Supplementary Information
 for Ligand-Controlled E/Z Selectivity and Enantioselectivity in Pd-Catalyzed Allylation of Benzofuranones with 1,2-Disubstituted Allylic Carbonates

Kohsuke Ohmatsu, ${ }^{a}$ Mitsunori Ito, ${ }^{a}$ and Takashi Ooi* ${ }^{\text {a }, b}$
${ }^{a}$ Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
${ }^{b}$ CREST, Japan Science and Technology Agency (JST), Nagoya, 464-8603, Japan. tooi@apchem.nagoya-u.ac.jp

General Information: Infrared spectra were recorded on a Shimadzu IRAffinity-1 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-ECS400 $(400 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from the tetramethylsilane $(0.0 \mathrm{ppm})$ resonance as the internal standard $\left(\mathrm{CDCl}_{3}\right)$. Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sept $=$ septet $\mathrm{m}=$ multiplet) and coupling constants (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECS400 (101 $\mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3} ; 77.16 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}$ NMR spectra were recorded on a JEOL JNM-ECS400 $(162 \mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from $\mathrm{H}_{3} \mathrm{PO}_{4}(0.0 \mathrm{ppm})$ resonance as the external standard. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a JEOL JNM-ECS400 (376 MHz) spectrometer. Chemical shifts are reported in ppm from benzotrifluoride (-64.0 ppm) resonance as the external standard. Optical rotations were measured on a HORIBA SEPA-500 polarimeter. The high resolution mass spectra were measured on a Thermo Fisher Scientific Exactive (ESI). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Flash column chromatography was performed on PSQ60AB (spherical, $40-50 \mu \mathrm{~m}$; FUJI SILYSIA CHEMICAL Co., Inc.). Enantiomeric excesses were determined by HPLC analysis using chiral columns [φ $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, DAICEL CHIRALPAK AZ-3 (AZ3), CHIRALPAK AD-3 (AD3), CHIRALCEL OZ-3 (OZ3), and CHIRALPAK AY-3 (AY3), CHIRALPAK AS-H (ASH)] with hexane (H), isopropyl alcohol (IPA) and ethanol (EtOH) as eluent.

All air- and moisture-sensitive reactions were performed under an atmosphere of argon (Ar) in dried glassware. The manipulations for Pd-catalyzed reactions were carried out with standard Schlenk techniques under Ar. Toluene was supplied from Kanto Chemical Co., Inc. as "Dehydrated" and further purified by both A2 alumina and Q5 reactant using a GlassContour solvent dispensing system. Mesitylene was distilled from sodium metal. Benzofuranones were synthesized by following the literature methods. ${ }^{1}$ All allylic carbonates were synthesized from the corresponding allylic alcohols. ${ }^{2}$ Other simple chemicals were purchased and used as such.

[^0]
Representative Procedure for Asymmetric Allylation of Benzofuranones with 1,2-Disubstituted Allylic Carbonates:

To a Schlenk flask were added $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(2.58 \mathrm{mg}, 0.0025 \mathrm{mmol})$ and ligand $\mathbf{4 e}(10.7 \mathrm{mg}, 0.01$ mmol), and the flask was degassed by alternating vacuum evacuation/Ar backfill. Then, mesitylene (2 mL) was added, and the resulting catalyst mixture was evacuated and refilled with Ar three times. After addition of $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$, 3-benzylbenzofuranone $\mathbf{1 a}(44.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and allylic carbonate $E-2 \mathrm{aa}(46.1 \mathrm{mg}, 0.2$ mmol) were successively introduced at room temperature. After stirring for 24 h at the same temperature, the reaction mixture was filtered through a short pad of silica gel with the aid of CHCl_{3}. The resulting filtrates were evaporated and the residue was purified by column chromatography on silica gel $(\mathrm{H} / \mathrm{EtOAc}=$ $15: 1$ as eluent) to afford $\mathbf{3 a}(73.4 \mathrm{mg}, 0.194 \mathrm{mmol}, 97 \%$ yield) as a white solid.

