Supporting Information

A Simple Route to Azaborinylphosphines: Isoelectronic B-N Analogues of Arylphosphine Ligands

Jonathan A. Bailey, Mairi Haddow and Paul. G. Pringle

School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK. Fax: 44 117 929 0509; Tel: 44 117 928 8114; E-mail: paul.pringle@bristol.ac.uk

General considerations

Unless otherwise stated, all manipulations were carried out under a dry N₂ or argon atmosphere using standard Schlenk line and glove-box techniques. Toluene, *n*-hexane, diethyl ether, dichloromethane and tetrahydrofuran were purified by means of a Grubbs type solvent system and deoxygenated by three successive freeze-pump-thaw cycles. Cyclohexene and deuterated benzene (C₆D₆) and dichloromethane (CD₂Cl₂) were stirred with CaH₂ overnight, distilled, deoxygenated by three freeze-pump-thaw cycles and stored over 4 Å molecular sieves. NMR spectra were acquired on Jeol ECP (Eclipse) 300, Jeol ECS 300, Varian 400-MR, Jeol ECS 400 and Varian VNMRS500 spectrometers. Chemical shifts are referenced relative to high frequency of residual solvent (¹H and ¹³C), 85% H₃PO₄ (³¹P) and BF₃·OEt₂ (¹¹B). Elemental analyses were carried out by the Microanalytical Laboratory at the University of Bristol. Mass spectrometry was carried out by the Mass Spectrometry Service at the University of Bristol. 9-aza-10-bora-10-chlorophenanthrene (**1**),¹ *s*-PhobPH² and *s*-PhobPCl were synthesised according to literature methods. All other reagents were used as received from Sigma-Aldrich, Acros or Strem Chemicals.

Di-isopropyl(trimethylsilyl)phosphine.³ This was prepared by a modification of the literature procedure. To a stirred solution of ${}^{i}Pr_{2}PH$ (2.39 g, 20.2 mmol)

in THF (20 mL), cooled to -78 °C, was added a 1.6 M solution of "BuLi in hexane (13.3 mL, 21.2 mmol) dropwise over 5 min. After complete addition, the solution was stirred at RT for 2 h. The reaction mixture was then cooled to -78 °C and SiMe₃Cl (2.5 mL, 20.2 mmol) was added dropwise over 10 min. The mixture was left to warm to RT overnight. The solvent was then removed *in vacuo* and the residue distilled to afford the product as a

pyrophoric colourless oil (2.19 g, 11.5 mmol, 57%). ³¹P{¹H} NMR (122 MHz, C₆D₆) δ = -44.0. HR-MS (EI) *m/z* calculated for C₉H₂₃PSi [M]⁺ = 190.1307; obs.: 190.1304.

Trimethylsilyl-9-phosphabicyclo[3.1.1]nonane. To a stirred solution of s-SiMe₃ PhobPH (5.00 g, 35.2 mmol) in THF (20 mL), cooled to -78 °C, was added a 1.6 M solution of "BuLi in hexane (23.1 mL, 36.9 mmol) over 5 min. After addition was completed, the solution was stirred at RT for a further 2 h. The resulting suspension was then cooled to -78 °C again and Me₃SiCl (4.46 mL, 35.1 mmol) added via a dropping funnel over 20 min. Extra THF (20 mL) was added to facilitate the stirring. The reaction mixture was then allowed to warm to RT overnight. All the volatile components were removed in vacuo to give a cloudy oil. The product was distilled as a colourless oil which slowly solidified as a white crystalline solid (4.71 g, 22.0 mmol, 63%). The crystals were of suitable quality for X-ray diffraction. ${}^{31}P{}^{1}H{}$ NMR (122 MHz, C₆D₆) $\delta = -67.4$. ¹**H NMR** (400 MHz, C₆D₆) $\delta = 2.32-2.22$ (2H, m, PhobP-CH₂), 2.05-1.54 (12H, m, PhobP-CH/CH₂), 0.24 (9H, d, ${}^{3}J_{HP} = 4.9$ Hz, SiCH₃). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, C₆D₆) δ = 34.2 (d, J_{CP} = 10.0 Hz, PhobP-CH₂), 31.2 (d, J_{CP} = 5.0 Hz, PhobP-CH₂), 24.0 (d, J_{CP} = 7.1 Hz, PhobP- CH_2), 23.3 (d, $J_{CP} = 11.7$ Hz, PhobP-CH), 22.7 (d, $J_{CP} = 1.7$ Hz, PhobP- CH_2), 0.39 (d, $J_{CP} = 14.2$ Hz, SiCH₃). Anal. Found (calcd for C₁₁H₂₃PSi): C, 62.13 (61.63), H, 10.57 (10.82). **HR-MS** (EI) m/z calculated for C₁₁H₂₃PSi [M]⁺ = 214.1307; obs.: 214.1309.

