Electronic Supplementary Information (ESI) For

Hierarchical Self-Assembly of Discrete Hexagonal Metallacycle into the Ordered Nanofibers and Stimuli-Responsive Supramolecular Gels Nai-Wei Wu^a, Li-Jun Chen^a, Chao Wang^b, Yuan-Yuan Ren^a, Xiaopeng Li^b, Lin Xu^{*a}, Hai-

Bo Yang*a

 ^aShanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road Shanghai 200062, China.
^bDepartment of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, United States.

hbyang@chem.ecnu.edu.cn

Table of Contents

1. General Information	S3
2. Synthetic Experimental Details of New compounds	S4
3.Multiple Nuclear NMR Spectra of New Compounds	S6
4. PM6 semi-empirical simulated molecular model of hexagon 3	S9
5. Additional Stimuli-responsive experiments of hexagon 3	S10
6. Molecular model of the ring-to-ring interaction.	S12
7. FTIR spectroscopic studies of hexagon 3 in gel and solution state	S13
8. ESI-TOF-MS spectrum of hexagon 3	S14
9. References	S14

1. General Information.

All solvents were dried according to standard procedures. Reagents were used as purchased. All air-sensitive reactions were carried out under argon atmosphere. ¹H NMR, ¹³C NMR, and ³¹P NMR spectra were recorded on Bruker 400 MHz Spectrometer (¹H: 400 MHz; ¹³C: 100 MHz; ³¹P: 161.9 MHz) at 298 K. The ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals, and ³¹P NMR resonances are referenced to an internal standard sample of 85% H₃PO₄ (δ 0.0). Coupling constants (*J*) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, m = multiplet, br = broad.

2. Synthetic Experimental Details of New Compounds.

Scheme S1. Synthetic route for the preparation of 120° donor 1.

Compounds $DiPy-OH^1$ and G^{12} -en-SA acid² were prepared according to previously reported synthetic procedures and showed identical spectroscopic properties to those reported therein.

Synthesis of compound 1: A 100 ml of Schlenk flask was charged with DiPy-OH (150 mg, G¹²-en-SA acid 0.51 mmol). (413 0.51 mmol) and N-Ethyl-N'-(3mg. dimethylaminopropyl)carbodimide hydrochloride (EDC·HCl) (194 mg, 1.01 mmol), 4-Dimethylaminopyridine (DMAP) (12 mg, 0.098 mmol), degassed, and back-filled there times with N₂. A solvent of dried CH₂Cl₂ (30 mL) was added into the reaction flask by syringe. The reaction was stirred at room temperature for 12 hours. The solvent was removed by evaporation on a rotary evaporator and the residue was purified via column chromatography on silica gel afforded 1 as an off-white solid (289 mg, 70%). Rf = 0.43 (CH₂Cl₂/acetone 4/1). M.p. 108 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.63 (d, J = 5.6 Hz, 4H), 7.59 (s, 1H), 7.38 (d, J = 6.0 Hz, 4H), 7.29 (s, 2H), 6.99 (s, 2H), 6.52 (t, J = 5.2Hz, 1H), 3.99-3.94 (m, 6H), 3.60-3.59 (m, 2H), 3.58-3.54 (m, 2H), 2.91 (t, J = 6.4 Hz, 2H), 2.63 (t, J = 6.8 Hz, 2H), 1.81-1.70 (m, 6H), 1.45-1.40 (m, 6H), 1.24 (br, 54H), 0.87 (t, J =6.4 Hz, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 172.39, 171.05, 168.22, 153.07, 150.40, 149.61, 141.15, 132.56, 130.92, 128.61, 125.65, 125.61, 123.84, 105.50, 91.77, 88.08, 73.48, 69.21, 40.91, 40.42, 31.90, 30.62, 30.31, 29.73, 29.69, 29.67, 29.64, 29.57, 29.51, 29.42, 29.35, 26.10, 26.06, 22.67, 14.09. MALDI-TOF-MS: m/z calcd for C₆₉H₉₈N₄O₇ ([*M*+H]⁺) 1095.74, found: 1095.48.

Scheme S2. Self-assembly route for the preparation of hexagon 3.

