Supporting information

Visible light responsive rhodium and antimony-codoped SrTiO₃ powdered photocatalyst loaded with IrO₂ cocatalyst for solar water splitting

Rikako Asai¹, Hiroaki Nemoto¹, Qingxin Jia¹, Kenji Saito^{1,†}, Akihide Iwase^{1,2}, Akihiko Kudo^{1,2,*} ¹ Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601, JAPAN,

² Photocatalyst International Research Center, Research Institute of Science and Technology, Tokyo University of Science.

Present Address

†Office for Development of Young Researchers, Research Planning and Promotion Division, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, JAPAN

Experimental details

Preparation of SrTiO₃ doped with Rh and Sb photocatalyst

SrTiO₃ powder codoped with Rh (0.5 mol%) and Sb (1.0 mol%) was prepared by a simple solid-state reaction. The starting materials of SrCO₃ (Kanto Chemical; 99.9%), TiO₂ (Soekawa Chemical; 99.9%), Rh₂O₃ (Wako Pure Chemical; 99.9%), and Sb₂O₃ (Nacalai Tesque; 98%) were mixed using an alumina mortar in a molar ratio of Sr:Ti:Rh:Sb = 1.03:0.985:0.005:0.01. The mixture was calcined at 1373 K for 10 h after precalcination at 1173 K for 1 h in air using an alumina crucible. Crystal phases of obtained powders were confirmed by X-ray diffraction (Rigaku;MiniFlex, Cu Ka). Diffuse reflection spectra were obtained by a UV-vis-NIR spectrometer (Jasco; UbsetV-570) and were converted from reflectance to absorbance by the Kubelka-Munk method.

Loading of cocatalyst

 IrO_2 , RuO_2 , and CoO_x cocatalysts were loaded by an impregnation method. $SrTiO_3$:Rh,Sb (0.5 g) and desired amounts of aqueous solutions of $(NH_4)_2IrCl_6$ and $Co(NO_3)_2$, and acetone solution of $Ru_3(CO)_{12}$ were added into a porcelain crucible and heated in air to remove the solvents. The resulting powder was calcined in air at 673 K for 2 h. IrO_2 cocatalyst was loaded also by photodeposition¹ and colloidal adsorption methods.² Ru cocatalyst was loaded by a

photodeposition method in which SrTiO₃:Rh,Sb dispersed in an aqueous methanol solution containing RuCl₃ was irradiated with visible light (λ >420 nm).

Photocatalytic reaction

Photocatalytic activities were evaluated by sacrificial H_2 and O_2 evolution, and water splitting using a gas-tight circulation system and an Ar flow system. An aqueous methanol solution (10 vol%) and an aqueous silver nitrate (0.2 mol L⁻¹) solution were employed for sacrificial H_2 and O_2 evolution, respectively. Water and a pH-controlled aqueous $H_2SO_{4 aq.}$ solution were used for water splitting. The photocatalyst powder (0.1-0.5 g) was dispersed by a magnetic stirrer in the reactant solution (120-600 mL) in a top-irradiation cell and an inner-irradiation cell. 300 W Xe lamp (Perkin-Elmer; CERMAX-PE300F) was used for an top-irradiation cell. The wavelength of the incident light was controlled with cutoff filters (HOYA; L42, Y44). When 400 W high pressure lamp was employed for an inner irradiation cell, an aqueous (2 mmol L⁻¹) filter of NaNO₂ was used to control the wavelength of the incident light (λ > 400 nm).³ A solar simulator with an AM-1.5 filter (YAMASHITA DENSO; YSS-80QA) was used for solar water splitting. The temperature of the reactant solution was kept at 293 K by circulating cooling water. Amounts of evolved H₂ and O₂ were determined using an online gas chromatograph (Shimadzu; GC-8A, MS-5A column, TCD, Ar carrier).

An apparent quantum yield and a solar energy conversion efficiency were defined by the following equations.

AQY(%) = (Number of reacted electrons / Number of incident photons) x 100Solar energy conversion(%) = (Output energy as H₂ / Energy of incident solar light(100 mW/cm²)) x 100

The photon flux of the monochromatic light was measured by a silicon photodiode (OPHIR; PD300-UV SH head and NOVA display).

References

(1) Iwase, A.; Kato, H.; Kudo, A. Chem. Lett. 2005, 34, 946-947.

(2) Hara, M.; Waraksa, C. C.; Lean, J. T.; Lewis, B. A.; Mallouk, T. E. J. Phys. Chem. A 2000, 104, 5275-5280.

(3) Maeda, K.; Teramura, K.; Takata, T.; Hara, M.; Saito, N.; Toda, K.; Inoue, Y.; Kobayashi, H.; Domen, K. *J. Phys. Chem. B* **2005**, 109, 20504-20510.