3a: $[\alpha]_{\mathrm{D}}{ }^{23}=-22.5\left(c=0.97, \mathrm{CHCl}_{3}\right)$ for 94% ee; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(1 \mathrm{H}, \mathrm{ddd}, J=8.2,6.4$, $2.8 \mathrm{~Hz}), 7.17-7.07(5 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 5.52$ $(1 \mathrm{H}, \mathrm{s}), 3.23(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}), 1.75(3 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.5,165.6,153.0,151.2,134.4,130.2,129.2$, $128.2,128.1,127.3,124.8,123.9,122.4,111.0,80.0,54.1,48.3,45.4,28.3,19.6$; IR (neat) 2978, 2936, 2926, 1798, 1788, 1711, 1462, 1153, 1070, 881, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}_{1}{ }^{+}$([M+Na] ${ }^{+}$) 401.1723. Found 401.1722.; HPLC AZ3, H/IPA $=10: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 13.5 \mathrm{~min}$ (minor), $14.2 \min$ (major).

Characterization data for the other products $\mathbf{3}$ were described below

Characterization Data for Ion-Paired Chiral Ligand :

4c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.68-7.63(1 \mathrm{H}$, m), 7.43-7.38 (2H, m), $7.33(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz})$, 7.09-7.02 (7H, m), $6.83(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz})$, $4.72(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 3.74(6 \mathrm{H}, \mathrm{s}), 2.93(9 \mathrm{H}, \mathrm{s}), 2.90-2.80(2 \mathrm{H}, \mathrm{m})$, 2.80-2.70 ($2 \mathrm{H}, \mathrm{m}$), 2.70-2.60 $(2 \mathrm{H}, \mathrm{m}), 2.31-2.22(2 \mathrm{H}, \mathrm{m}), 1.81-1.72(6 \mathrm{H}$, $\mathrm{m}), 1.63-1.49(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2,146.0(\mathrm{~d}$, $\left.J_{\mathrm{P}-\mathrm{C}}=9.7 \mathrm{~Hz}\right), 138.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=15.5 \mathrm{~Hz}\right), 136.1,136.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=24.5 \mathrm{~Hz}\right)$, $135.7\left(\mathrm{~d}, J_{\text {P-C }}=3.9 \mathrm{~Hz}\right), 135.5,134.8\left(\mathrm{~d}, J_{\text {P-C }}=21.3 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=20.3 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{\text {P-C }}=3.9 \mathrm{~Hz}\right)$, $133.4\left(\mathrm{~d}, J_{\text {P-C }}=3.9 \mathrm{~Hz}\right), 133.2,132.9,132.7,131.9,131.1,130.9,130.7,130.7\left(\mathrm{~d}, J_{\text {P-C }}=9.7 \mathrm{~Hz}\right), 130.1,129.5$ $\left(\mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=7.7 \mathrm{~Hz}\right), 129.1,113.2,65.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=21.3 \mathrm{~Hz}\right), 55.4,52.7,29.4,27.9,23.1,23.0$, one peak for aromatic carbon was not found probably due to overlapping; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.7,-16.9$; IR (neat) $2926,2855,2835,1477,1387,1063,1013,833,810 \mathrm{~cm}^{-1}$; HRMS (ESI, positive ion mode) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{1} \mathrm{P}_{1}^{+}\left([\mathrm{M}-\mathrm{X}]^{+}\right)$402.0940. Found 402.0938. (ESI, negative ion mode) Calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{P}_{1}^{-}$([X] $)$ 567.1942. Found 567.1931.; $[\alpha]_{\mathrm{D}}{ }^{19}=-171.8\left(c=0.97, \mathrm{CHCl}_{3}\right)$

