Supporting Information

Hydrosilylation Catalysis by Earth Alkaline Metal Silyl: Synthesis, Characterization, and Reactivity of Bis(triphenylsilyl)calcium

Valeri Leich, Thomas P. Spaniol, Laurent Maron,* and Jun Okuda*

Table of Contents:

Hydrosilylation Catalysis by Earth Alkaline Metal Silyl: Synthesis, Characterization, and
Reactivity of Bis(triphenylsilyl)calcium
General Experimental Remarks
Experimental Section
Preparation of $[Ca(SiPh_3)_2(thf)_4]$ (2a)
Preparation of $[Ca(SiPh_3)_2(triglyme-\kappa^4)(thf)]$ (2b)
Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with H ₂ O10
Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with Me ₃ SiCl10
Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with H ₂ 11
Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with 1,1-DPE
Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with pyridine14
Hydrosilylation of olefins14
X-ray Crystallography16
Computational Details

General Experimental Remarks.

All operations were performed under an inert atmosphere of dry argon using standard Schlenk line or glove box techniques. d_8 -THF and C_6D_6 were distilled under argon from sodium/benzophenone ketyl prior to use. 1,1-Diphenylethene, phenylsilane, diphenylsilane and d_5 -pyridine were dried over CaH₂ and distilled under argon prior to use. Triphenylsilane was purified by vacuum sublimation. THF and pentane were purified using a MB SPS-800 solvent purification system. Triphenylsilyl potassium **1** was prepared according to literature.¹

Due to extreme sensitivity, elemental analysis by combustion could not be performed. Instead, metal titration by following the procedure was applied: 20-30 mg of the product were dissolved in 1 mL of THF and hydrolyzed. To this solution 1 mL of an aqueous ammonia solution (25%) and a buffer tablet (Eriochrome black T) were added and the mixture titrated with a 0.01 M solution of EDTA disodium salt until the transition from red to green was observed.

NMR spectra were recorded on a Bruker Avance II 400 spectrometer at 25 °C unless otherwise stated. Chemical shifts for ¹H, ¹³C{¹H} and ²⁹Si{¹H} NMR spectra were referenced internally using the residual solvent resonance and are reported relative to tetratmethylsilane. The resonances in ¹H and ¹³C NMR spectra were assigned on the basis of two-dimensional NMR experiments (COSY, HSQC, HMBC).

Experimental Section

Preparation of [Ca(SiPh₃)₂(thf)₄] (2a). A solution of [KSiPh₃(thf)₁] (1) (556 mg, 1.5 mmol) in THF (5 mL) was added to a suspension of anhydrous CaI₂ (220 mg, 0.75 mmol) in THF (5 mL). The colorless precipitate was filtered off and the solvent was removed under reduced pressure. After washing with pentane (3×2 mL) and subsequent drying, [Ca(SiPh₃)₂(thf)₄] (2a) (635 mg, 0.75 mmol, >99%) was obtained as a pale yellow powder. Yellow crystals of [Ca(SiPh₃)₂(thf)₄] (2a) (491 mg, 0.58 mmol, 77%) suitable for single crystal X-ray analysis were grown from THF/pentane within 1 h at -30 °C.

¹H NMR (d₈-THF, 400.1 MHz): δ 1.77 (m, 16H, thf), 3.62 (m, 16H, thf), 6.94-6.97 (m, 6H, *para*-Ph), 7.01-7.04 (m, 12H, *meta*-Ph), 7.37-7.39 (m, 12H, *ortho*-Ph). ¹³C{¹H} NMR (d₈-THF, 100.6 MHz): δ 26.39 (thf), 68.21 (thf), 125.46 (*para*-Ph), 127.27 (*meta*-Ph), 137.12 (*ortho*-Ph), 144.97 (*ipso*-Ph). ²⁹Si{¹H} NMR (d₈-THF, 25 °C, 79.5 MHz): δ –13.99 (CaSi). ¹H NMR (C₆D₆, 400.1 MHz): δ 1.21 (m, 16H, thf), 3.52 (m, 16H, thf), 7.16-7.20 (m, 6H, *para*-Ph), 7.26-7.30 (m, 12H, *meta*-Ph), 7.77-7.79 (m, 12H. *ortho*-Ph). ¹³C{¹H} NMR (C₆D₆,

100.6 MHz): δ 25.86 (thf), 69.13 (thf), 126.12 (*para*-Ph), 127.75 (*meta*-Ph), 137.07 (*ortho*-Ph), 152.93 (*ipso*-Ph). ²⁹Si{¹H} NMR (C₆D₆, 79.5 MHz): δ –12.99 (CaSi). Anal. calc. for C₅₂H₆₂CaO₄Si₂ (847.30 g mol⁻¹): Ca, 4.73. Found: Ca, 4.53%.

