ = 254 nm): t_{major} = 19.636 min, t_{minor} = 23.127 min, t_{major} = 24.854 min, t_{minor} = 33.263 min.

(2*S*,3*S*,*E*)-*tert*-Butyl 2-acetyl-3-(nitromethyl)-7-(thiophen-2-yl)hept-6-en-4-ynoate (6p): $[α]_D^{20} = +$ 33.7 (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.12 (d, *J* = 4.8 Hz, 1H), 6.89 (m, 3H), 5.82-5.76 (m, 1H), 4.65-4.50 (m, 2H), 3.92 (m, 1H), 3.74 (m, 1H), 2.26 (s, 3H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 200.6, 200.3, 166.0, 165.6, 140.9, 135.4, 135.3, 127.7, 127.4, 125.8, 125.7, 106.0, 105.9, 86.1, 86.0, 84.4, 84.3, 83.7, 83.6, 76.3, 76.2, 61.3, 60.6, 30.3, 30.2, 30.0, 27.9, 27.8. HRMS: calcd for C₁₈H₂₁NO₅S [M]⁺ 363.1140, found 363.1133. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 8/92, flow rate 0.8 mL/min, λ = 254 nm): t_{major} = 19.870 min, t_{major} = 21.575 min, t_{minor} = 28.670 min, t_{minor} = 34.248 min.

7. Representative Procedure for the Synthesis of Acyclic α,β-Enone Acids 8

To a solution of **6a** (415 mg, 1 mmol) in toluene (20 mL) was added TsOH (38 mg, 0.2 eq). The reaction mixture was stirred for 6 h under reflux. After removal of solvent, the crude product was purified through column chromatography on silica gel to afford the compound **8a** (233 mg, 84%). $[\alpha]_D^{20} = +$ 6.7 (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.54$ (m, 3H), 7.40 (m, 3H), 6.70 (d, *J* = 16.2 Hz, 1H), 4.64 (d, *J* = 5.7 Hz, 2H), 3.19 (m, 1H), 2.92 (m, 2H), 2.65 (d, *J* = 6.3 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.1$, 176.5, 143.9, 134.0, 131.0, 129.1, 128.5, 125.5, 77.5, 41.1, 35.0, 29.6. HRMS: calcd for C₁₄H₁₅NO₅ [M]⁺ 277.0950, found 277.0955.

8 Representative Procedure for the Synthesis of Acyclic α,β-Enone Esters 9

To a solution of compound **8** (0.8 mmol) in absolute ethanol (10 mL) was added thionylchloride (95 mg, 0.8 mmol). The reaction mixture was stirred for 3 h under reflux. The solvent was removed under reduced pressure, and the mixture was diluted with AcOEt. The organic layer was washed with saturated aqueous NaHCO₃ solution and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure, and the crude product was purified through column chromatography on silica gel to afford compounds **9a-f**.

(*R*,*E*)-Ethyl 3-(nitromethyl)-5-oxo-7-phenylhept-6-enoate (9a): $[\alpha]_D^{20} = + 34.6$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.54$ (m, 3H), 7.40 (m, 3H), 6.70 (d, J = 16.2 Hz, 1H), 4.64 (d, J = 6.0 Hz, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.16 (m, 1H), 2.92 (d, J = 6.0 Hz, 2H), 2.56 (dd, J = 6.6 Hz, J = 1.2 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃), $\delta = 197.1$, 171.2, 143.6, 134.1, 130.9, 129.0, 128.4, 125.7, 77.8, 60.9, 41.2, 35.4, 29.9, 14.2. HRMS: calcd for C₁₆H₁₉NO₅ [M]⁺ 305.1263, found 305.1263. HPLC (Chiralcel OD-H, *i*-propanol/*n*-hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 22.688 min. t_{minor} = 25.380 min.