9-ar solu HN-B in 1.40 mix

9-aza-10-bora-10-diisopropylphosphinophenanthrene (L_{1a}). To a solution of 9-aza-10-bora-10-chlorophenanthrene **1** (0.311 g, 1.46 mmol) in CH₂Cl₂ (5 mL) was added a solution of ^{*i*}Pr₂PSiMe₃ (0.277 g, 1.46 mmol) in CH₂Cl₂ (5 mL) at RT. After 10 min stirring the reaction mixture at RT, the volatile compounds were removed *in vacuo* to give a

colourless viscous oil in quantitative yield. Trituration with hexane afforded the product as a white sticky solid (0.250 g, 0.847 mmol, 58%). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) δ = -49.1 (br s). ¹¹B{¹H} NMR (96 MHz, CD₂Cl₂) δ = 40.8 (br s). ¹H NMR (500 MHz, CD₂Cl₂) δ = 8.59-8.56 (1H, m, ar. *CH*), 8.51 (, *J* = 8.2 Hz, ar. *CH*), 8.48 (1H, dm, *J* = 8.1 Hz, ar. *CH*), 7.97 (1H, br s, N*H*), 7.80-7.77 (1H, m, ar. *CH*), 7.60-7.57 (1H, m, ar. *CH*), 7.51-7.47 (1H, m, ar. *CH*), 7.41-7.39 (1H, m, ar. *CH*), 7.35-7.32 (1H, m, ar. *CH*), 2.35 (2H, heptd, ³*J*_{HH} = 7.0 Hz, ²*J*_{PH} = 3.9 Hz, ⁱPr-*CH*), 1.30-1.26 (6H, m, ⁱPr-*CH*₃), 1.17-1.12 (6H, m, ⁱPr-*CH*₃). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ = 138.9 (d, *J* = 2.5 Hz, quat. *C*), 137.8 (d, *J* = 4.4 Hz, quat. *C*), 137.6 (d, *J* = 12.8 Hz, ar. *CH*), 131.8 (d, *J* = 1.2 Hz, ar. *CH*), 128.6 (ar. *CH*), 126.6 (ar. *CH*), 124.5 (ar. *CH*), 124.3 (quat. *C*), 122.8 (ar. *CH*), 122.6 (d, *J* = 1.5 Hz, ar. *CH*), 119.8 (ar. *CH*),

22.8 (d, J = 12.7 Hz, ^{*i*}Pr-CH₃), 21.8 (d, J = 10.8 Hz, ^{*i*}Pr-CH) (one quaternary carbon from aromatic region not observed).

9-aza-10-bora-10-(sym-phobyl)phosphinophenanthrene (L_{1b}). To a solution of 9-aza-10-bora-10-chlorophenanthrene **1** (0.505 g, 2.37 mmol) in CH₂Cl₂ (10 mL) was added a solution of PhobPSiMe₃ (0.507 g, 2.37 mmol) in CH₂Cl₂ (10 mL) at RT. After 10 min stirring

the reaction mixture at RT, the volatile compounds were removed *in vacuo* to afford L_{1b} as a white solid (0.695 g, 2.18 mmol, 92%). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) δ = -64.5 (br s). ¹¹B{¹H} NMR (96 MHz, CD₂Cl₂) δ = 41.1 (br s). ¹H NMR (500 MHz, CD₂Cl₂) δ = 8.48 (1H, dm, *J* = 8.3 Hz, ar. *CH*), 8.41 (1H, dm, *J* = 8.0 Hz, ar. *CH*), 8.19 (1H, dm, *J* = 7.6 Hz, ar. *CH*), 7.76-7.73 (1H, m, ar. *CH*) 7.63 (1H, br s, N*H*), 7.52-7.49 (1H, m, ar. *CH*), 7.45-7.42 (1H, m, ar. *CH*), 7.29-7.26 (2H, m, ar. *CH*), 2.65 (2H, br s, PhobP-*CH*), 2.37 (2H, br s, PhobP-*CH*₂), 2.19-1.83 (9H, br m, PhobP-*CH*₂), 1.43 (1H, br s, PhobP-*CH*₂). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ = 139.2 (quat. *C*), 137.6 (quat. *C*), 135.8 (ar. *C*H), 131.6 (ar. *C*H), 128.6 (ar. *C*H), 126.7 (ar. *C*H), 124.5 (ar. *C*H), 123.8 (quat. *C*), 123.0 (ar. *C*H), 122.2 (ar. *C*H), 119.4 (ar. *C*H), 33.8 (d, *J*_{CP} = 9.5 Hz, PhobP-*C*H₂), 31.1 (s, PhobP-*C*H₂), 25.1 (d, *J*_{CP} = 5.9 Hz, PhobP-*C*H), 23.1 (br s, PhobP-*C*H₂) (one quaternary carbon from aromatic region not observed). **Anal**. Found (calcd for C₂₀H₂₃BNP): C, 75.21 (75.26), H, 7.20 (7.26), N, 4.52 (4.39).

9-Diisopropylphosphinophenanthrene (L_{2a}). To a stirred solution of 9bromophenanthrene (0.935 g, 3.64 mmol) in THF (40 mL) cooled to -60 °C was added a 1.6 M solution of ^{*n*}BuLi in hexane (2.39 mL, 3.82 mmol) over 5 min. The resulting orange solution was stirred at -60 °C for 20 min after which ^{*i*}Pr₂PCl (0.61 mL, 3.82 mmol) was added dropwise.