4d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.61(1 \mathrm{H}, \mathrm{m}), 7.49-7.38(4 \mathrm{H}, \mathrm{m})$, $7.34(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.15-7.03(5 \mathrm{H}, \mathrm{m}), 6.86$ $(2 \mathrm{H}, \mathrm{s}), 6.66(2 \mathrm{H}, \mathrm{s}), 6.66-6.61(2 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{d}, J=13.1 \mathrm{~Hz}), 4.67$ $(1 \mathrm{H}, \mathrm{d}, J=13.1 \mathrm{~Hz}), 3.72(6 \mathrm{H}, \mathrm{s}), 2.85(9 \mathrm{H}, \mathrm{s}), 2.85-2.66(6 \mathrm{H}, \mathrm{m})$, 2.38-2.26 (2H, m), $2.18(6 \mathrm{H}, \mathrm{s}), 1.84-1.73(6 \mathrm{H}, \mathrm{m}), 1.62-1.53(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.2,146.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=8.7 \mathrm{~Hz}\right), 138.7,138.3(\mathrm{~d}$, $\left.J_{\text {P-C }}=16.4 \mathrm{~Hz}\right), 136.1,136.1,135.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=3.9 \mathrm{~Hz}\right), 135.6,134.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=20.3 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, J_{\text {P-C }}=20.3\right.$ $\mathrm{Hz}), 133.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.8 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.8 \mathrm{~Hz}\right), 133.4,133.3,133.2,133.1,132.4,132.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=17.4\right.$ $\mathrm{Hz}), 131.1,130.9,130.7,129.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.8 \mathrm{~Hz}\right), 128.7,114.7,110.1,65.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=20.3 \mathrm{~Hz}\right), 55.3,52.8$, $29.4,27.9,23.2,23.1,20.8$, one peak for aromatic carbon was not found probably due to overlapping; ${ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.2,-17.0$; IR (neat) 2931, 2857, 2835, 1607, 1271, 1045, 818, $731 \mathrm{~cm}^{-1}$; HRMS (ESI, positive ion mode) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{1} \mathrm{P}_{1}{ }^{+}\left([\mathrm{M}-\mathrm{X}]^{+}\right)$402.0940. Found 402.0940. (ESI, negative ion mode) Calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{P}_{1}^{-}\left([\mathrm{X}]^{-}\right)$595.2255. Found 595.2245.; $[\alpha]_{\mathrm{D}}{ }^{19}=-69.8\left(c=0.99, \mathrm{CHCl}_{3}\right)$.

4e: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.71(1 \mathrm{H}, \mathrm{m}), 7.63(2 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.53-7.41(2 \mathrm{H}, \mathrm{m}), 7.40-7.31(2 \mathrm{H}, \mathrm{m})$, 7.31-7.24 (4H, m), 7.13-7.08 (1H, m), $6.85(2 \mathrm{H}, \mathrm{s}), 6.44(2 \mathrm{H}, \mathrm{s})$, 6.44-6.61 $(2 \mathrm{H}, \mathrm{m}), 4.85(1 \mathrm{H}, \mathrm{d}, J=13.1 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{d}, J=13.1 \mathrm{~Hz})$, $3.72(6 \mathrm{H}, \mathrm{s}), 2.89(9 \mathrm{H}, \mathrm{s}), 2.86-2.66(6 \mathrm{H}, \mathrm{m}), 2.35-2.26(2 \mathrm{H}, \mathrm{m}), 2.16$ $(6 \mathrm{H}, \mathrm{s}), 1.84-1.71(6 \mathrm{H}, \mathrm{m}), 1.65-1.55(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.3,146.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=8.7 \mathrm{~Hz}\right), 139.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=9.7 \mathrm{~Hz}\right), 139.6$ $\left(\mathrm{d}, J_{\text {P-C }}=9.7 \mathrm{~Hz}\right), 138.6,137.1\left(\mathrm{~d}, J_{\text {P-C }}=14.5 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d}, J_{\text {P-C }}=20.3 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d}, J_{\mathrm{JP}-\mathrm{C}}=4.8 \mathrm{~Hz}\right), 133.7(\mathrm{~d}$, $\left.J_{\text {P-C }}=20.3 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{\text {P-C }}=19.4 \mathrm{~Hz}\right), 133.6,132.4,132.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=20.3 \mathrm{~Hz}\right), 131.7\left(\mathrm{q}, J_{\mathrm{F}-\mathrm{C}}=33.9 \mathrm{~Hz}\right)$, $131.7\left(\mathrm{q}, J_{\mathrm{F}-\mathrm{C}}=33.9 \mathrm{~Hz}\right), 131.1,130.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=2.9 \mathrm{~Hz}\right), 128.6,125.9\left(\mathrm{q}, J_{\mathrm{F}-\mathrm{C}}=3.9 \mathrm{~Hz}\right), 125.9\left(\mathrm{q}, J_{\mathrm{F}-\mathrm{C}}=3.9\right.$ $\mathrm{Hz}), 123.8\left(\mathrm{q}, J_{\mathrm{F}-\mathrm{C}}=276.9 \mathrm{~Hz}\right), 123.8\left(\mathrm{q}, J_{\mathrm{F}-\mathrm{C}}=276.9 \mathrm{~Hz}\right), 114.8,110.1,65.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=21.3 \mathrm{~Hz}\right), 55.2,52.7$, $29.3,27.9,23.1,23.0,20.7$, four peaks for aromatic carbons were not found probably due to overlapping; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.3,-15.4 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.9$; IR (neat) $3017,1607,1323$, 1206, 1098, 1061, 766, $718 \mathrm{~cm}^{-1}$; HRMS (ESI, positive ion mode) Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{1} \mathrm{P}_{1}^{+}\left([\mathrm{M}-\mathrm{X}]^{+}\right)$ 470.1467. Found 470.1455. (ESI, negative ion mode) Calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{P}_{1}^{-}$([X] ${ }^{-}$) 595.2255. Found 595.2245.; $[\alpha]_{\mathrm{D}}{ }^{19}=-80.4\left(c=0.97, \mathrm{CHCl}_{3}\right)$.

