Supporting Information

Polyoxoniobate-Based 3D Framework Materials with Photocatalytic Hydrogen

Evolution Activity

Jian-Qiang Shen,^a Ying Zhang,^a Zhi-Ming Zhang,^{*a} Yang-Guang Li,^{*a} Yan-Qing Gao^a and En-Bo Wang^{*a}

^aKey laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry,

Northeast Normal University, Renmin Street No.5268, Changchun, Jinlin, 130024, P. R. China;

E-mail: zhangzm178@nenu.edu.cn (Z. M. Zhang), wangeb889@nenu.edu.cn (E. B. Wang).

CONTENTS

- Section 1 Experimental Section
- Section 2 Supplementary Structural Section
- Section 3 Supplementary Physical Characterizations

Section 1 Experimental Section

Materials and general methods. All chemicals were commercially purchased and used without further purification. K₇HNb₆O₁₉·13H₂O was prepared according to the literature and identified by IR spectra.^{4c} Elemental analysis for Nb, V, P and Cu were determined by a Leaman inductively coupled plasma (ICP) spectrometer. IR spectra were recorded in the range 400-4000 cm⁻¹ on an Alpha Centaurt FT/IR Spectrophotometer using KBr pellets. Solid state UV-vis absorption spectra were recorded from 200 to 900 nm using barium sulfate (BaSO₄) as a standard with 100% reflectance on a Varian Cary 500 UV-Vis spectrophotometer. Emission/excitation spectra were recorded on a HITACHI F-7000 fluorescence spectrophotometer. Powder X-ray diffraction measurement was recorded at room temperature on a Siemens D5005 diffractometer with Cu–K α ($\lambda = 1.5418$ Å). Thermogravimetric analysis (TGA) of the samples were performed using a Perkin-Elmer TG-7 analyzer heated from 55 °C to 900 °C under nitrogen at the heating rate of 10 °C·min⁻¹.

Synthesis of 1. Cu(Ac)₂·2H₂O (0.044 g, 0.200 mmol) was added to 2 mL distilled water with stirring. Then the resulting blue solution was added dropwise to a 4 mL aqueous solution containing K₇HNb₆O₁₉·13H₂O (0.045 g, 0.033 mmol), NaVO₃ (0.049 g, 0.400 mmol) and H₃PO₄ (5 M, 0.030 mL, 0.150 mmol). The mixture was adjusted to pH 9.50 using 1 M NaOH solution. Subsequently, en was used to adjust the pH value of mixture to 10.50, and the mixture was transferred to a Teflon-lined stainless steel autoclave (23 mL). The Teflon-lined stainless steel autoclave was heated at 160 °C for 72 h, and was then cooled to room temperature at a rate of 10 °C/h. Brown block-like crystals of **1** were obtained from the solid product in a yield of 39.8% (based on Nb). Anal. For **1**: Calcd (%): P 0.98, Cu 8.08, V 9.71, Nb 35.43. Found (%): P 1.05, Cu 8.22, V 9.46, Nb 35.27. **Synthesis of 2. 2** was prepared according to the similar method of **1**, except enMe was used instead of en. After

cooling to room temperature, brown block-like crystals were collected. Yield: ca. 58.3% (based on Nb). Anal. For **2**: Calcd (%): P 0.96, Cu 7.87, V 9.47, Nb 34.54. Found (%): P 1.02, Cu 8.06, V 9.21, Nb 34.69.

X-ray Crystallography

The crystal data of 1 and 2 were collected on a Rigaku R-AXIS RAPID IP diffractometer (Mo_{Ka}) graphite monochromator, $\lambda = 0.71073$ Å). The structures were solved by the direct method and refined by the full-matrix least-squares method on F^2 using the SHELXTL-97 crystallographic software package.^{S1} During the refinement, all H atoms on water molecules were directly included in the molecular formula. Hydrogen atoms of organic ligands were fixed in the calculated positions. The crystal data and structure refinements of compounds 1 and 2 are summarized in Table S1. CCDC reference numbers are 973046 and 973047 for 1 and 2, respectively. The data can be Cambridge Crystallographic obtained free of charge from the Data Centre via www.ccdc.cam.ac.uk/datarequest/cif.