The solution was left to reach RT overnight, during which the solution became yellow. The volatile compounds were removed *in vacuo* and the yellow solid was dissolved in toluene (50 mL) and filtered through silica. After removal of the toluene *in vacuo*, the resulting yellow residue was washed with hexane (3×5 mL) at -78 °C to afford the product as a pale yellow solid (0.757 g, 2.57 mmol, 71%). Crystals suitable for X-ray diffraction were obtained by recrystallization from a hot mixture of hexane/methanol (50/50). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂) $\delta = -7.2$ (br s, upon cooling to -60 °C the signal gets sharper). ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 9.03$ -8.98 (1H, br m, ar. CH), 8.77-8.74 (1H, m, ar. CH), 8.71 (1H, dm, J = 8.2 Hz, ar. CH), 7.95-7.91 (2H, m, ar. CH), 7.71-7.62 (4H, m, ar. CH), 2.34 (2H,

heptd, ${}^{3}J_{\text{HH}} = 7.0 \text{ Hz}$, ${}^{2}J_{\text{PH}} = 1.5 \text{ Hz}$, ${}^{i}\text{Pr-CH}$), 1.18 (6H, dd, J = 14.8, 7.0 Hz, ${}^{i}\text{Pr-CH}_{3}$), 1.02 (6H, dd, J = 12.0, 7.0 Hz, ${}^{i}\text{Pr-CH}_{3}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (126 MHz, CD₂Cl₂) $\delta = 136.6$ (d, $J_{\text{CP}} = 21.2 \text{ Hz}$, quat. *C*), 133.1 (ar. *C*H), 132.3 (d, $J_{\text{CP}} = 22.5 \text{ Hz}$, quat. *C*), 131.7 (quat. *C*), 131.1 (quat. *C*), 130.7 (d, $J_{\text{CP}} = 4.0 \text{ Hz}$, quat. *C*), 129.2 (ar. *C*H), 128.2 (d, J = 31.5 Hz, ar. *C*H), 127.7 (ar. *C*H), 127.2 (ar. *C*H), 126.9 (d, $J_{\text{CP}} = 1.8 \text{ Hz}$, ar. *C*H), 126.8 (d, J = 2.3 Hz, ar. *C*H), 123.4 (ar. *C*H), 123.0 (ar. *C*H), 24.2 (d, ${}^{1}J_{\text{CP}} = 13.1 \text{ Hz}$, ${}^{i}\text{Pr-CH}$), 20.7 (d, ${}^{2}J_{\text{CP}} = 18.1 \text{ Hz}$, ${}^{i}\text{Pr-CH}_{3}$), 19.5 (d, ${}^{2}J_{\text{CP}} = 10.1 \text{ Hz}$, ${}^{i}\text{Pr-CH}_{3}$). Anal. Found (calcd for C₂₀H₂₃P): C, 82.44 (81.60), H, 7.79 (7.88). HR-MS (EI) *m/z* calculated for C₂₀H₂₃P [M]⁺⁺ = 294.1537; obs.: 294.1541.

9-(Sym-phobyl)phosphinophenanthrene (L_{2b}**).** To a stirred solution of 9-bromophenanthrene (1.98 g, 7.70 mmol) in THF (80 mL) cooled to -60 °C was added a 1.6 M solution of ^{*n*}BuLi in hexane (4.81 mL, 7.70 mmol) over 5 min. The yellow solution was stirred at -50 °C for

20 min after which a solution of s-PhobPCl (1.05 g, 5.92 mmol) in THF (10 mL) was added dropwise over 5 min. The solution was allowed to reach RT overnight, during which time the solution turned a dark brown. ³¹P NMR spectroscopy indicated that the reaction had proceeded to 80% conversion. The volatiles were removed in vacuo to give a brown sticky residue. Toluene (25 mL) was added and the suspension filtered through silica. Removal of the toluene *in vacuo* gave a yellow oil which upon washing with hexane $(3 \times 7 \text{ mL})$ at -78 °C gave L_{2b} as a yellow powder (1.235 g, 3.88 mmol, 66%). Recrystallisation from hot hexane in air yielded co-crystals of L_{2b} and the corresponding phosphine oxide, as determined by X-ray diffraction. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) $\delta = -23.8$ (s). ¹H NMR (500 MHz, CD_2Cl_2) $\delta = 8.75$ (1H, dm, J = 8.3 Hz, ar. CH), 8.67 (1H, dm, J = 8.0 Hz, ar. CH), 8.27 (1H, dm, J = 8.1 Hz, ar. CH), 7.88-7.86 (1H, m, ar. CH), 7.78 (1H, d, J = 4.1 Hz, ar. CH), 7.69-7.59 (4H, m, ar. CH), 2.74 (2H, s, PhobP-CH), 2.47-1.72 (11H, m, PhobP-CH₂), 1.41-1.36 (1H, m, CH₂). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ = 135.8 (d, J_{CP} = 32.2 Hz, quat. C), 133.5 (d, J_{CP} = 12.3 Hz, quat. C), 132.0 (d, J_{CP} = 1.6 Hz, quat. C), 131.4 (d, J_{CP} = 5.4 Hz, ar. CH), 130.7 (d, $J_{CP} = 2.5$ Hz, quat. C), 130.4 (quat. C), 128.8 (d, $J_{CP} = 1.1$ Hz, ar. CH), 127.4 (ar. CH), 127.1 (ar. CH), 127.0 (ar. CH), 126.8 (d, $J_{CP} = 1.7$ Hz, ar. CH), 126.7 (d, $J_{CP} = 15.8$ Hz, ar. CH), 123.9 (d, J_{CP} = 1.3 Hz, ar. CH), 123.0 (ar. CH), 33.0 (d, J_{CP} = 15.3 Hz, PhobP-*C*H₂), 26.8 (d, *J*_{CP} = 12.4 Hz, PhobP-*C*H), 26.1 (d, *J*_{CP} = 4.5 Hz, PhobP-*C*H₂), 23.7 (d, *J*_{CP} = 5.3 Hz, PhobP-CH₂), 22.5 (d, $J_{CP} = 1.5$ Hz, PhobP-CH₂). Anal. Found (calcd for C₂₂H₂₃P): C, 82.57 (82.99), H, 7.38 (7.28). **HR-MS** (EI) m/z calculated for C₂₂H₂₃P [M]⁺ = 318.1537; obs.: 318.1534.