Characterization Data for the Alkylated Product 3:

3b: The reaction was stirred for $48 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=+64.1\left(c=0.96, \mathrm{CHCl}_{3}\right)$ for $91 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$
NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.32-7.27(1 \mathrm{H}, \mathrm{m}), 7.22-7.14(2 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8.2$
$\mathrm{Hz}), 5.48(1 \mathrm{H}, \mathrm{s}), 2.82(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 1.77(3 \mathrm{H}, \mathrm{s})$, $1.54(3 \mathrm{H}, \mathrm{s}), 1.41(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,165.6,152.6,151.4$, $130.8,129.1,124.3,123.8,122.2,111.1,79.9,49.2,47.7,28.2,25.6,19.6$; IR (neat) $2976,2932,1790,1721$, 1694, 1464 1364, 1233, 1157, $878 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 325.1410$. Found 325.1408.; HPLC AZ3, H/IPA $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 19.0 \mathrm{~min}$ (minor), 20.5 min (major).

3c: The reaction was stirred for $98 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=+33.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$ for $90 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(1 \mathrm{H}, \mathrm{ddd}, J=7.8,5.5,3.6 \mathrm{~Hz}), 7.19-7.14(2 \mathrm{H}, \mathrm{m})$, $7.10(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 2.76(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}), 2.56(1 \mathrm{H}$, $\mathrm{d}, J=12.8 \mathrm{~Hz}), 1.98(1 \mathrm{H}, \mathrm{dd}, J=14.2,7.8 \mathrm{~Hz}), 1.86(1 \mathrm{H}, \mathrm{dd}, J=14.2,5.3 \mathrm{~Hz}), 1.70$ $(3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 1.40(9 \mathrm{H}, \mathrm{s}), 1.39-1.30(1 \mathrm{H}, \mathrm{m}), 0.74(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.66(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 179.5,165.6,153.2,150.9,129.1,124.3,124.2,122.4,111.1,79.9,52.2,50.7$, $47.4,28.3,25.5,24.1,22.8,19.8$, one peak for aromatic carbon was not found probably due to overlapping; IR (neat) 2959, 2934, 1803, 1788, 1711, 1639, 1462, 1393, 1236, 1036, $868 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 367.1880$. Found 367.1879.; HPLC AY3, $\mathrm{H} / \mathrm{IPA}=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $210 \mathrm{~nm}, 20.5 \mathrm{~min}$ (minor), 26.4 min (major).

3d: The reaction was stirred for $98 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=+28.2\left(c=1.0, \mathrm{CHCl}_{3}\right)$ for $88 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(1 \mathrm{H}, \mathrm{td}, J=7.8,1.4 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{td}, J=7.8,1.4 \mathrm{~Hz})$, $7.17(1 \mathrm{H}, \mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz})$, $3.69(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 3.27(3 \mathrm{H}, \mathrm{s}), 2.78(1 \mathrm{H}, \mathrm{d}, J=13.7$ $\mathrm{Hz}), 2.67(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}), 1.76(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6$, $165.5,153.4,150.8,129.4,127.9,124.5,124.3,122.4,111.0,80.0,77.1,59.7,53.3,44.3,28.3,19.6$; IR (neat) $3003,2936,1798,1711,1464,1366,1229,1040,881 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}_{1}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 355.1516. Found 355.1512.; HPLC OZ3, H/IPA $=10: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 5.7 \mathrm{~min}$ (minor), 6.7 min (major).