S1. G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement, University of Göttingen: Göttingen, Germany, 1997; G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution, University of Göttingen: Göttingen, Germany, 1997.

Photocatalytic Experiments

The UV photocatalytic experiments with irradiation of 125 W Hg lamp. The photocatalytic reactions were carried out in a Pyrex inner-irradiation-type reaction vessel with magnetic stirring at room temperature. The photocatalytic reactions were performed in 100 mL 20% CH₃OH aqueous solution, containing 100 mg photocatalyst and loading 0.75% Pt. Before the photocatalytic reaction, nitrogen gas was bubbled through the reaction mixture for 0.5 h to remove air. The mixture was then irradiated using a 125 W Hg lamp, and the produced H₂ was analyzed using a GC 7890T instrument.

The photocatalytic experiments with irradiation of 300 W Xe lamp. This photocatalytic experiments were performed similar to the UV process, except a 300 W Xe lamp (without filter) was used instead of 125 W Hg lamp. Before the photocatalytic reaction, vacuum pump was bubbled through the reaction mixture for 0.5 h to remove air.

	1	2
Empirical formula	$C_{16}H_{80}Cu_4N_{16}PV_6$	C ₂₄ H ₉₇ Cu ₄ N ₁₆ PV ₆
Empirical formula	Nb ₁₂ O ₅₉	Nb ₁₂ O ₅₇
М	3146.65	3227.87
λ/Å	0.71073	0.71073
T/K	293(2)	293(2)
Crystal dimensions/mm	0.25× 0.17×0.15	0.24×0.18×0.16
Crystal system	Tetragonal	Tetragonal
Space group	I4/m	I4/m
a/Å	15.141(2)	15.229(2)
<i>b</i> /Å	15.141(2)	15.229(2)
$c/\text{\AA}$	19.257(4)	19.207(4)
$\alpha/^{\circ}$	90	90
$eta/^{\circ}$	90	90
γ/°	90	90
$V/Å^3$	4414.7(12)	4454.5(12)
Ζ	2	2
$D_c/Mg m^{-3}$	2.367	2.407
μ/mm^{-1}	3.151	3.125
F(000)	3042	3140
θ Range/°	3.19-25.00	3.17 - 25.00
Data/restraints/parameters	2014 / 0 / 137	2029 / 13 / 154
$R_1(l > 2\sigma(l))^a$	0.0649	0.0645
wR_2 (all data) ^{<i>a</i>}	0.2145	0.2226
Goodness-of-fit on F^2	1.002	1.038
${}^{a}R_{1} = \sum F_{0} - F_{C} / \sum F_{0} ; wR_{2}$	$=\sum [w(F_0^2 - F_C^2)^2] / \sum [w(F_0^2 - F_C^2$	$[w(F_0^2)^2]^{1/2}$

 Table 1 Crystal Data and Structure Refinement for 1 - 2.

Section 2 Supplementary Structural Section

Bond valence sum calculations of compounds 1 and 2

Bonds	Bond length (Å)	BVS	Bonds	Bond length (Å)	BVS
V(1) - O(7)	1.628(14)	1.526328	V(2) - O(6)	1.653(10)	1.426759
V(1) - O(1) #2	1.981(6)	0.587175	V(2) - O(2)	1.968(7)	0.608008
V(1) - O(1)	1.981(6)	0.587175	V(2) - O(2)#1	1.968(7)	0.608008
V(1) - O(1) #1	1.981(6)	0.587175	V(2) - O(3)	1.995(6)	0.565373
V(1) - O(1)#6	1.981(6)	0.587175	V(2) - O(3) #1	1.9956)	0.565373
$V_{\rm V(1)} = 3.875$			$V_{\rm V(2)} = 3.774$		