(*R*,*E*)-Ethyl 3-(nitromethyl)-5-oxo-7-*p*-tolylhept-6-enoate (9b): $[\alpha]_D^{20} = + 16.8 (c \ 1.0 \ CHCl_3)$. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.54 (d, J = 16.2 \ Hz, 1H)$, 7.44 (d, $J = 7.8 \ Hz, 2H$), 7.20 (d, $J = 7.8 \ Hz, 2H$), 6.66 (d, $J = 16.2 \ Hz, 1H$), 4.64 (d, $J = 6.0 \ Hz, 2H$), 4.13 (q, $J = 7.2 \ Hz, 2H$), 3.19 (m, 1H), 2.91 (d, $J = 6.3 \ Hz, 2H$), 2.56 (d, $J = 6.6 \ Hz, 2H$), 2.39 (s, 3H), 1.25 (t, $J = 7.2 \ Hz, 3H$); ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.2$, 171.2, 143.7, 141.4, 131.4, 129.8, 128.4, 124.8, 77.8, 60.8, 41.1, 35.4, 30.0, 21.5, 14.1. HRMS: calcd for C₁₇H₂₁NO₅ [M]⁺ 319.1420, found 319.1422. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254 \ nm$): t _{minor} = 15.534 min. t _{major} = 17.527 min.

(*R*,*E*)-Ethyl 3-(nitromethyl)-5-oxo-7-*m*-tolylhept-6-enoate (9c): $[\alpha]_D^{20} = +15.7$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.46$ (d, J = 16.2 Hz, 1H), 7.29-7.16 (m, 4H), 6.61 (d, J = 16.2 Hz, 1H), 4.56 (d, J = 6.0 Hz, 2H), 4.05 (q, J = 7.2 Hz, 2H), 3.08 (m, 1H), 2.83 (d, J = 5.4Hz, 2H), 2.48 (d, J = 6.6

Hz, 2H), 2.30 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.2$, 171.2, 143.8, 138.7, 134.1, 131.7, 129.1, 128.9, 125.7, 125.5, 77.8, 60.9, 41.2, 35.4, 30.0, 21.3, 14.2. HRMS: calcd for C₁₇H₂₁NO₅ [M]⁺ 319.1420, found 319.1422. HPLC (Chiralcel OD-H, *i*-propanol/*n*-hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{major} = 20.877 min, t_{minor} = 22.677 min.

(*R*,*E*)-Ethyl 7-(4-methoxyphenyl)-3-(nitromethyl)-5-oxohept-6-enoate (9d): $[\alpha]_D^{20} = +47.4$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.41$ (m, 3H), 6.83 (d, J = 8.7 Hz, 2H), 6.50 (d, J = 16.2 Hz, 1H), 4.56 (d, J = 8.7 Hz, 2H), 4.05 (q, J = 7.2 Hz, 2H), 3.77 (s, 3H), 3.10 (m, 1H), 2.81 (d, J = 6.6 Hz, 2H), 2.48 (d, J = 6.6 Hz, 2H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 197.0$, 171.3, 161.9, 143.4, 130.2, 126.8, 123.5, 114.5, 77.8, 60.8, 55.4, 41.1, 35.4, 30.1, 14.1. HRMS calcd for C₁₇H₂₁NO₆ [M]⁺ 335.1369, found 335.1373. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 22.324 min, t_{major} = 24.617 min.

(*R*,*E*)-Ethyl 7-(4-chlorophenyl)-3-(nitromethyl)-5-oxohept-6-enoate (9e): $[α]_D^{20} = +5.0$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.39$ (m, 3H), 7.29 (d, J = 8.4 Hz, 2H), 6.59 (d, J = 16.2 Hz, 1H), 4.56 (d, J = 6.0 Hz, 2H), 4.05 (q, J = 7.2 Hz, 2H), 3.10 (m, 1H), 2.83 (d, J = 6.3 Hz, 2H), 2.48 (dd, J = 6.6 Hz, J = 1.8 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 196.9$, 171.2, 142.1, 136.8, 132.6, 129.5, 129.3, 126.0, 77.7, 60.9, 41.4, 35.4, 29.9, 14.1. HRMS: calcd for C₁₆H₁₈ClNO₅ [M]⁺ 339.0874, found 339.0863. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_{minor} = 17.749 min, t_{major} = 18.749 min.