3e: The reaction was stirred for $72 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=+48.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$ for $90 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(1 \mathrm{H}, \mathrm{td}, J=7.8,1.4 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.4$ $\mathrm{Hz}), 7.16-7.10(2 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{dq}, J=11.0,7.3 \mathrm{~Hz}), 3.90$ $(1 \mathrm{H}, \mathrm{dq}, J=11.0,7.3 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz}), 2.71$ $(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}), 1.75(3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 1.41(9 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.2,168.8,165.3,153.7,149.8,129.6,128.2,124.1,123.6,123.1,111.0$, $80.0,61.2,49.5,48.7,42.3,28.2,20.0,13.8$; IR (neat) $2978,2936,1790,1479,1366,1157,1069,881 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$397.1622. Found 397.1616.; HPLC OZ3, H/IPA = 10:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 20.3 \mathrm{~min}$ (major), 23.5 min (minor).

3f: The reaction was stirred for $98 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=-30.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$ for $93 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.10(3 \mathrm{H}, \mathrm{m}), 6.89(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}), 6.81(1 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 5.53(1 \mathrm{H}, \mathrm{d}, J=$ $1.2 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.10(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{d}$, $J=13.3 \mathrm{~Hz}), 2.73(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 1.78(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 178.8,165.5,156.3,151.3,146.9,134.3,130.2,129.0,128.2,127.3,122.3,114.1$, $111.4,110.9,80.0,56.0,54.6,48.1,45.3,28.3,19.5$; IR (neat) $2976,2938,2872,1798,1788,1711,1483$, 1234, 1157, 1049, 1028, $858 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$431.1829. Found 431.1826.; HPLC AD3, H/IPA $=97: 3$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 21.4 \mathrm{~min}$ (minor), $24,7 \mathrm{~min}$ (major).

3g: The reaction was stirred for $48 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=-41.7\left(c=0.96, \mathrm{CHCl}_{3}\right)$ for $97 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}), 7.17-7.11(4 \mathrm{H}, \mathrm{m}), 6.86(2 \mathrm{H}$, $\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{d}, J=$ $13.3 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.73(1 \mathrm{H}, \mathrm{d}, J=13.3$ $\mathrm{Hz}), 1.79(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 1.41(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8$, $165.4,151.4,150.6,133.9,130.1,129.9,129.3,129.3,128.3,127.5,124.9,122.7,112.1,80.1,54.4,48.1,45.3$, $28.2,19.5$; IR (neat) $2976,2932,1813,1805,1796,1711,1470,1366,1236,1227,1032,880,826 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Cl}_{1} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$435.1334. Found 435.1331.; HPLC AD3, H/IPA = 97:3, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 17.6 \mathrm{~min}(R), 20.6 \mathrm{~min}(S)$.

3h: The reaction was stirred for $36 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=-18.4\left(c=0.95, \mathrm{CHCl}_{3}\right)$ for 92% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-7.07(3 \mathrm{H}, \mathrm{m}), 7.01(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.94$ $(1 \mathrm{H}, \mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{brs}), 5.52(1 \mathrm{H}$, $\mathrm{d}, J=0.9 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.10(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{d}, J$ $=13.3 \mathrm{~Hz}), 2.72(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.32(3 \mathrm{H}, \mathrm{s}), 1.75(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 178.9,165.6,153.1,151.6,139.6,134.5,130.2,128.1,127.2,124.8,124.6,124.5,122.3,111.6,79.9$, 53.9, 48.3, 45.3, 28.3, 21.8, 19.6; IR (neat) 2976, 2924, 1803, 1798, 1709, 1454, 1364, 1152, 1094, 1032, 860 cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$415.1880. Found 415.1878.; HPLC AZ3, H/IPA $=$ 99:1, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 26.2 \mathrm{~min}$ (minor), 31.8 min (major).

3i: The reaction was stirred for $36 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{22}=-17.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$ for $90 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(1 \mathrm{H}, \mathrm{ddd}, J=7.8,6.4,2.8 \mathrm{~Hz}), 7.18-7.08(5 \mathrm{H}, \mathrm{m}), 6.88$ $(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.87-6.83(2 \mathrm{H}, \mathrm{m}), 5.60(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 4.05(2 \mathrm{H}, \mathrm{q}, J=7.3$ $\mathrm{Hz}), 3.24(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz})$, $2.79(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 1.80(3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 1.21(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.4,166.1,153.1,153.0,134.3,130.2,129.3,128.2,127.9,127.4,124.8,124.0,120.6,111.0,59.8,54.1$, $48.2,45.4,19.9,14.3$; IR (neat) 3032, 2980, 1802, 1713, 1447, 1221, 1152, 1069, 880, $754 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$373.1410. Found 373.1411.; HPLC AZ3, H/IPA $=10: 1$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 21.6 \mathrm{~min}$ (minor), 24.3 min (major).