Table S1. Water splitting under visible light irradiation over SrTiO3:Rh(0.5%),Sb(1.0%)photocatalyst

En	Photocatalyst	Cocatalyst	Loading	Incident	Activity	
try		(wt%)	method	light	/ μ mol h ⁻¹	
					H_2	O ₂
1	SrTiO ₃ :Rh(0.5%),Sb(1.0%)	_	_	>440 nm	trace	0
2	SrTiO ₃ :Rh(0.5%),Sb(1.0%)	$CoO_x(1.0)$	Impregnation	> 440 nm	trace	trace
3	SrTiO ₃ :Rh(0.5%),Sb(1.0%)	RuO ₂ (1.0)	Impregnation	> 440 nm	0.12	0.07
4	SrTiO ₃ :Rh(0.5%),Sb(1.0%)	Ru(0.5)	Photodeposition	> 440 nm	0.50	0.28
5	SrTiO ₃ :Rh(0.5%),Sb(1.0%)	IrO ₂ (1.0)	Impregnation	> 440 nm	3.7	1.8
6	SrTiO ₃ :Rh(0.5%),Sb(1.0%)	IrO ₂ (3.0)	Impregnation	> 440 nm	4.4	1.9
7	SrTiO ₃ :Rh(0.5%),Sb(1.0%)	IrO ₂ (3.0)	Impregnation	> 300 nm	12	6.3
8	SrTiO ₃ : Rh(0.5%)	IrO ₂ (3.0)	Impregnation	> 440 nm	0.63	0
9	SrTiO ₃ :Rh(0.5%)	IrO ₂ (3.0)	Impregnation	> 300 nm	0.73	0
10	SrTiO ₃ :Sb(1.0%)	IrO ₂ (3.0)	Impregnation	> 300 nm	trace	0
11	SrTiO ₃	IrO ₂ (3.0)	Impregnation	> 300 nm	trace	0

Catalyst: 0.2 g, reactant solution: 120 mL of $H_2SO_{4 aq.}$ (pH 3.0), cell: top-irradiation cell with Pyrex window, light source: 300 W Xe lamp.

Figure S1 X-ray diffraction patterns of (a) non-doped $SrTiO_3$, (b) $SrTiO_3$:Rh(0.5%), (c) $SrTiO_3$:Rh(0.5%),Sb(1.0%), (d) $SrTiO_3$:Rh(0.5%),Sb(2.0%), and (e) the mixture of samples (b) and (d).

Figure S2 Raman spectra of (a) non-doped SrTiO₃ and (b) SrTiO₃:Rh(0.5%),Sb(1.0%). Excitation wavelengths of (A) and (B) were 532 nm and 785 nm, respectively.

Figure S3 Diffuse reflectance spectra of (a) non-doped $SrTiO_3$, (b) $SrTiO_3$:Rh(0.5%), (c) $SrTiO_3$:Rh(0.5%),Sb(1.0%), (d) $SrTiO_3$:Rh(0.5%),Sb(2.0%), (e) H₂-reduced $SrTiO_3$:Rh(0.5%), and (f) the mixture of samples (b) and (d).

Figure S4 Photographs of (a) $SrTiO_3:Rh(0.5\%)$, (b) $SrTiO_3:Rh(0.5\%),Sb(1.0\%)$, (c) $SrTiO_3:Rh(0.5\%),Sb(2.0\%)$, and (d) the mixture of samples (b) and (d).

Figure S5 Optimization of (a) pH of the reactant solution, (b) loading amounts of IrO_2 cocatalyst, and (c) calcination temperature in a solid-state reaction for water splitting using SrTiO₃:Rh(0.5%),Sb(1.0%). Catalyst: 0.2 g, solution: H₂SO₄ aq. 120 mL, cell; top-irradiation cell with Pyrex window, light source: 300-W Xe lamp with a cut off filter (λ >440 nm).

Figure S6 Photocatalytic water splitting over $IrO_2(3wt\%)/SrTiO_3:Rh(0.5\%),Sb(1.0\%)$ under visible light irradiation. Catalyst: 0.5 g, reactant solution: 600 mL of H₂SO₄ aq. (pH 3.0), light source: 400-W high-pressure Hg lamp, cell: inner irradiation cell made of Pyrex with an aqueous NaNO₂ filter (λ >400 nm) connected to an Ar flow system.

Figure S7 Photocatalytic solar water splitting over $IrO_2(3 wt\%)/SrTiO_3:Rh(0.5\%),Sb(1.0\%)$. Catalyst: 0.2 g, reactant solution: 120 mL of H₂SO₄ aq. (pH 3.0), light source: a solar simulator with an AM-1.5 filter (100 mW cm⁻²), cell: Ar flow system with 33 cm² of irradiated area.