trans-[RhCl(CO)(L_{1a})₂] (3a). A solution of L_{1a} (20.0 mg, 0.068 mmol) in CH₂Cl₂ (0.4 mL) was added to a solution of [RhCl(CO)₂]₂ (6.6 mg, 0.017 mmol) in CH₂Cl₂ (0.4 mL). Evolution of CO gas was observed. Once the evolution of CO had stopped, the solvent was

removed *in vacuo* to afford the Rh(I) complex **3a** in quantitative yield. Crystals suitable for X-ray diffraction were obtained by layering a CH₂Cl₂ solution of **3a** with hexane at RT. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) $\delta = 0.8$ (br d, $J_{PRh} \approx 120$ Hz). ¹¹B{¹H} NMR (96 MHz, CD₂Cl₂) $\delta = 36.9$ (br s). ¹H NMR (500 MHz, CD₂Cl₂) $\delta = 9.15$ (2H, d, J = 7.7 Hz, ar. *CH*), 8.64 (2H, br s, N*H*), 8.53 (2H, d, J = 8.3 Hz, ar. *CH*), 8.49 (2H, dm, J = 8.1 Hz, ar. *CH*), 7.81-7.78 (2H, m, ar. *CH*), 7.57-7.54 (2H, m, ar. *CH*), 7.49-7.46 (2H, m, ar. *CH*), 7.38-7.31 (4H, m, ar. *CH*), 2.84 (4H, br m, ^{*i*}Pr-C*H*), 1.48-1.43 (12H, m, ^{*i*}Pr-C*H*₃), 1.37-1.33 (12H, m, ^{*i*}Pr-C*H*₃). Anal. Found (calcd for C₃₇H₄₆B₂ClN₂OP₂Rh): C, 58.38 (58.73), H, 5.96 (6.13), N, 3.79 (3.70). **IR** spectrum (CH₂Cl₂): 1951 cm⁻¹ v(CO).

trans-[RhCl(CO)(L_{1b})₂] (3b). A solution of L_{1b} (25.6 mg, 0.080 mmol) in CH₂Cl₂ (0.4 mL) was added to a solution of [RhCl(CO)₂]₂ (7.8 mg, 0.020 mmol) in CH₂Cl₂ (0.4 mL). Upon addition, the solution went dark brown and a solid precipitated out of solution. The

supernatant was syringed off and the solid washed with CH_2Cl_2 (2 × 1 mL) to afford the product as an orange solid (7.0 mg, 0.0069 mmol, 22%). Crystals of 3b suitable for X-ray diffraction were obtained by layering a CH₂Cl₂ solution of [RhCl(CO)₂]₂ with a CH₂Cl₂ solution of L_{1b}. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) $\delta = -17.6$ (d, $J_{PRh} \approx 120$ Hz). ¹H NMR $(500 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta = 8.35 \text{ (2H, br d, } J = 8.1 \text{ Hz, ar. CH}\text{)}, 8.30 \text{ (2H, dm, } J = 8.1 \text{ Hz, ar.}$ CH), 8.20 (2H, br s, NH), 8.07 (2H, dm, J = 7.6 Hz, ar. CH), 7.66-7.63 (2H, m, ar. CH), 7.38-7.32 (4H, m, ar. CH), 7.24-7.18 (4H, m, ar. CH), 2.99-2.96 (6H, m, PhobP-H), 2.50 (4H, br s, PhobP-*H*), 2.12-1.28 (18H, PhobP-H). Found m, Anal. (calcd for C₄₁H₄₆B₂ClN₂OP₂Rh·CH₂Cl₂): C, 56.71 (56.70), H, 5.76 (5.44), N, 3.88 (3.15). IR spectrum (CH₂Cl₂): 1946 cm⁻¹ v(CO).

trans-[RhCl(CO)(L_{2a})₂] (4a). A solution of L_{2a} (15 mg, 0.051 mmol) in CH₂Cl₂ (0.4 mL) was added to a solution of [RhCl(CO)₂]₂ (5.0 mg, 0.013 mmol) in