Figure S1 ¹H NMR spectrum of **2a** in d_8 -THF at 25 °C.

Figure S2 $^{13}C{^{1}H}$ NMR spectrum of **2a** in d₈-THF at 25 °C.

Figure S3 ²⁹Si{¹H} NMR spectrum of **2a** in d_8 -THF at 25 °C.

Figure S4 ¹H NMR spectrum of **2a** in C_6D_6 at 25 °C.

Figure S5 $^{13}C{^{1}H}$ NMR spectrum of **2a** in C₆D₆ at 25 °C.

Figure S6²⁹Si{¹H} NMR spectrum of **2a** in C_6D_6 at 25 °C.

Preparation of [Ca(SiPh₃)₂(triglyme-\kappa^4)(thf)] (2b). To a solution of [Ca(SiPh₃)₂(thf)₄] (2a) (170 mg, 0.2 mmol) in THF (1 mL) was added a solution of triglyme (36 mg, 0.2 mmol) in pentane (0.5 mL). Orange crystals suitable for single X-ray analysis formed within 1 h at – 30 °C. The mother liquor was decanted off and the pale orange crystals of [Ca(SiPh₃)₂(triglyme- κ^4)(thf)] (2b) (130 mg, 80%) were isolated.

¹H NMR (d₈-THF, 400.1 MHz): δ 1.78 (m, 4H, thf), 3.33 (br s, 12H, CH₂), 3.50-3.52 (m, 6H, CH₃), 3.62 (m, 4H, thf), 6.93-6.96 (m, 6H, *para*-Ph), 7.01-7.05 (m, 12H, *meta*-Ph), 7.39-7.42 (m, 12H, *ortho*-Ph). ¹³C{¹H} NMR (d₈-THF, 100.6 MHz): δ 26.44 (thf), 60.15 (CH₂), 68.28 (thf), 70.23 (CH₃/CH₂), 70.48 (CH₃/CH₂), 72.61 (CH₃), 125.31 (*para*-Ph), 127.22 (*meta*-Ph), 137.14 (*ortho*-Ph), 154.14 (*ipso*-Ph). ²⁹Si{¹H} NMR (d₈-THF, 79.5 MHz): δ –11.19 (CaS*i*). ¹H NMR (C₆D₆, 400.1 MHz): δ 1.31 (m, 4H, thf), 2.65 (br s, 3H, CH₃), 2.82 (br s, 3H, CH₃), 2.96 (br s, 12H, CH₂), 3.58 (m, 4H, thf), 7.14-7.18 (m, 6H, *para*-Ph), 7.23-7.27 (m, 12H, *meta*-Ph), 7.71-7.74 (m, 12H, *ortho*-Ph). ¹³C{¹H} NMR (C₆D₆, 100.6 MHz): δ 25.88 (thf), 60.03 (CH₂), 68.70 (thf), 69.26 (CH₃), 69.38 (CH₃),71.20 (CH₂), 125.86 (*para*-Ph), 127.62 (*meta*-Ph), 137.11 (*ortho*-Ph), 153.39 (*ipso*-Ph). ²⁹Si{¹H} NMR (C₆D₆, 79.5 MHz): δ –13.70 (CaS*i*). Anal. calc. for C₄₈H₅₆CaO₅Si₂ (809.20 g mol⁻¹): Ca, 4.95. Found: Ca, 4.28%.

Figure S8 ${}^{13}C{}^{1}H$ NMR spectrum of **2b** in d₈-THF at 25 °C.

Figure S9 ¹H NMR spectrum of **2b** in C_6D_6 at 25 °C.

Figure S10 ${}^{13}C{}^{1}H$ NMR spectrum of **2b** in C₆D₆ at 25 °C.

Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with H₂O. Water (0.9 µL, 0.05 mmol) was added to a solution of $[Ca(SiPh_3)_2(thf)_4]$ (2a) (21 mg, 0.025 mmol) in C₆D₆ (0.5 mL). The pale yellow solution decolorized and triphenylsilane was detected as the only product by ¹H NMR spectroscopy. Upon addition of water (0.5 mL) to the reaction mixture a pH value of 12 was observed, which indicates the formation of calcium hydroxide.

Triphenylsilane²

¹H NMR (C₆D₆, 400.1 MHz): δ 5.71 (s, 1H, Ph₃Si*H*), 7.12-7.19 (m, 9H, *para/meta*-Ph), 7.58-7.60 (m, 6H, *ortho*-Ph).

Figure S11 ¹H NMR spectrum of **2a** in C_6D_6 at 25 °C after reaction with H_2O .

Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with Me₃SiCl. Chlorotrimethylsilane (6.5 µL, 0.05 mmol) in was added to a solution of $[Ca(SiPh_3)_2(thf)_4]$ (2a) (21 mg, 0.025 mmol) in C₆D₆ (0.5 mL). Upon addition a colorless solid precipitated, which was filtered off. 1,1,1-trimethyl-2,2,2-triphenyldisilane was detected as the only product by ¹H NMR spectroscopy.

1,1,1-Trimethyl-2,2,2-triphenyldisilane

¹H NMR (C₆D₆, 400.1 MHz): δ 0.24 (s, 9H, Ph₃SiSi*Me*₃), 7.17-7.19 (m, 9H, *para/meta*-Ph), 7.60-7.62 (m, 6H, *ortho*-Ph).

Figure S12 ¹H NMR spectrum of **2a** in C_6D_6 at 25 °C after reaction with Me₃SiCl.

Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with H₂. A solution of $[Ca(SiPh_3)_2(thf)_4]$ (2a) (21 mg, 0.025 mmol) in C₆D₆ (0.5 mL) was degassed three times with freeze-pump-thaw cycles and refilled with H₂ (1 bar). The conversion to triphenylsilane was complete after 4 h at 60 °C. Besides triphenylsilane, a unknown species was detected by ¹H NMR spectroscopy and the broad signal (4 – 5.5 ppm) assigned to a calcium hydride species $[CaH_2(L)_n]_m$ (3).³

Triphenylsilane²

¹H NMR (C₆D₆, 400.1 MHz): δ 5.71 (s, 1H, Ph₃Si*H*), 7.12-7.19 (m, 9H, *para/meta*-Ph), 7.58-7.60 (m, 6H, *ortho*-Ph).

Figure S13 ¹H NMR spectrum of **2a** in C_6D_6 at 25 °C after reaction with H₂.

Reaction of [Ca(SiPh₃)₂(thf)₄] (2a) with 1,1-DPE. A solution of 1,1-DPE (9 mg, 0.05 mmol) in C_6D_6 (0.25 mL) was added to a solution of [Ca(SiPh₃)₂(thf)₄] (2a) (21 mg, 0.025 mmol) in C_6D_6 (0.25 mL). The reaction mixture turned red and the reaction was followed by ¹H NMR spectroscopy. The conversion to the product bis{1,1-diphenyl-2-(triphenylsilyl)ethyl}calcium **4** was complete after 1 h at 60 °C.

¹H NMR (C₆D₆, 400.1 MHz): δ 1.27 (m, 16H, thf), 2.79 (s, 4H, CH₂), 3.36 (m, 16H, thf), 5.74-5.77 (m, 4H, *para*-Ph_{DPE}), 6.49 (m, 8H, *meta*-Ph_{DPE}), 6.65-6.67 (m, 8H, *ortho*-Ph_{DPE}), 7.18-7.21 (m, 18H, *para/meta*-Ph), 7.76-7.78 (m, 12H, *ortho*-Ph). ¹³C{¹H} NMR (C₆D₆, 100.6 MHz): δ 21.10 (CH₂), 25.86 (thf), 69.13 (thf), 87.57 (C_{Ca}), 107.67 (*para*-Ph_{DPE}), 119.23 (*ortho*-Ph_{DPE}), 128.21 (*para/meta*-Ph), 129.57 (*para/meta*-Ph), 129.94 (*meta*-Ph_{DPE}), 136.98 (*ortho*-Ph), 137.53 (*ipso*-Ph), 141.74 (*ipso*-Ph_{DPE}).

