Supporting Information

Polyoxoniobate-Based 3D Framework Materials with Photocatalytic Hydrogen

Evolution Activity

Jian-Qiang Shen, ${ }^{a}$ Ying Zhang, ${ }^{\text {a }}$ Zhi-Ming Zhang, ${ }^{*}$ Yang-Guang Li, ${ }^{*}{ }^{\text {a }}$ Yan-Qing Gao ${ }^{a}$ and En-Bo Wang ${ }^{* a}$
${ }^{a}$ Key laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry,
Northeast Normal University, Renmin Street No.5268, Changchun, Jinlin, 130024, P. R. China;

E-mail: zhangzm178@nenu.edu.cn (Z. M. Zhang),wangeb889@nenu.edu.cn (E. B. Wang).

CONTENTS

Section 1 Experimental Section

Section 2 Supplementary Structural Section
Section 3 Supplementary Physical Characterizations

Section 1 Experimental Section

Materials and general methods. All chemicals were commercially purchased and used without further purification. $\mathrm{K}_{7} \mathrm{HNb}_{6} \mathrm{O}_{19} \cdot 13 \mathrm{H}_{2} \mathrm{O}$ was prepared according to the literature and identified by IR spectra. ${ }^{4 \mathrm{c}}$ Elemental analysis for $\mathrm{Nb}, \mathrm{V}, \mathrm{P}$ and Cu were determined by a Leaman inductively coupled plasma (ICP) spectrometer. IR spectra were recorded in the range $400-4000 \mathrm{~cm}^{-1}$ on an Alpha Centaurt FT/IR Spectrophotometer using KBr pellets. Solid state UV-vis absorption spectra were recorded from 200 to 900 nm using barium sulfate $\left(\mathrm{BaSO}_{4}\right)$ as a standard with 100% reflectance on a Varian Cary 500 UV-Vis spectrophotometer. Emission/excitation spectra were recorded on a HITACHI F-7000 fluorescence spectrophotometer. Powder X-ray diffraction measurement was recorded at room temperature on a Siemens D5005 diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ $(\lambda=1.5418 \AA)$. Thermogravimetric analysis (TGA) of the samples were performed using a Perkin-Elmer TG-7 analyzer heated from $55^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ under nitrogen at the heating rate of 10 ${ }^{\circ} \mathrm{C} \cdot \min ^{-1}$.

Synthesis of 1. $\mathrm{Cu}(\mathrm{Ac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.044 \mathrm{~g}, 0.200 \mathrm{mmol})$ was added to 2 mL distilled water with stirring. Then the resulting blue solution was added dropwise to a 4 mL aqueous solution containing $\mathrm{K}_{7} \mathrm{HNb}_{6} \mathrm{O}_{19} \cdot 13 \mathrm{H}_{2} \mathrm{O}(0.045 \mathrm{~g}, 0.033 \mathrm{mmol}), \mathrm{NaVO}_{3}(0.049 \mathrm{~g}, 0.400 \mathrm{mmol})$ and $\mathrm{H}_{3} \mathrm{PO}_{4}(5 \mathrm{M}, 0.030$ $\mathrm{mL}, 0.150 \mathrm{mmol}$). The mixture was adjusted to pH 9.50 using 1 M NaOH solution. Subsequently, en was used to adjust the pH value of mixture to 10.50 , and the mixture was transferred to a Teflonlined stainless steel autoclave (23 mL). The Teflon-lined stainless steel autoclave was heated at 160 ${ }^{\circ} \mathrm{C}$ for 72 h , and was then cooled to room temperature at a rate of $10^{\circ} \mathrm{C} / \mathrm{h}$. Brown block-like crystals of $\mathbf{1}$ were obtained from the solid product in a yield of 39.8% (based on Nb). Anal. For 1: Calcd (\%): P 0.98, Cu 8.08, V 9.71, Nb 35.43. Found (\%): P 1.05, Cu 8.22, V 9.46, Nb 35.27. Synthesis of 2. 2 was prepared according to the similar method of $\mathbf{1}$, except enMe was used instead of en. After
cooling to room temperature, brown block-like crystals were collected. Yield: ca. 58.3% (based on Nb). Anal. For 2: Calcd (\%): P 0.96, Cu 7.87, V 9.47, Nb 34.54. Found (\%): P 1.02, Cu 8.06, V $9.21, \mathrm{Nb} 34.69$.

X-ray Crystallography

The crystal data of $\mathbf{1}$ and $\mathbf{2}$ were collected on a Rigaku R-AXIS RAPID IP diffractometer $\left(\mathrm{Mo}_{\mathrm{Ka}}\right.$, graphite monochromator, $\lambda=0.71073 \AA$). The structures were solved by the direct method and refined by the full-matrix least-squares method on F^{2} using the SHELXTL-97 crystallographic software package. ${ }^{\text {S1 }}$ During the refinement, all H atoms on water molecules were directly included in the molecular formula. Hydrogen atoms of organic ligands were fixed in the calculated positions. The crystal data and structure refinements of compounds $\mathbf{1}$ and $\mathbf{2}$ are summarized in Table S1. CCDC reference numbers are 973046 and 973047 for $\mathbf{1}$ and 2, respectively. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif.