CH₂Cl₂ (0.4 mL). After a few minutes, a yellow solid started precipitating out of solution. The solvent was removed *in vacuo* to afford **4a** as a yellow solid in quantitative yield. Crystals of **4a** suitable for X-ray diffraction were obtained by layering a CH₂Cl₂ solution of [RhCl(CO)₂]₂ with a CH₂Cl₂ solution of **L**_{2a}. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) $\delta = 33.8$ (d, ¹*J*_{PRh} = 121 Hz). ¹H NMR (500 MHz, CD₂Cl₂) $\delta = 10.35$ (2H, br s, ar. CH), 8.77-8.75 (2H, m, ar. CH), 8.72 (2H, d, *J* = 8.3 Hz, ar. CH), 8.01-7.98 (4H, m, ar. CH), 7.76-7.65 (8H, m, ar. CH), 3.05 (4H, br s, ^{*i*}Pr-CH), 1.41 (12H, br s, ^{*i*}Pr-CH₃), 1.27 (12H, br s, ^{*i*}Pr-CH₃). **Anal**. Found (calcd for C₄₁H₄₆ClOP₂Rh): C, 64.68 (65.21), H, 6.13 (6.14). **HR-MS (ESI)** *m/z* calculated for C₄₁H₄₆OP₂Rh [M - Cl]⁺ = 719.2073; obs.: 719.2086. **IR** spectrum (CH₂Cl₂): 1966 cm⁻¹ v(CO).

trans-[RhCl(CO)(L_{2b})₂] (4b). A solution of L_{2b} (15 mg, 0.047 mmol) in CH₂Cl₂ (0.4 mL) was added to a solution of [RhCl(CO)₂]₂ (4.6 mg, 0.012 mmol) in CH₂Cl₂ (0.4 mL). After a few minutes, a yellow solid began precipitating out of solution. The solvent was

removed *in vacuo* to afford **4b** as a yellow solid in quantitative yield. Crystals of **4b** suitable for X-ray diffraction were obtained by layering a CH₂Cl₂ solution of [RhCl(CO)₂]₂ with a CH₂Cl₂ solution of **L**_{2b}. ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) $\delta = 15.3$ (d, $J_{PRh} = 118$ Hz). ¹H NMR (500 MHz, CD₂Cl₂) $\delta = 8.69$ (2H, dm, J = 8.2 Hz, ar. CH), 8.65 (2H, dm, J = 8.2Hz, ar. CH), 8.55 (2H, dm, J = 7.9 Hz, ar. CH), 7.97-7.95 (2H, m, ar. CH), 7.93-7.91 (2H, m, ar. CH), 7.69-7.66 (2H, m, ar. CH), 7.62-7.59 (4H, m, ar. CH), 7.55-7.52 (2H, m, ar. CH), 3.21 (4H, br s, PhobP-H), 2.81 (4H, br m, PhobP-H), 2.11-1.27 (20H, br m, PhobP-H). **Anal**. Found (calcd for C₄₅H₄₆ClOP₂Rh · 1.5 CH₂Cl₂): C, 59.76 (60.02), H, 5.36 (5.31). **HR-MS** (**ESI**) *m*/*z* calculated for C₄₅H₄₆ClNaOP₂Rh [M + Na]⁺ = 825.1660; obs.: 825.1681. **IR** spectrum (CH₂Cl₂): 1951 cm⁻¹ v(CO).

[**Rh(nbd)(L_{1a})][BF₄] (5a)**. A solution of L_{1a} (23.8 mg, 0.0806 mmol) in CH₂Cl₂ (0.4 mL) was added to a solution of [Rh(nbd)₂]BF₄ (15.1 mg, 0.0403 mmol) in CH₂Cl₂ (0.4 mL). After 5 mins, hexane (2 mL) was added to precipitate an orange solid. The supernatant was filtered off and the resulting solid washed with

hexane $(2 \times 0.5 \text{ mL})$ and dried in vacuo to afford 5a as an orange powder (26.3 mg,

0.0302 mmol, 75%). ³¹P{¹H} NMR (122 MHz, CD₂Cl₂) $\delta = -20.6$ (d, $J_{PRh} = 129$ Hz). ¹¹B{¹H} NMR (96 MHz, CD₂Cl₂) $\delta = -38$ (very broad singlet, *BP*), -1.8 (s, *BF*₄⁻). ¹⁹F NMR (470 MHz, CD₂Cl₂) $\delta = -151.2$. ¹H NMR (500 MHz, CD₂Cl₂) $\delta = 8.60-8.58$ (2H, br m, ar. *CH*), 8.40 (2H, br s, ar. N*H*), 8.25 (2H, d, *J* = 8.3 Hz, ar. *CH*), 8.17 (2H, d, *J* = 8.1 Hz, ar. *CH*), 7.67-7.64 (2H, m, ar. *CH*), 7.42-7.39 (4H, m, ar. *CH*), 7.36-7.33 (2H, m, ar. *CH*), 7.25-7.22 (2H, m, ar. *CH*), 5.02 (4H, br s, alkene *CH*), 3.89 (2H, br s, nbd alkyl *CH*), 2.50 (4H, br s, ^{*i*}Pr-*CH*), 1.62 (2H, s, nbd *CH*₂), 1.45-1.41 (12H, m, ^{*i*}Pr-*CH*₃), 1.17-1.13 (12H, m, ^{*i*}Pr-*CH*₃). **Anal**. Found (calcd for C₄₃H₅₄B₃F₄N₂P₂Rh): C, 59.56 (59.22), H, 6.49 (6.24), N, 3.25 (3.21).