Figure S14 ¹H NMR spectrum of 2a in C₆D₆ at 25 °C after reaction with DPE.

Figure S15 ¹³C{¹H} NMR spectrum of 2a in C₆D₆ at 25 °C after reaction with DPE.

Reaction of $[Ca(SiPh_3)_2(thf)_4]$ (2a) with pyridine. $[Ca(SiPh_3)_2(thf)_4]$ (2a) (21 mg, 0.025 mmol) was dissolved in pyridine (0.5 mL) and heated for 5 min. at 60 °C. The reaction mixture turned immediately orange. The excess of pyridine was removed to give a orange powder, which was analyzed by ¹H and ¹³C{¹H} NMR spectroscopy.

4-Triphenylsilylpyridin

¹H NMR (d₅-pyridine, 400.1 MHz): δ 7.44-7.48 (m, 6H, *meta*-Ph), 7.51-7.55 (m, 3H, *para*-Ph), 7.54 (d, ³*J*_{HH} 5.77 Hz, 2H, *meta*-Ph_{Py}), 7.66-7.69 (m, 6H, *ortho*-Ph), 8.80 (d, ³*J*_{HH} 5.77 Hz, 2H, *ortho*-Ph_{Py}). ¹³C{¹H} NMR (d₅-pyridine, 100.6 MHz): δ 129.15 (*meta*-Ph), 131.05 (*para*-Ph), 131.51 (*meta*-Ph_{Py}), 133.46 (*ipso*-Ph), 137.14 (*ortho*-Ph), 144.92 (*para*-Ph_{Py}), 150.08 (*ortho*-Ph_{Py}).

Bis(1,4-dihydro-1-pyridyl)calcium (5)

¹H NMR (d₅-pyridine, 400.1 MHz): δ 4.02 (br s, 4H, *para*-Ph_{DHP}), 4.29 (br s, 4H, *meta*-Ph_{DHP}), 6.46 (br s, 4H, *ortho*- Ph_{DHP}). ¹³C{¹H} NMR (d₅-pyridine, 100.6 MHz): δ 27.61 (*para*- Ph_{DHP}), 90.90 (*meta*- Ph_{DHP}), 142.94 (*ortho*- Ph_{DHP}).

Figure S16 ¹H NMR spectrum of **2a** in d₅-pyridine at 25 °C after reaction with pyridine.

Hydrosilylation of olefins. Hydrosilylation experiments were performed as follows: A solution of $[Ca(SiPh_3)_2(thf)_4]$ (2 mg, 2.5 µmol) in $[D_8]THF$ (0.5 mL) was treated with

olefin (0.1 mmol). Immediately the reaction mixture turned deep red. Silane (0.11 mmol) was added and the reaction mixture was heated for the indicated period of time in a Young's NMR tube. The conversion of the substrate was determined by *in situ* ¹H NMR spectroscopy of the reaction mixture.

X-ray Crystallography

X-ray diffraction data was collected at 100 K with a Bruker AXS area detector with Mo K_{α} radiation (λ 0.71073 Å). The SADABS program package was used for the data collection and unit cell determination.⁴ The structures were solved by direct methods using the SHELXS-97 program and refined with the SHELXL-97 software by full matrix least-square procedures based on $F^{2.5}$ CCDC 963862 (**2a**) and 963863 (**2b**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure 17 Molecular structure of 2a. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ca1–Si1 3.1503(8), Ca1–O1 2.438(2), Ca1–O2 2.3838(19), Si1-Ca1-Si1' 180.00, Si1-Ca1-O1 89.64(5), Si1-Ca1-O2 86.56(5), Ca1-Si1-C1 108.73(8), Ca1-Si1-C7 122.11(8), Ca1-Si1-C13 115.38(8).

Crystal data and structure refinement for complex 2a.