(*R*,*E*)-Ethyl 3-(nitromethyl)-5-oxo-7-(thiophen-2-yl)hept-6-enoate (9f): $[α]_D^{20} = +15.4$ (*c* 1.0 CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 7.61 (d, *J* = 15.6 Hz, 1H), 7.35 (d, *J* = 4.8 Hz, 1H), 7.24 (d, *J* = 3.6 Hz, 1H), 6.99 (m, 1H), 6.42 (d, *J* = 15.9 Hz, 1H), 4.56 (d, *J* = 6.0 Hz, 2H), 4.05 (q, *J* = 7.2 Hz, 2H), 3.09 (m, 1H), 2.79 (d, *J* = 6.9 Hz, 2H), 2.47 (dd, *J* = 6.6 Hz, *J* = 1.2 Hz, 2H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 196.6, 171.2, 139.5, 135.9, 132.2, 129.4, 128.4, 124.3, 77.7, 60.9, 41.3, 35.3, 30.0, 14.2. HRMS: calcd for C₁₄H₁₇NO₅S [M]⁺ 311.0827, found 311.0831. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 25/75, flow rate 1.0 mL/min, λ = 254 nm): t_{minor} = 14.387 min, t_{major} = 15.332 min.

9 Representative Procedure for the Synthesis of Cyclic Dienones 10

To a solution of compound **6** (0.5 mmol) in toluene (10 mL) was added TsOH (19 mg, 0.2 eq). The reaction mixture was stirred for 6-8 h under reflux. After removal of solvent, the crude product was purified through column chromatography on silica gel to afford the compounds **10a-f**.

(*R*,*E*)-5-(Nitromethyl)-3-styrycyclohex-2-enone (10a): $[\alpha]_D^{20} = -35.1$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41$ (d, *J* = 7.2 Hz, 2H), 7.28 (m, 3H), 6.91 (d, *J* = 16.4 Hz, 1H), 6.80 (d, *J* = 16.0 Hz, 1H), 6.06 (s, 1H), 4.41 (d, *J* = 6.8 Hz, 2H), 2.98-2.93 (m, 1H), 2.80 (dd, *J* = 17.2 Hz, *J* = 4.4 Hz, 1H), 2.53 (dd, *J* = 16.4 Hz, *J* = 4.0 Hz, 1H), 2.33 (m, 1H), 2.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.4$, 154.3, 136.2, 135.6, 129.5, 129.0, 128.3, 127.7, 127.4, 79.3, 40.5, 33.4, 28.4. HRMS: calcd for C₁₅H₁₅NO₃ [M]⁺ 257.1052, found 257.1049. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 15/85, flow rate 0.9 mL/min, $\lambda = 254$ nm): t_{major} = 26.038 min, t_{minor} = 27.549 min.

(*R*,*E*)-3-(4-Methylstyryl)-5-(nitromethyl)cyclohex-2-enone (10b): $[\alpha]_D^{20} = -49.5$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃) : $\delta = 7.32$ (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 16.4 Hz, 1H), 6.76 (d, J = 16.4 Hz, 1H), 6.05 (s, 1H), 4.41 (d, J = 6.8 Hz, 2H), 2.98-2.93 (m, 1H), 2.80 (dd, J = 17.2 Hz, J = 4.4 Hz, 1H), 2.53 (dd, J = 16.4 Hz, J = 4.0 Hz, 1H), 2.32 (m, 1H), 2.30 (s, 3H), 2.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.4$, 154.6, 138.9, 136.3, 132.8, 129.7, 127.4, 127.3, 79.4, 40.5, 33.4, 28.4, 21.4. HRMS: calcd for C₁₆H₁₇NO₃ [M]⁺ 271.1208, found 271.1201. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 20/80, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 19.799 min, t_{minor} = 21.017 min.