[**Rh(nbd)**(L_{1b})][**BF**₄] (5b). A solution of L_{1b} (23.6 mg, 0.0739 mmol) in CH₂Cl₂ (0.4 mL) was added to a solution of [Rh(nbd)₂]BF₄ (13.8 mg, 0.0370 mmol) in CH₂Cl₂ (0.4 mL) and left to stand at RT o/n. After this time, orange crystals had precipitated out. These were filtered off, washed with CH₂Cl₂ (2 × 0.5 mL), and

dried *in vacuo* (15.2 mg, 0.0165 mmol, 45%). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) δ = -30.7 (br d, J_{PRh} = 130 Hz). ¹¹B{¹H} NMR (96 MHz, CD₂Cl₂) δ = ~37 (very broad singlet, *BP*), -1.6 (s, *BF*₄⁻). ¹⁹F NMR (470 MHz, CD₂Cl₂) δ = -148.8. ¹H NMR (500 MHz, CD₂Cl₂) δ = 9.02 (2H, br s, NH), 8.63 (2H, br s, ar. *CH*), 8.47 (2H, br s, ar. *CH*), 8.31 (2H, d, *J* = 7.5 Hz, ar. *CH*), 8.05 (2H, br s, ar. *CH*), 7.86 (2H, br s, ar. *CH*), 7.63 (2H, br s, ar. *CH*), 7.56 (2H, br s, ar. *CH*), 7.38 (2H, br s, ar. *CH*), 4.90 (2H, br s, nbd alkene *CH*), 4.81 (2H, br s, nbd alkene *CH*), 3.91 (2H, br s, nbd alkyl *CH*), 2.89 (2H, br s, PhobP-*CH*), 2.78 (2H, br s, PhobP-*CH*), 2.62 (2H, br s, PhobP-*CH*₂), 2.09-1.72 (14H, br m, PhobP-*CH*₂), 1.68 (2H, s, nbd *CH*₂), 1.46-1.08 (8H, br m, PhobP-*CH*₂). **Anal**. Found (calcd for C₄₇H₅₄B₃F₄N₂P₂Rh): C, 61.20 (61.34), H, 5.77 (5.91), N, 3.35 (3.04).

[Rh(nbd)(L_{2a})][BF₄] (6a). A solution of L_{2a} (42.0 mg, 0.143 mmol) in CH₂Cl₂ (1 mL) was added to a solution of [Rh(nbd)₂]BF₄ (26.7 mg, 0.0713 mmol) in CH₂Cl₂ (1 mL). After 5 mins, hexane (4 mL) was added to precipitate an orange solid. The supernatant was filtered off and the resulting solid washed with hexane (2 × 1 mL) and dried *in vacuo* to afford **6a** as an orange

powder (59.8 mg, 0.0687 mmol, 96%). ${}^{31}P{}^{1}H{}$ NMR (122 MHz, CH₂Cl₂) $\delta = 19.3$ (d,

 $J_{\text{PRh}} = 146 \text{ Hz}$). ¹¹**B**{¹**H**} **NMR** (96 MHz, CD₂Cl₂) $\delta = -2.0$. ¹⁹**F NMR** (282 MHz, CD₂Cl₂) $\delta = -153.3$. ¹**H NMR** (300 MHz, CD₂Cl₂, **-40** °C) $\delta = 9.28$ (2H, d, J = 8.2 Hz, ar. *CH*), 8.92 (2H, d, J = 8.3 Hz, ar. *CH*), 8.83-8.80 (2H, m, ar. *CH*), 8.01-7.78 (10H, m, ar. *CH*), 6.84 (2H, d, J = 8.2 Hz, ar. *CH*), 5.42 (2H, br s, nbd alkene *CH*), 5.26 (2H, br s, nbd alkene *CH*), 4.35 (2H, br s, nbd alkyl *CH*), 3.08 (2H, m, ^{*i*}Pr-*CH*), 1.88 (2H, br s, ^{*i*}Pr-*CH*), 1.04-0.97 (8H, m, ^{*i*}Pr-*CH*₃ + nbd *CH*₂, tentative), 0.76-0.71 (6H, m, ^{*i*}Pr-*CH*₃), 0.48-0.34 (m, 12H, ^{*i*}Pr-*CH*₃). **Anal**. Found (calcd for C₄₇H₅₄BF₄P₂Rh): C, 65.30 (64.84), H, 6.35 (6.25). **HR-MS (ESI)** m/z calculated for C₄₇H₅₄P₂Rh [M]⁺ = 783.2750; obs.: 783.2747.