Bond precision:C-C = 0.0042 AWavelength=0.71073Cell:a=10.137(1)b=11.833(2)c=20.015(2)alpha=90beta=105.746(6)gamma=90

Temperature: 100 K

	Calculated		Reported	
Volume	2310.7(5)		2310.7(5)	
Space group	P 21/c		P 1 21/c 1	
Hall group	-P 2ybc		-P 2ybc	
Moiety formula	2(C18 H15 Si),	, 4(C4 H8 O), Ca	C52 H62 Ca O4 Si2	
Sum formula	C52 H62 Ca O4	4 Si2	C52 H62 Ca O4 Si2	
Mr	847.28		847.28	
Dx,g cm-3	1.218		1.218	
Z	2		2	
Mu (mm-1)	0.232		0.232	
F000	908.0		908.0	
F000'	909.10			
h,k,lmax	12,14,25		12,14,25	
Nref	4754		4740	
Tmin,Tmax	0.970,0.975		0.960,0.975	
Tmin'	0.959			
Correction method= MULTI-SCAN				
Data completeness= 0.997 Theta(max)= 26.430				
R(reflections)= 0.0545(3205)		wR2(reflections)=	0.1183(4740)	
S = 1.033	Npar= 268			

Figure S18 Molecular structure of triglyme adduct **2b**. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ca1–Si1 3.175(3), Ca1–Si2 3.242(3), Ca1–O1 2.492(5), Ca1–O5 2.399(5), Si1-Ca1-Si2 178.24(7), Si1-Ca1-O1 84.85(12), Si1-Ca1-O5 87.17(12).

Crystal data and structure refinement for complex 2b.

Bond precision:		C-C = 0.0117 A			Wavelength=0.71073
Cell:	a=9.408((3)	b=15.948(5)	c=14.884(3)
	alpha=90)	beta=106.145(5)	gamma=9	0
Temperature	: 100 K				
		Calculate	d		Reported
Volume		2145.1(11	1)		2145.1(11)
Space group		Рc			P 1 c 1
Hall group		P -2yc			-P 2yc
Moiety form	ula	2(C18 H15 Si), C8 H18 O4, C Ca		, C4 H8 O	°C48 H56 Ca O5 Si2
Sum formula		C48 H56	Ca O5 Si2		C48 H56 Ca O5 Si2

Mr	809.19		809.19	
Dx,g cm-3	1.253		1.253	
Z	2		2	
Mu (mm-1)	0.248		0.248	
F000	864.0		864.0	
F000'	865.10			
h,k,lmax	11,20,18		11,19,18	
Nref	8924[4472]		8795	
Tmin,Tmax	0.931,0.956		0.929,0.957	
Tmin'	0.928			
Correction method= MULTI-SCAN				
Data completeness= 1	.97/0.99	Theta(max)= 26.540		
R(reflections)= 0.0765(4633)		wR2(reflections)=	0.2242(8795)	
S = 0.959	Npar= 508			

Computational Details

Calculations were carried out at the DFT level using the hybrid functional B3PW91⁶ with the Gaussian 03^7 suite of programs. Silicon atoms have been represented by a relativistic effective-core potential (RECP)⁸ from the Stuttgart group and their corresponding optimized basis set. Polarized all-electron triple- ζ 6-311G(d,p)⁹ basis sets were used for Ca, B, C, H, O and N. Geometry optimizations were carried out without any symmetry restriction. The nature of the extrema (minimum) was verified with analytical frequency calculations. The NBO analysis¹⁰ was carried out with an even number of f electrons for the calculations because of the technical requirement.

Cartesian coordinates of the optimized structure

HF=	-3004.3557	44 a.u.	
Ca	10.136974	0.000021	-0.000172 0.901044
Si	8.969102	-1.898770	-2.316690 -0.151455
0	7.884186	0.073493	0.982539 -0.578259
0	10.763092	-2.014239	1.237892 -0.573673
С	7.651047	-3.126938	-1.569860 -0.009317
С	6.537345	-3.601988	-2.283947 -0.149178
Η	6.376647	-3.262589	-3.304471 0.120699
С	5.630087	-4.497482	-1.717288 -0.115895

