Supplemental Information

For
 A Donor-Acceptor-Donor Conjugated Molecule: Twist
 Intramolecular Charge Transfer and Piezochromic Luminescent

Property
Zi-Hao Guo, Ze-Xin Jin, Jie-Yu Wang* and Jian Pei*
Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
jianpei@pku.edu.cn, jieyuwang@pku.edu.cn

Content

1. Photophysical and DSC measurements
2. Reversible switching of the emission
3. DFT calculation
4. Synthetic part

1. Photophysical and DSC measurements

Figure S1. Absorption and emission spectra of AQDBD in dilute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $\left(10^{-5} \mathrm{M}\right)$.

Figure S2. Absorption spectra of AQDBD in different solvents ($10^{-5} \mathrm{M}$), varying from cyclohexane to DMF in the sequence of permittivity. (CH : cyclohexane; Ether: diethyl ether; THF: tetrahydrofuran; DCM: dichloromethane; DMF: dimethylformamide)

Figure S3. Emission spectra of AQDBD in different solvents ($10^{-5} \mathrm{M}$), varying from cyclohexane to DMF in the sequence of permittivity.

Figure S4. Absorption spectra of green, orange films, and solution of AQDBD.

Figure S5. DSC profile of AQDBD with an exothermic peak in the first cycling.

Table S1. Optical property of AQDBD in different solvent.

	CH	Tol	THF	DCM	Acetone	DMF	DMSO	$\mathrm{CH}_{3} \mathrm{CN}$
$\eta(\%)^{\mathrm{a}}$	60	49	41	31	18	10	7	3
$\lambda_{\text {em }}(\mathrm{nm})$	522	541	570	590	596	600	609	605
ε^{b}	2.10	2.38	7.35	9.14	21.4	36.7	45.0	38.8

${ }^{\text {a }}$ The fluorescence quantum yields in different solvents was test by integrating sphere system on HORIBA JobinYvon Nanolog FL3-2iHR spectrometer. ${ }^{\text {b }}$ The permittivity of different solvents.

2. Reversible switching of the emission

Figure S6. Reversible switching of the emission color of AQDBD on filter paper.

Figure S7. Emission wavelengths of the repeated conversion between the ground and after heated at 160 for 5 min of AQDBD.

3. DFT calculation

Atomic structures of AQDBD were optimized with density functional theory (DFT) calculations using B3LYP/6-31G at different twist angles from 0° to 180° between TPA and acceptor core with a step length of 10°. Two TPA donors were in cross fashion which have lower ground state energy compared to parallel one at different twist angles. Molecular orbital shapes and energies were calculated at the optimized geometries. Orbital pictures were generated with Gaussview 5.0. All quantum-chemical calculations were performed with the Gaussian09 package.

Figure S8. The ground state energy of AQDBD at different twist angles between donor and acceptor in the gas phase

4. Synthetic part

Scheme S1. The synthetic routes to AQDBD.

8,11-Dibromoacenaphtho[1,2-b]quinoxaline (1). A mixture of 3,6-dibromobenzene-1,2-diamine $(53 \mathrm{mg}, 0.2 \mathrm{mmol})$, acenaphthylenequinone $(54 \mathrm{mg}, 0.3 \mathrm{mmol})$, and acetic acid $(1 \mathrm{~mL})$ were refluxed in ethanol (20 ml) overnight under nitrogen atmosphere. After removal of ethanol under reduced pressure, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was washed with water, and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was further purified by column chromatography (silica gel, $\mathrm{PE}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2$) to give $\mathbf{1}$ as a yellow solid (72 mg). Yield: 87%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 8.57-8.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.18$8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.91-7.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

4,4'-(Acenaphtho[1,2-b]quinoxaline-8,11-diyl)bis(N, N-diphenylaniline) (AQDBD). To a mixture of 1 ($82 \mathrm{mg}, 0.2 \mathrm{mmol}$), (4-(diphenylamino)phenyl)boronic acid ($144 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$, and sodium carbonate $(170 \mathrm{mg}, 1.61 \mathrm{mmol})$ were added THF (40 $\mathrm{mL})$ and water $(10 \mathrm{~mL})$. The mixture was refluxed overnight under nitrogen atmosphere. After quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents under reduced pressure, the residue was purified by column chromatography (silica gel, PE : $\mathrm{CHCl}_{3}=1: 1$) to afford AQBDB as a yellow solid (123 mg). Yield: 83%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, \mathrm{ppm}\right): \delta 8.39-8.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.15-8.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.84(\mathrm{~m}, 8 \mathrm{H})$, 7.38-7.28 (m, 20H), 7.13-7.10 (t, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{D}_{2}, \mathrm{ppm}$): $\delta 152.9$, $147.7,147.3,139.3,139.2,136.7,132.5,132.2,132.2,130.1,129.8,129.7,129.6,128.9,124.9$, 123.3, 122.8, 122.2. EI-HRMS: Calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 741.3013$. Found: 741.3005.