[**Rh(nbd)(L_{2b})][BF₄] (6b)**. A solution of L_{2b} (55.0 mg, 0.173 mmol) in CH₂Cl₂ (1 mL) was added to a solution of [Rh(nbd)₂]BF₄ (32.3 mg, 0.0864 mmol) in CH₂Cl₂ (1 mL). After 10 min, the ³¹P NMR spectrum showed the desired product (82%) as well as a doublet at 27.9 ppm (J = 219 Hz, 18%). After one hour stirring at 40 °C or overnight at RT, the solution turned from a

pale orange to a dark red and the ³¹P NMR spectrum showed complete conversion to the product. The solution was filtered through silica and the volatiles removed *in vacuo*. Washing the product with toluene (2× 1 mL) and hexane (1 mL) and drying *in vacuo* gave the product as an orange powder (27.9 mg, 0.0304 mmol, 35%). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂) $\delta = -2.0$ (d, $J_{PRh} = 152$ Hz). ¹¹B{¹H} NMR (128 MHz, CD₂Cl₂) $\delta = -2.0$. ¹⁹F NMR (377 MHz, CD₂Cl₂) $\delta = -153.3$. ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 9.58$ (2H, br d, J = 8.2 Hz, ar. *CH*), 8.91 (2H, br d, J = 8.3 Hz, ar. *CH*), 8.84 (2H, br d, $J \approx 8$ Hz, ar. *CH*), 8.19 (2H, dm, J = 7.1 Hz, ar. *CH*), 8.04-8.00 (2H, m, ar. *CH*), 7.96-7.89 (6H, m, ar. *CH*), 7.51 (2H, d, J = 9.1 Hz, ar. *CH*), 5.29 (2H, br s, nbd alkene *CH*), 5.26 (2H, br s, nbd alkene *CH*), 4.35 (2H, br s, nbd alkyl *CH*), 2.80 (2H, br s, Phob-*CH*), 1.92 (2H, s, nbd-*CH*₂), 1.90-0.51 (24H, br m, Phob-*CH*₂), -0.14 (2H, br s, Phob-*CH*). **HR-MS (ESI)** *m*/*z* calculated for C₅₁H₅₄P₂Rh [M]⁺ = 831.2750; obs.: 831.2754. **Anal**. Found (calcd for C₅₁H₅₄BF₄P₂Rh): C, 66.98 (66.68), H, 5.70 (5.93).

Hydrogenation of Cyclohexene

In a typical experiment, an NMR tube fitted with a J-Young's tap was charged with cyclohexene (10 mg, 0.12 mmol), the catalyst **5a**, **5b**, **6a** or **6b** (6.1 μ mol) and 0.6 mL CD₂Cl₂ (0.6 mL). The solution was pressurised with H₂ (2 bar) and the cyclohexene conversion was monitored by ¹H NMR spectroscopy.

Crystallography

X-ray diffraction experiments on **PhobPSiMe**₃, L_{2a}, L_{2b}, **3a**, **4a** and **4b** were carried out at 100K on a Bruker APEX II diffractometer using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The X-ray diffraction experiment on **3b** was carried out at 100K on a Bruker Microstar rotating anode diffractometer using Cu-K_{α} radiation ($\lambda = 1.54178$ Å). Data collections were performed using a CCD area detector from a single crystal mounted on a glass fibre. Intensities were integrated⁴ from several series of exposures measuring 0.5° in ω or φ . Absorption corrections were based on equivalent reflections using SADABS or TWINABS.⁵ The structures were solved using SHELXS and refined against all F₀² data with hydrogen atoms riding in calculated positions using SHELXL.⁶ Crystal structure and refinement data are given in Table 1.

 L_{2b} crystallised as a mixture of the phosphine (45%) and the corresponding phosphine oxide (55%). **3b** has disorder over one of the phenanthrene units, with ~10% of the structure consisting of the conformer where the phenanthrene unit is rotated 180 ° around the P-B bond. **4b** crystallised with two molecules of CH_2Cl_2 in the unit cell. PhobPSiMe₃ crystallised as a non-merohedral twin. N-H protons were located in the difference map and refined with fixed distances and assigned fixed isotropic parameters of 1.2 times that of the nitrogen.

Figure S1. Thermal ellipsoid (50% probability) plot of **PhobPSiMe₃** omitting all hydrogen atoms. Selected geometrical data: bond lengths [Å] and angles [°]:P1-C1 1.8614(17), P1-C5 1.8660(17), P1-Si1 2.2688(9), C1-P1-C5 93.70(8), C1-P1-Si1 105.06(5), C5-P1-Si1 110.76(5).

Figure S2. Thermal ellipsoid (50% probability) plot of L_{2a} omitting all hydrogen atoms. Selected geometrical data: bond lengths [Å] and angles [°]: C9-P1 1.8502(18), P1-C18 1.8560(19), P1-C15 1.8637(19), C18-P1-C15 103.22(9).

Figure S3. Thermal ellipsoid (50% probability) plot of the oxide of L_{2b} omitting all hydrogen atoms. Selected geometrical data: bond lengths [Å] and angles [°]: O1-P1 1.4243(18), C9-P1 1.8298(13), C19-P1 1.8365(13), C15-P1 1.8358(13), C15-P1-C19 94.90(6).