(*R*,*E*)-3-(3-Methylstyryl)-5-(nitromethyl)cyclohex-2-enone (10c): $[\alpha]_D^{20} = -67.5$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.17$ (m, 3H), 7.08 (d, J = 7.2 Hz, 1H), 6.89 (d, J = 16.4 Hz, 1H), 6.79 (d, J = 16.0 Hz, 1H), 6.05 (s, 1H), 4.40 (d, J = 6.8 Hz, 2H), 2.97-2.92 (m, 1H), 2.79 (dd, J = 17.2 Hz, J = 4.4

Hz, 1H), 2.52 (dd, J = 16.4 Hz, J = 4.0 Hz, 1H), 2.34 (m, 1H), 2.29 (s, 3H), 2.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.5$, 154.5, 138.6, 136.4, 135.5, 130.4, 128.9, 128.1, 127.5, 124.7, 79.3, 40.5, 33.4, 28.4, 21.4. HRMS: calcd for C₁₆H₁₇NO₃ [M]⁺ 271.1208, found 271.1201. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 20/80, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 41.541 min, t_{minor} = 48.319 min.

(*R*,*E*)-3-(4-methoxystyryl)-5-(nitromethyl)cyclohex-2-enone (10d): $[\alpha]_D^{20} = -25.7$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36$ (d, J = 8.8 Hz, 2H), 6.82 (m, 3H), 6.68 (d, J = 16.0 Hz, 1H), 6.02 (s, 1H), 4.40 (d, J = 6.8 Hz, 2H), 3.76 (s, 3H), 2.97 -2.91 (m, 1H), 2.78 (dd, J = 16.8 Hz, J = 4.4 Hz, 1H), 2.51 (dd, J = 16.4 Hz, J = 4.0 Hz, 1H), 2.30 (m, 1H), 2.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.4$, 160.8, 154.8, 135.9, 129.0, 128.6, 128.3, 126.8, 126.0, 114.5, 79.4, 55.4, 40.4, 33.4, 28.4. HRMS: calcd for C₁₆H₁₇NO₄ [M]⁺ 287.1158, found 287.1162. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 20/80, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_{major} = 36.051 min, t_{minor} = 39.681 min.

(*R*,*E*)-3-(4-Chlorostyryl)-5-(nitromethyl)cyclohex-2-enone (10e): $[α]_D^{20} = -97.2$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.34 (d, J = 8.8 Hz, 2H), 7.28 (m, 2H), 6.86 (d, J = 16.0 Hz, 1H), 6.77 (d, J = 16.4 Hz, 1H), 6.06 (s, 1H), 4.41 (m, 2H), 2.98-2.93 (m, 1H), 2.78 (dd, J = 17.2 Hz, J = 4.4 Hz, 1H), 2.53 (dd, J = 16.4 Hz, J = 4.0 Hz, 1H), 2.32 (m, 1H), 2.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃), δ = 196.3, 153.9, 135.3, 134.7, 134.1, 129.2, 128.8, 128.6, 128.0, 79.3, 40.5, 33.4, 28.4. HRMS: calcd for C₁₅H₁₄ClNO₃ [M]⁺ 291.0622, found 291.0658. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 20/80, flow rate 0.8 mL/min, λ = 254 nm): t_{major} = 28.544 min, t_{minor} = 30.154 min.

(*R*,*E*)-5-(Nitromethyl)-3-(2-(thiophen-2-yl)vinyl)cyclohex-2-enone (10f): $[\alpha]_D^{20} = 40.0$ (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.27$ (m, 1H), 7.10 (m, 2H), 6.96 (m, 1H), 6.60 (d, J = 16.0 Hz, 1H), 6.02 (s, 1H), 4.40 (m, 2H), 2.99-2.90 (m, 1H), 2.74 (dd, J = 16.4 Hz, J = 4.0 Hz, 1H), 2.52 (dd, J = 16.4Hz, J = 4.0 Hz, 1H), 2.26 (m, 1H), 2.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.2$, 154.0, 141.2, 13 129.3, 129.0, 128.2, 127.5, 127.5, 127.2, 79.3, 40.4, 33.4, 28.3. HRMS: calcd for $C_{13}H_{13}NO_3S$ [M]⁺ 263.0616, found 263.0624. HPLC (Chiralpak AD-H, *i*-propanol/*n*-hexane = 15/85, flow rate 0.9 mL/min, $\lambda = 254$ nm): $t_{major} = 26.262$ min, $t_{minor} = 28.679$ min.