S1. G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement, University of Göttingen: Göttingen, Germany, 1997; G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution, University of Göttingen: Göttingen, Germany, 1997.

Photocatalytic Experiments

The UV photocatalytic experiments with irradiation of $125 \mathbf{W}$ Hg lamp. The photocatalytic reactions were carried out in a Pyrex inner-irradiation-type reaction vessel with magnetic stirring at room temperature. The photocatalytic reactions were performed in $100 \mathrm{~mL} 20 \% \mathrm{CH}_{3} \mathrm{OH}$ aqueous solution, containing 100 mg photocatalyst and loading 0.75% Pt. Before the photocatalytic reaction, nitrogen gas was bubbled through the reaction mixture for 0.5 h to remove air. The mixture was then irradiated using a 125 W Hg lamp, and the produced H_{2} was analyzed using a GC 7890T instrument.

The photocatalytic experiments with irradiation of 300 W Xe lamp. This photocatalytic experiments were performed similar to the UV process, except a 300 W Xe lamp (without filter) was used instead of 125 W Hg lamp. Before the photocatalytic reaction, vacuum pump was bubbled through the reaction mixture for 0.5 h to remove air.

Table 1 Crystal Data and Structure Refinement for 1-2.

	1	2
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{80} \mathrm{Cu}_{4} \mathrm{~N}_{16} \mathrm{PV}_{6}$	$\mathrm{C}_{24} \mathrm{H}_{97} \mathrm{Cu}_{4} \mathrm{~N}_{16} \mathrm{PV}_{6}$
	$\mathrm{Nb}_{12} \mathrm{O}_{59}$	$\mathrm{Nb}_{12} \mathrm{O}_{57}$
M	3146.65	3227.87
λ / \AA	0.71073	0.71073
T / K	293(2)	293(2)
Crystal dimensions/mm	$0.25 \times 0.17 \times 0.15$	$0.24 \times 0.18 \times 0.16$
Crystal system	Tetragonal	Tetragonal
Space group	I4/m	I4/m
a / \AA	15.141(2)	15.229(2)
b / \AA	15.141(2)	15.229(2)
c / \AA	19.257(4)	19.207(4)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	90	90
$\gamma /{ }^{\circ}$	90	90
V / \AA^{3}	4414.7(12)	4454.5(12)
Z	2	2
$D_{c} / \mathrm{Mg} \mathrm{m}^{-3}$	2.367	2.407
μ / mm^{-1}	3.151	3.125
$F(000)$	3042	3140
θ Range ${ }^{\circ}$	3.19-25.00	3.17-25.00
Data/restraints/parameters	2014/0/137	2029 / 13 / 154
$R_{1}(I>2 \sigma(I))^{a}$	0.0649	0.0645
$w R_{2}\left(\right.$ all data) ${ }^{a}$	0.2145	0.2226
Goodness-of-fit on F^{2}	1.002	1.038
${ }^{a} R_{1}=\sum\| \| F_{0}\left\|-\left\|F_{\mathrm{C}}\right\| / \sum\right\| F_{0} \mid ; w R_{2}=\sum\left[w\left(F_{0}{ }^{2}-F_{\mathrm{C}}{ }^{2}\right)^{2}\right] / \sum\left[w\left(F_{0}{ }^{2}\right)^{2}\right]^{1 / 2}$		

Section 2 Supplementary Structural Section

Bond valence sum calculations of compounds 1 and 2

Table S1. Bond valence sum calculations of compound $1 .{ }^{\text {S2,S3 }}$

Bonds	Bond length (\AA)	BVS	Bonds	Bond (\AA)	length
BVS					

Table S2. Bond valence sum calculations of compound 2. ${ }^{\text {S2,S3 }}$

Bonds	Bond length (\AA)	BVS	Bonds	Bond (\AA)	length
$\mathrm{V}(1)-\mathrm{O}(1)$	$1.604(13)$	1.628659	$\mathrm{~V}(2)-\mathrm{O}(2)$	$1.632(11)$	1.510038
$\mathrm{~V}(1)-\mathrm{O}(3) \# 1$	$1.978(6)$	0.591955	$\mathrm{~V}(2)-\mathrm{O}(4) \# 2$	$1.969(7)$	0.606367
$\mathrm{~V}(1)-\mathrm{O}(3) \# 4$	$1.978(6)$	0.591955	$\mathrm{~V}(2)-\mathrm{O}(4)$	$1.969(7)$	0.606367
$\mathrm{~V}(1)-\mathrm{O}(3) \# 5$	$1.978(6)$	0.591955	$\mathrm{~V}(2)-\mathrm{O}(5) \# 2$	$1.993(6)$	0.568437
$\mathrm{~V}(1)-\mathrm{O}(3)$	$1.978(6)$	0.591955	$\mathrm{~V}(2)-\mathrm{O}(5)$	$1.993(6)$	0.568437
$\boldsymbol{V}_{\mathbf{V}(3)}=\mathbf{3 . 9 9 6}$			$\boldsymbol{V}_{\mathbf{V}(4)}=\mathbf{3 . 8 6 0}$		

S2. The valence sum calculations are performed on a program of bond valence calculator, version
2.00 February 1993, written by C. Hormillosa, with assistance from S. Healy, distributed by I. D.