Self-Assembly of Hexagon **3**. A mixture of 120° donor **1** (10.19 mg, 9.30 µmol) and the equimolar amount of 120° acceptor di-Pt(II) acceptor **2** (11.18 mg, 9.30 µmol) were placed in a glass vial. The reaction mixture was stirred overnight at room time in CH₂Cl₂, upon which the starting materials completely dissolved and the reaction mixture attained a colorless solution. The OTf salt of hexagon **3** was easily obtained by removing solvent under a flow of nitrogen. The PF₆ salt of hexagon **3** was synthesized by dissolving the OTf salt in acetone/H₂O and adding a saturated aqueous solution of KPF₆ to precipitate the product, which was collected by vacuum filtration. Yield: 97%; off-white solid; ¹H NMR (acetone-*d*₆, 400 MHz) δ 9.08 (d, *J* = 6.0 Hz, 12H), 7.94 (d, *J* = 6.4Hz, 12H), 7.71 (d, *J* = 8.0 Hz, 12H), 7.59 (d, *J* = 7.6 Hz, 12H), 7.44 (s, 3H), 7.26 (s, 6H), 7.09 (s, 6H), 4.04-3.96 (m, 18H), 3.67 (t, *J* = 5.2 Hz, 6H), 3.54-3.50 (m, 6H), 1.82-1.70 (m, 18H), 1.52 (br, 90H), 1.30 (br, 162H), 1.24-1.16 (m, 108H), 0.89-0.86 (m, 27H); ³¹P NMR (acetone-*d*₆, 161.9 MHz) δ 14.25 (s, *J*_{Pt-P} = 2652.24 Hz); ESI-TOF-MS: [M – 4OTf]⁴⁺, 1678.43, [M – 5 OTf]⁵⁺, 1312.85. Anal. Calcd for C₃₁₈H₄₉₈F₃₆N₁₂O₂₄Pt₆P₁₈: C, 52.43; H, 6.89; N, 2.31. Found: C, 52.75; H, 6.54; N, 2.30.

3. Multiple Nuclear NMR (¹H, ³¹P, and ¹³C NMR) Spectra of New Compounds.

Fig S1. (A) ¹H NMR, (B) ¹³C NMR spectra of precursor 1 in CDCl₃.

Fig S2. (A) ¹H NMR, (B) ³¹P NMR spectra of hexagon 3 in acetone- d_6 .

Fig S3. Comparison of partial ¹H NMR spectra of the aromatic portion of 120° precursor **1** (a) and the self-assembled [3 + 3] hexagon **3** (b).

Fig S4. Comparison of ${}^{31}P$ { ${}^{1}H$ } NMR spectra of the 120° di-Pt(II) acceptor 2 (a) and the

self-assembled [3+3] hexagon **3** (b).

4. PM6 semi-empirical simulated molecular model of hexagon 3.

Fig S5. PM6 semi-empirical simulated molecular model of hexagon 3.

5. Additional Stimuli-responsive experiments of hexagon 3.

Scheme S3. Stimuli-responsive disassembly and reassembly of hexagon 3 in acetone- d_6 solution.

Fig S6. ¹H NMR spectras showing the disassembly and reassembly of **3** in acetone- d_6 (A) ¹H NMR spectra of hexagon **3** (B) ¹H NMR spectra of adding Bu₄NBr to the acetone- d_6 solution of the hexagon **3** in a NMR tube and shaking for one minute (C) ¹H NMR spectra of further adding of AgPF₆ to the same NMR tube and shaking for one minute.

Fig S7. SEM images of xerogels of **3** prepared in acetone/water (v/v 2/1) at 0.9 mM (a) and 5.0 mM (b). SEM image of regenerated hybirdgel of **3** with AgBr precipitate (c).

6. Molecular model of the ring-to-ring interaction.

Fig S8. Simulated molecular model of the ring-ring interaction of the hexagon 3.

7. FTIR spectroscopic studies of hexagon 3 in gel and solution state.

Fig S9. FTIR spectra of the xerogel of hexagon **3** obtained from acetone/water (A) and hexagon **3** in acetone solution (B).

8. ESI-TOF-MS spectrum of hexagon 3.

Fig S10. Full ESI-TOF-MS spectrum of the hexagon 3.

9. References.

1. H.-B. Yang, N. Das, F. Huang, A. M. Hawkridge, D. C. Muddiman, P. J. Stang, J. Am. Chem. Soc., 2006, **128**, 10014.

2. Y. Li, K. M.-C. Wong, A. Y.-Y. Tam, L.Wu, V. W.-W Yam, Chem.-Eur. J., 2010, 29, 8690.