16

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

0 ppm

20 10

50 40 30

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	010
1	16.895	VB	0.4092	4.87974e4	1852.47693	96.0016
2	28.858	BB	0.7075	2032.39221	44.14380	3.9984

Peak	RetTime	Туре	Width	dth Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	00
1	30.673	MM	2.2088	2205.9	99731	16.6	4542	5.1794
2	43.743	MM	5.6754	4.0385	59e4	118.5	9822	94.8206

Peak	RetTime	Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	0,0	
									-
1	15.327	VB	0.2978	2954.4	43701	154.3	16777	32.769	4
2	17.095	BP	0.3257	2190.	50879	104.0	64998	24.296	2
3	20.745	VV	0.4066	1719.	77490	65.8	36095	19.075	0
4	25.824	BP	0.5064	2151.	12671	66.0)9227	23.859	4

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	음
1	15.251	MM	0.3206	1.51020e4	785.11163	54.3510
2	16.988	MM	0.3522	1.15931e4	548.63275	41.7229
3	20.623	VV	0.4115	500.56805	18.68864	1.8015
4	25.614	BP	0.4988	590.31915	18.29192	2.1245

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	da
1	21.897	BB	0.4353	3674	.01978	130.	84093	21.6030
2	29.561	BB	0.5996	3615	.94702	94.	12921	21.2615
3	35.370	BP	0.7308	4954	.11572	106.	17180	29.1299
4	52.401	BB	1.0804	4762	.91797	68.	88592	28.0056

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU *:	S	[mAU]	엄
1	19.233	VB	0.3815	7234.70	898	295.	74445	22.7031
2	22.627	BV	0.4653	7474.11	719	249.	97382	23.4544
3	24.346	VP	0.5008	8825.293	102	274.	13116	27.6945
4	32.286	BP	0.6684	8332.51	660	194.	62424	26.1481

0.6376 181.24321

4.27284

1.6618

66

4

33.263 BP

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	19.870	MM	0.4063	1.02697e4	421.27780	42.0676
2	21.575	MM	0.4480	1.32932e4	494.54681	54.4527
3	28.670	BB	0.5500	379.63522	10.79679	1.5551
4	34.248	BP	0.6386	469.84955	11.35348	1.9246

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	olo
1	22.688	BV	0.7304	3.47123e4	732.65015	94.9450
2	25.380	VB	0.7795	1848.13745	36.80548	5.0550

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	90
1	15.473	VB	0.3433	8205	.07715	369.	78949	49.8454
2	17.435	BB	0.4783	8255	.97852	253.9	91743	50.1546

Peak	RetTime	Type	Width	Area	Hei	ght	Area
#	[min]		[min]	mAU *s	[mAU]	00
1	15.534	VB	0.3820	212.224	47 8.	36133	4.7285
2	17.527	BB	0.4400	4275.930	18 146.	93484	95.2715

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	26.038	VV	0.5703	2.018	860e4	558.	38715	95.8289
2	27.549	VB	0.5843	878	.62531	22.	61306	4.1711

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Peak	RetTime	Туре	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	음
1	28.294	BV	0.6009	3069	.03223	79.	39937	49.7415
2	29.991	VB	0.6359	3100	.92847	75.	34604	50.2585

#	[min]		[min]	mAU	*s	[mAU]	ojo	
1	28.544	BV	0.6423	1.43	742e4	350.	98071	94.9070	
2	30.154	VB	0.6309	771	.35779	18.	71167	5.0930	