Table S1. Bond valence sum calculations of compound $1.^{S2,S3}$

Table S2. Bond valence sum calculations of compound 2.^{S2,S3}

Bonds	Bond length (Å)	BVS	Bonds	Bond length (Å)	BVS
V(1) - O(1)	1.604(13)	1.628659	V(2) - O(2)	1.632(11)	1.510038
V(1) - O(3) #1	1.978(6)	0.591955	V(2) - O(4) #2	1.969(7)	0.606367
V(1) - O(3)#4	1.978(6)	0.591955	V(2) - O(4)	1.969(7)	0.606367
V(1) - O(3) #5	1.978(6)	0.591955	V(2) - O(5) #2	1.993(6)	0.568437
V(1) - O(3)	1.978(6)	0.591955	V(2) - O(5)	1.993(6)	0.568437
V _{V(3)} =3.996			$V_{\rm V(4)} = 3.860$		

S2. The valence sum calculations are performed on a program of bond valence calculator, version2.00 February 1993, written by C. Hormillosa, with assistance from S. Healy, distributed by I. D.Brown.

S3 I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244-247.

Fig. S1. The stick representation of compounds **1** (a) and **2** (b) decorated by the Cu-organic amine fragments; color codes: red spheres: O; yellow spheres: V; green spheres: P.

Fig. S2. Schematic presentations of possible mechanisms of the formation of $\{PNb_{12}O_{40}(VO)_6\}$ cluster.

Fig. S3. Structural view and schematic view of a parallelepiped cage composed of eight

polyoxoanions.

Fig. S4. View of the 3D porous framework of **1** along *a* and *b* directions.

Fig. S5. Structural view of compound 2.

Fig. S6. The XPS spectra of **1** and **2** each give one peak at 515.76 eV for **1**, and 515.79 eV for **2**, which can be ascribed to $V^{4+} 2p_{3/2}$, respectively.^{11a}

Fig. S7. The solid state UV/Vis absorption spectra of compound 1(black) and 2 (red).

Fig. S8. The IR spectra of 1 (black) and 2(red).

The IR spectra of **1** and **2** are recorded between 400 and 4000 cm⁻¹ with a KBr pellet, which could be used for identification of the characteristic vibration bands of PONs and organic components in products. In the IR spectra, the terminal $M = O_t$ (M = V, Nb) vibrations appear at 961 cm⁻¹ and 874 cm⁻¹ for **1** and at 964 and 875 cm⁻¹ for **2**, respectively.^{10,11} The characteristic peaks at 678 and 453 cm⁻¹ (**1**) and 675 and 452 cm⁻¹ (**2**) are attributed to the bridging Nb–O_b–Nb vibrations, respectively.⁴⁻⁶ Bands at 1059 cm⁻¹ for **1** and 1060cm⁻¹ for **2** are assigned to P-O_c vibration, respectively.^{S4} Bands in the 1170–1598 cm⁻¹ (**1**) and 1172–1593 cm⁻¹ (**2**) region are attributed to the organic amine groups.¹⁰⁻¹³

S4 M. Nyman, A. J. Celestian, J. B. Parise, G. P. Holland and T. M. Alam, *Inorg. Chem.*, 2006, 45, 1043.

To investigate the thermal stabilities of compounds **1** and **2**, thermogravimetric analyses (TGA) were carried out under a nitrogen atmosphere with a heating rate of 10 °C/min. Three continuous weight losses steps were observed on the TGA curve of **1**. The first weight loss of 7.37% (calcd. 7.28%) in the range 55–232°C is attributed to the removal of lattice water molecules and OH⁻ groups. And the other two weight loss of 10.13% from 232 to 767°C and 6.55% from 767 to 900°C all come from the release of eight en ligands (calcd. 15.28%). For **2**, the first weight loss of 5.86% (calcd. 5.98%) in the range 55–240°C is attributed to the removal of six lattice water molecules and five OH⁻ groups. And the other two weight loss of 12.27% from 225 to 767°C, and 7.17% from 767 to 900°C all come from the release of eight en legane of eight enMe ligands (calcd. 18.37%).