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1. General Information.

All solvents were dried according to standard procedures. Reagents were used as 

purchased. All air-sensitive reactions were carried out under argon atmosphere. 1H NMR, 

13C NMR, and 31P NMR spectra were recorded on Bruker 400 MHz Spectrometer (1H: 400 

MHz; 13C: 100 MHz; 31P: 161.9 MHz) at 298 K. The 1H and 13C NMR chemical shifts are 

reported relative to residual solvent signals, and 31P NMR resonances are referenced to an 

internal standard sample of 85% H3PO4 (δ 0.0). Coupling constants (J) are denoted in Hz 

and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = 

doublet, m = multiplet, br = broad.
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2. Synthetic Experimental Details of New Compounds.
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Scheme S1. Synthetic route for the preparation of 120° donor 1.

Compounds DiPy-OH1 and G12-en-SA acid2 were  prepared  according  to  

previously  reported  synthetic  procedures and showed identical spectroscopic 

properties to those reported therein.

Synthesis of compound 1: A 100 ml of Schlenk flask was charged with DiPy-OH (150 mg, 

0.51 mmol), G12-en-SA acid (413 mg, 0.51 mmol) and N-Ethyl-N’-(3-

dimethylaminopropyl)carbodimide hydrochloride (EDC·HCl) (194 mg, 1.01 mmol), 4-

Dimethylaminopyridine (DMAP) (12 mg, 0.098 mmol), degassed, and back-filled there 

times with N2. A solvent of dried CH2Cl2 (30 mL) was added into the reaction flask by 

syringe. The reaction was stirred at room temperature for 12 hours. The solvent was 

removed  by evaporation on a rotary evaporator and the residue was purified via column 

chromatography on  silica  gel afforded  1  as an off-white solid (289 mg, 70%). Rf 

= 0.43 (CH2Cl2/acetone 4/1). M.p. 108 °C. 1H NMR (CDCl3, 400 MHz): δ 8.63 (d, J = 5.6 

Hz, 4H), 7.59 (s, 1H), 7.38 (d, J = 6.0 Hz, 4H), 7.29 (s, 2H), 6.99 (s, 2H), 6.52 (t, J = 5.2Hz, 

1H), 3.99-3.94 (m, 6H), 3.60-3.59 (m, 2H), 3.58-3.54 (m, 2H), 2.91 (t, J = 6.4 Hz, 2H), 

2.63 (t, J = 6.8 Hz, 2H), 1.81-1.70 (m, 6H), 1.45-1.40 (m, 6H), 1.24 (br, 54H), 0.87 (t, J = 

6.4 Hz, 9H); 13C NMR (CDCl3, 100 MHz): δ 172.39, 171.05, 168.22, 153.07, 150.40, 

149.61, 141.15, 132.56, 130.92, 128.61, 125.65, 125.61, 123.84, 105.50, 91.77, 88.08, 

73.48, 69.21, 40.91, 40.42, 31.90, 30.62, 30.31, 29.73, 29.69, 29.67, 29.64, 29.57, 29.51, 

29.42, 29.35, 26.10, 26.06, 22.67, 14.09. MALDI-TOF-MS: m/z calcd for C69H98N4O7 

([M+H]+) 1095.74, found: 1095.48.

javascript:showMsgDetail('ProductSynonyms.aspx?CBNumber=CB9852862&postData3=CN&SYMBOL_Type=A');
javascript:showMsgDetail('ProductSynonyms.aspx?CBNumber=CB9852862&postData3=CN&SYMBOL_Type=A');
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Scheme S2. Self-assembly route for the preparation of hexagon 3.