Н	4.778466	-4.844973	-2.298112 0.112735
С	5.812966	-4.953103	-0.411505 -0.133750
Η	5.108396	-5.653920	0.029423 0.111486
С	6.906395	-4.497318	0.323468 -0.123697
Η	7.057822	-4.843117	1.344288 0.101692
С	7.801019	-3.590985	-0.250591 -0.162843
Н	8.637747	-3.222480	0.341339 0.099500
C	7.965929	-1.088952	-3.774442 -0.004794
C	7 280049	0 118149	-3 548116 -0 165447
Н	7 367756	0.600012	-2.575078 0.096686
C	6 491140	0.721820	-4 528480 -0 118630
Н	5 963594	1 648451	-4 310454 0 103265
C	6 378450	0 136348	-5 788693 -0 132910
н	5 770721	0.603251	-6 559711 0 111758
C	7 052846	-1.056201	-6 047539 -0 115945
ч	6 970055	-1.525200	-7.025585.0.112850
Γ	7 827646	1 657008	5 053857 0 160042
с u	7.8270 4 0 8.335600	-1.037008	5 078616 0 106250
Γ	0.333099	2.391732	-3.278010 0.120332
C	10.136734	-3.143290	-3.243239 0.012911 2 201606 0 174602
	0.724270	-4.400508	-2.601090 - 0.174095
п	9.724270	-4.041197	-1.9/0219 0.115365
U U	11.241883	-5.520155	-3.409/33 -0.1142/1
П	11.351092	-0.344/34	-3.043328 0.108000
	12.001024	-4.891/98	-4.495270 -0.150580
H	12.709485	-5.5618/1	-4.9/6433 0.1095/5
C	11.830467	-3.589509	-4.964579-0.112694
H	12.403655	-3.239/50	-5.820/53 0.10/842
C	10.919445	-2.734930	-4.342996 -0.189643
H	10.796845	-1./2/528	-4./39062 0.112008
C	6.642225	-0.158582	0.280/15 0.023/31
H	6.819137	-0.930164	-0.469498 0.1/6099
H	6.333379	0.770804	-0.218187 0.120601
C	5.650461	-0.553050	1.360384 -0.288672
Н	5.779484	-1.610115	1.615876 0.159441
Н	4.613748	-0.399181	1.049544 0.145531
С	6.081870	0.353653	2.514641 -0.305268
Η	5.674753	1.361775	2.380724 0.148999
Н	5.764415	-0.007738	3.496358 0.145546
С	7.603272	0.369519	2.375271 0.028885
Η	8.055948	1.329249	2.631124 0.175053
Η	8.071142	-0.411129	2.985667 0.126888
С	10.373344	-2.332793	2.593714 0.017603
Η	9.300147	-2.562009	2.595922 0.134413
Η	10.563629	-1.454196	3.216319 0.172324
С	11.204700	-3.547763	2.985315 -0.295817
Η	10.700804	-4.169622	3.729969 0.147090
Η	12.164832	-3.227653	3.403156 0.154306
С	11.402876	-4.251138	1.639879 -0.297955
Н			
11	12.262189	-4.926836	1.626053 0.148360
H	12.262189 10.511502	-4.926836 -4.827599	1.626053 0.148360 1.369713 0.156268