Table S1. Crystal data

Compound	PhobPSiMe ₃	L _{2a}	L _{2b} oxide	3a
Colour, habit	colourless	yellow plate	yellow plate	yellow block
	block		-	-
Size/mm	0.21×0.16×0.04	0.45×0.25×0.15	0.5×0.45×0.1	0.15×0.14×0.13
Empirical	C ₁₁ H ₂₃ PSi	$C_{20}H_{23}P$	$C_{22}H_{23}O_{0.55}P$	$C_{37}H_{46}B_2ClN_2OP_2Rh$
Formula				
М	214.35	294.35	327.19	756.68
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	Pbca	C2/c	$P2_{1}/c$
a/Å	6.581(2)	7.1656(3)	21.2169(10)	9.6666(4)
b/Å	9.426(3)	17.6207(7)	7.8833(4)	23.4121(9)
c/Å	19.551(7)	26.1711(9)	20.2375(10)	8.0696(3)
$\alpha / ^{\circ}$	90.00	90.00	90.00	90.00
β/°	90.105(5)	90.00	100.874(3)	102.673(3)
γ/°	90.00	90.00	90.00	90.00
$V/Å^3$	1212.9(7)	3304.4(2)	3324.1(3)	1781.78(12)
Ζ	4	8	8	2
μ/mm^{-1}	0.284	0.158	0.167	0.677
T/K	100	100	100	100
$ heta_{\min,\max}$	3.10,36.15	1.56,27.67	1.95,27.62	1.74,33.13
Completeness	0.999 to $\theta =$	0.993 to $\theta =$	0.996 to $\theta =$	1.000 to $\theta = 27.50^{\circ}$
	27.50°	27.67°	27.62°	
Reflections:	5103/5103	96935/3834	56799/3864	58132/6399
total/independent				
R _{int}	0.0000	0.0931	0.0348	0.1140
Final <i>R</i> 1 and	0.0440, 0.1304	0.0436, 0.1344	0.0345,	0.0424, 0.0927
wR2			0.0922	
Largest peak,	0.593, -0.452	0.356, -0.359	0.380, -0.268	0.978, -1.057
hole/eÅ ⁻³				
$ ho_{\rm calc}/{ m g~cm^{-3}}$	1.174	1.183	1.308	1.410
Flack parameter	n/a	n/a	n/a	n/a

Compound	3b	4a	4b·2CH ₂ Cl ₂
Colour, habit	orange block	yellow block	yellow block
Size/mm	0.12×0.12×0.08	0.1×0.08×0.07	0.5×0.4×0.4
Empirical	$C_{41}H_{46}B_2ClN_2OP_2Rh$	$C_{41}H_{46}ClOP_2Rh$	$C_{45}H_{46}ClOP_2Rh\cdot 2CH_2Cl_2$
Formula			
М	804.72	755.08	972.97
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1/n$	$P2_{1}/c$	P 1
a/Å	11.4921(15)	9.7300(3)	8.5503(5)
b/Å	24.764(4)	23.1553(8)	11.5693(7)
c/Å	12.7559(17)	8.0300(3)	11.8543(7)
$\alpha / ^{\circ}$	90.00	90.00	69.300(3)
β/°	90.621(5)	103.596(2)	84.914(3)
γ^{\prime}	90.00	90.00	72.868(3)
V/Å ³	3630.0(8)	1758.47(10)	1048.11(11)
Ζ	4	2	1
μ/mm^{-1}	5.592	0.685	0.840
T/K	100	100	100
$\theta_{\min,\max}$	3.57,66.46	1.76,31.92	1.84,27.66
Completeness	0.988 to $\theta = 66.46^{\circ}$	0.998 to $\theta = 27.50^{\circ}$	0.995 to $\theta = 27.66^{\circ}$
Reflections:	122197/6329	36613/5524	51229/4863
total/independent			
R _{int}	0.0551	0.0626	0.0163
Final <i>R</i> 1 and	0.0257, 0.0669	0.0361, 0.1063	0.0169, 0.0454
wR2			
Largest peak,	0.535, -0.499	0.828, -0.820	0.393, -0.289
hole/eÅ ⁻³			
$ ho_{\rm calc}/{ m g~cm^{-3}}$	1.472	1.426	1.541
Flack parameter	n/a	n/a	n/a

- 5 G. M. Sheldrick, SADABS V2008/1 or TWINABS V2008/4, University of Göttingen, Germany.
- 6 G. M. Sheldrick, Acta Cryst. A64, 2008, 112-122.

¹ M. J. S. Dewar, V. P. Kubba and R. Pettit, J. Chem. Soc., 1958, 3073-3076.

² M. Carreira, M. Charernsuk, M. Eberhard, N. Fey, R. van Ginkel, A. Hamilton, W. P. Mul, A. G. Orpen, H. Phetmung, and P. G. Pringle, *J. Am. Chem. Soc.*, 2009, **131**, 3078-3092.

³ M. El Mkadmi, M. Lazraq, A. Kerbal, J. Escudie, C. Couret and H. Ranaivonjatovo, Phosphorus, Sulfur and Silicon, 1998, **134**, 151-169.

⁴ Bruker-AXS SAINT V7.68A , Madison, Wisconsin.