Self-Assembly of Hexagon 3. A mixture of 120º donor 1 (10.19 mg, 9.30 μmol) and the 

equimolar amount of 120° acceptor di-Pt(II) acceptor 2 (11.18 mg, 9.30 μmol) were placed 

in a glass vial. The reaction mixture was stirred overnight at room time in CH2Cl2, upon 

which the starting materials completely dissolved and the reaction mixture attained a 

colorless solution. The OTf salt of hexagon 3 was easily obtained by removing solvent 

under a flow of nitrogen. The PF6 salt of hexagon 3 was synthesized by dissolving the OTf 

salt in acetone/H2O and adding a saturated aqueous solution of KPF6 to precipitate the 

product, which was collected by vacuum filtration. Yield: 97%; off-white solid; 1H NMR 

(acetone-d6, 400 MHz) δ 9.08 (d, J = 6.0 Hz, 12H), 7.94 (d, J = 6.4Hz, 12H), 7.71 (d, J = 

8.0 Hz, 12H), 7.59 (d, J = 7.6 Hz, 12H), 7.44 (s, 3H), 7.26 (s, 6H), 7.09 (s, 6H), 4.04-3.96 

(m, 18H), 3.67 (t, J = 5.2 Hz, 6H), 3.54-3.50 (m, 6H), 1.82-1.70 (m, 18H), 1.52 (br, 90H), 

1.30 (br, 162H), 1.24-1.16 (m, 108H), 0.89-0.86 (m, 27H); 31P NMR (acetone-d6, 161.9 

MHz) δ 14.25 (s, JPt–P = 2652.24 Hz); ESI-TOF-MS: [M – 4OTf]4+, 1678.43, [M – 5 OTf]5+, 

1312.85. Anal. Calcd for C318H498F36N12O24Pt6P18: C, 52.43; H, 6.89; N, 2.31. Found: C, 

52.75; H, 6.54; N, 2.30.



6

3. Multiple Nuclear NMR (1H, 31P, and 13C NMR) Spectra of New 

Compounds.

Fig S1. (A) 1H NMR, (B) 13C NMR spectra of precursor 1 in CDCl3.
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B

Fig S2. (A) 1H NMR, (B) 31P NMR spectra of hexagon 3 in acetone-d6.
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B

Fig S3. Comparison of partial 1H NMR spectra of the aromatic portion of 120° precursor 1 

(a) and the self-assembled [3 + 3] hexagon 3 (b).
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Fig S4. Comparison of 31P {1H} NMR spectra of the 120° di-Pt(II) acceptor 2 (a) and the 
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self-assembled [3 + 3] hexagon 3 (b).
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4. PM6 semi-empirical simulated molecular model of hexagon 3.

Fig S5. PM6 semi-empirical simulated molecular model of hexagon 3.
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5. Additional Stimuli-responsive experiments of hexagon 3.
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Scheme S3. Stimuli-responsive disassembly and reassembly of hexagon 3 in acetone-d6 

solution.
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Fig S6. 1H NMR spectras showing the disassembly and reassembly of 3 in acetone-d6 (A) 

1H NMR spectra of hexagon 3 (B) 1H NMR spectra of adding Bu4NBr to the acetone-d6 

solution of the hexagon 3 in a NMR tube and shaking for one minute (C) 1H NMR spectra 

of further adding of AgPF6 to the same NMR tube and shaking for one minute.
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Fig S7. SEM images of xerogels of 3 prepared in acetone/water (v/v 2/1) at 0.9 mM (a) and 

5.0 mM (b). SEM image of regenerated hybirdgel of 3 with AgBr precipitate (c).
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6. Molecular model of the ring-to-ring interaction.

Fig S8. Simulated molecular model of the ring-ring interaction of the hexagon 3.



14

7. FTIR spectroscopic studies of hexagon 3 in gel and solution state.

A

B

Fig S9. FTIR spectra of the xerogel of hexagon 3 obtained from acetone/water (A) and 

hexagon 3 in acetone solution (B).
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8. ESI-TOF-MS spectrum of hexagon 3.
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Fig S10. Full ESI-TOF-MS spectrum of the hexagon 3.
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