Brown.

S3 I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244-247.

Fig. S1. The stick representation of compounds $\mathbf{1}$ (a) and 2 (b) decorated by the Cu-organic amine fragments; color codes: red spheres: O; yellow spheres: V; green spheres: P.

Fig. S2. Schematic presentations of possible mechanisms of the formation of $\left\{\mathrm{PNb}_{12} \mathrm{O}_{40}(\mathrm{VO})_{6}\right\}$ cluster.

Fig. S3. Structural view and schematic view of a parallelepiped cage composed of eight
polyoxoanions.

Fig. S4. View of the 3D porous framework of $\mathbf{1}$ along a and b directions.

Fig. S5. Structural view of compound 2.

Section 3 Supplementary Physical Characterizations

Fig. S6. The XPS spectra of $\mathbf{1}$ and $\mathbf{2}$ each give one peak at 515.76 eV for $\mathbf{1}$, and 515.79 eV for $\mathbf{2}$, which can be ascribed to $\mathrm{V}^{4+} 2 \mathrm{p}_{3 / 2}$, respectively. ${ }^{11 \mathrm{a}}$

Fig. S7. The solid state UV/Vis absorption spectra of compound $\mathbf{1}$ (black) and 2 (red).

Fig. S8. The IR spectra of 1 (black) and 2(red).
The IR spectra of $\mathbf{1}$ and 2 are recorded between 400 and $4000 \mathrm{~cm}^{-1}$ with a KBr pellet, which could be used for identification of the characteristic vibration bands of PONs and organic components in products. In the IR spectra, the terminal $M=O_{t}(M=V$, Nb) vibrations appear at $961 \mathrm{~cm}^{-1}$ and $874 \mathrm{~cm}^{-1}$ for $\mathbf{1}$ and at 964 and $875 \mathrm{~cm}^{-1}$ for $\mathbf{2}$, respectively. ${ }^{10,11}$ The characteristic peaks at 678 and $453 \mathrm{~cm}^{-1}(\mathbf{1})$ and 675 and 452 $\mathrm{cm}^{-1}(\mathbf{2})$ are attributed to the bridging $\mathrm{Nb}-\mathrm{O}_{\mathrm{b}}-\mathrm{Nb}$ vibrations, respectively. ${ }^{4-6}$ Bands at $1059 \mathrm{~cm}^{-1}$ for 1 and $1060 \mathrm{~cm}^{-1}$ for 2 are assigned to $\mathrm{P}-\mathrm{O}_{\mathrm{c}}$ vibration, respectively. ${ }^{\mathrm{S} 4}$ Bands in the $1170-1598 \mathrm{~cm}^{-1}(\mathbf{1})$ and $1172-1593 \mathrm{~cm}^{-1}(2)$ region are attributed to the organic amine groups. ${ }^{10-13}$

S4 M. Nyman, A. J. Celestian, J. B. Parise, G. P. Holland and T. M. Alam, Inorg. Chem., 2006, 45, 1043.

Fig. S9. The TGA curves of $\mathbf{1}$ and $\mathbf{2}$.
To investigate the thermal stabilities of compounds $\mathbf{1}$ and $\mathbf{2}$, thermogravimetric analyses (TGA) were carried out under a nitrogen atmosphere with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. Three continuous weight losses steps were observed on the TGA curve of $\mathbf{1}$. The first weight loss of 7.37% (calcd. 7.28%) in the range $55-232^{\circ} \mathrm{C}$ is attributed to the removal of lattice water molecules and OH^{-} groups. And the other two weight loss of 10.13% from 232 to $767^{\circ} \mathrm{C}$ and 6.55% from 767 to $900^{\circ} \mathrm{C}$ all come from the release of eight en ligands (calcd. 15.28\%). For 2, the first weight loss of 5.86% (calcd. 5.98%) in the range $55-240^{\circ} \mathrm{C}$ is attributed to the removal of six lattice water molecules and five OH^{-}groups. And the other two weight loss of 12.27% from 225 to $767^{\circ} \mathrm{C}$, and 7.17% from 767 to $900^{\circ} \mathrm{C}$ all come from the release of eight enMe ligands (calcd. 18.37\%).