Н	12.622036	-2.733644	0.663964 0.133094
Η	11.243951	-3.272772	-0.331927 0.175729
Si	11.305042	1.898530	2.316628 -0.151534
0	12.389762	-0.073356	-0.982782 -0.578262
Ο	9.510147	2.014294	-1.237833 -0.573722
С	12.623043	3.126698	1.569709 -0.009320
С	13.736990	3.601483	2.283589 -0.149232
Н	13.897894	3.261909	3.304023 0.120720
С	14.644227	4.496946	1.716843 -0.115893
Η	15.496036	4.844236	2.297513 0.112722
С	14.461090	4.952791	0.411176 -0.133746
Н	15.165644	5.653579	-0.029821 0.111455
С	13.367425	4.497252	-0.323603 -0.123783
Н	13.215799	4.843216	-1.344338 0.101681
С	12.472827	3.590949	0.250538 -0.162885
H	11.635926	3.222615	-0.341255 0.099498
C	12.308391	1.088628	3.774211 -0.004772
C	12.994393	-0.118367	3.547691 -0.165432
H	12.906689	-0.600115	2.574596 0.096665
С	13.783438	-0.722068	4.527925 -0.118688
Н	14.311082	-1.648608	4.309744 0.103268
C	13.896141	-0.136745	5.788207 -0.132923
Н	14.503974	-0.603676	6.559126 0.111781
C	13.221632	1.055697	6.047243 -0.115974
Η	13.304439	1.524591	7.025338 0.112835
С	12.446705	1.656546	5.053683 -0.169017
Η	11.938575	2.591192	5.278586 0.126372
С	10.135542	3.143003	3.243437 0.012882
С	9.948128	4.466171	2.802137 -0.174674
Η	10.549999	4.841121	1.976683 0.113550
С	9.032530	5.325894	3.410413 -0.114265
Η	8.922755	6.344553	3.044212 0.108668
С	8.272845	4.891376	4.495921 -0.136614
Η	7.565063	5.561401	4.977267 0.109587
С	8.443956	3.588983	4.964964 -0.112736
Η	7.870801	3.239090	5.821105 0.107828
С	9.354882	2.734475	4.343150 -0.189687
Η	9.477449	1.726987	4.739012 0.111995
С	13.631756	0.158657	-0.280985 0.023741
Η	13.454828	0.930016	0.469452 0.176076
Η	13.940722	-0.770840	0.217633 0.120605
С	14.623406	0.553530	-1.360614 -0.288693
Η	14.494293	1.610668	-1.615760 0.159459
Η	15.660154	0.399631	-1.049906 0.145529
С	14.191961	-0.352826	-2.515127 -0.305194
Η	14.599094	-1.360987	-2.381544 0.149019
Η	14.509352	0.008874	-3.496751 0.145528
С	12.670575	-0.368756	-2.375671 0.028908
Η	12.217876	-1.328371	-2.631903 0.175089
Η	12.202673	0.412177	-2.985684 0.126902
С	9.899930	2.333350	-2.593529 0.017588

Η	10.973120	2.562613	-2.595638 0.134409
Η	9.709701	1.454970	-3.216456 0.172330
С	9.068535	3.548433	-2.984696 -0.295766
Η	9.572363	4.170527	-3.729200 0.147094
Η	8.108369	3.228446	-3.402557 0.154305
С	8.870456	4.251379	-1.639027 -0.297987
Η	8.011151	4.927082	-1.624930 0.148327
Η	9.761852	4.827751	-1.368744 0.156291
С	8.693448	3.075384	-0.689140 0.018716
Η	7.651332	2.733634	-0.663449 0.133115
Η	9.029556	3.272381	0.332446 0.175739

² Y. Yamanoi, T. Taira, J. Sato, I. Nakamula, H. Nishihara, Org. Lett. 2007, 9, 4543-4546.

⁴ SADABS: Program for Empirical Absorption Correction of Area Detector Data V 2004/1, Bruker AXS Inc.:Madison, WI, USA, 2004.

⁵ (a) G. M. Sheldrick, *Acta Crystallogr., Sec. A: Found. Crystallogr.* **2008**, *64*, 112-122. (b) A. L. Speck, *Acta Crystallogr., Sec. D: Biol. Crystallogr.* **2009**, *65*, 148-155.

⁶ a) J. P. Perdew, Y. Wang, *Phys. Rev. B* **1992**, *45*, 13244-13249. b) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648-5652.

⁷ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratman, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowswi, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Jonhson, W. Chen, M. W. J. Wong, L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian 03; E.01 ed. Pittsburgh PA* 2006.

⁸ a) P. Fuentealba, L. v. Szentpaly, H. Preuss, H. Stoll, *J. Phys. B: At., Mol. Opt. Phys.* **1985** *18*, 1287-1296. b) A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuss, *Mol. Phys.* **1993**, *80*, 1431-1441.

¹ E. Buncel, T. K. Venkatachalam, U. Edlund, J. Organomet. Chem. 1992, 437, 85-89.

³ S. Harder, J. Brettar, *Angew. Chem.* **2006**, *118*, 3554-3558; *Angew. Chem. Int. Ed* **2006**, *45*, 3474-3478.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

⁹ J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss, L. Radom, J. Chem. Phys. **1997**, 107, 5016-5021.

¹⁰ A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, **88**, 899-926.