3j: The reaction was stirred for $48 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=-23.0\left(c=1.1, \mathrm{CHCl}_{3}\right)$ for $85 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.20(1 \mathrm{H}, \mathrm{m}), 7.18-7.14(2 \mathrm{H}, \mathrm{m}), 7.14-7.08$, $(3 \mathrm{H}$, $\mathrm{m}), 6.89(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.87-6.83(2 \mathrm{H}, \mathrm{m}), 5.26\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=17.4 \mathrm{~Hz}\right), 3.48$ $\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=0.9 \mathrm{~Hz}\right), 3.45\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=0.9 \mathrm{~Hz}\right), 3.24(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.13$ $(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 1.77\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{P}-\mathrm{H}}=3.6 \mathrm{~Hz}, J=0.9\right.$ $\mathrm{Hz}), ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.4,157.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}\right), 153.1,134.1,130.2,129.4,128.2,128.0$, $127.4,124.8,124.1,116.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=187.7 \mathrm{~Hz}\right), 111.0,54.2,51.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=3.9 \mathrm{~Hz}\right), 48.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=24.2 \mathrm{~Hz}\right)$, 45.4, $21.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=7.7 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.6$; IR (neat) 2951, 2849, 1796, 1773, 1618, 1464, 1248, 1042, 1018, $880 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}_{1} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$409.1175. Found 409.1159.; HPLC OZ3, H/IPA/EtOH $=9: 1: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 45.3 \mathrm{~min}$ (minor), 49.2 \min (major).

$\mathbf{3 k}$: The reaction was stirred for $36 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{23}=-11.0\left(c=0.96, \mathrm{CHCl}_{3}\right)$ for $91 \% \mathrm{ee} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(1 \mathrm{H}, \mathrm{td}, J=7.8,1.8 \mathrm{~Hz}), 7.20-7.09(5 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}), 6.86-6.83(2 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.12$ $(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}), 1.70(1 \mathrm{H}, \mathrm{d}, J=$ $0.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 178.0,158.9,152.9,133.8,130.0,129.7,128.2,127.5,127.4,124.3$, $124.3,116.2,111.2,100.1,54.0,45.3,45.3,22.3$; IR (neat) $3032,2922,2218,1807,1788,1620,1462,1225$, 1053, 1038, $881 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{1} \mathrm{Na}_{1}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 326.1151$. Found 326.1150.; HPLC $\mathrm{AD} 3, \mathrm{H} / \mathrm{IPA}=10: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 12.6 \mathrm{~min}($ minor $), 14.0 \mathrm{~min}$ (major).

31: The reaction was stirred for $36 \mathrm{~h} .[\alpha]_{\mathrm{D}}{ }^{22}=-19.1(c=0.97, \mathrm{MeOH})$ for $45 \% \mathrm{ee},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.07(5 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J$ $=7.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 5.42(1 \mathrm{H}, \mathrm{s}), 3.24(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{d}$, $J=13.3 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.76(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{dq}, J=$ $12.8,7.3 \mathrm{~Hz}), 2.14(1 \mathrm{H}, \mathrm{dq}, J=12.8,7.3 \mathrm{~Hz}), 1.39(9 \mathrm{H}, \mathrm{s}), 0.92(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 178.5,165.3,156.7,153.1,134.4,130.2,129.2,128.2,127.3,124.7,123.9,122.1,111.0,80.0,54.2$, 45.4, $44.5,28.3,25.4,13.0$, one peak for aromatic carbon was not found probably due to overlapping; IR (neat) 2976, 2938, 1803, 1755, 1713, 1445, 1261, 1144, 880, $791 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}_{1}{ }^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 415.1885$. Found 415.1878.; HPLC ASH, H/IPA $=10: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 8.9$ \min (minor), $9.9 \min$ (major).

Crystallographic Structure Determination:

Recrystallization of $\mathbf{3 g}, \mathbf{3 j}$ and $\mathbf{3 k}$: A single crystal of $\mathbf{3 g}$ was obtained from hexane solvent at $0{ }^{\circ} \mathbf{C}, \mathbf{3 j}$ was obtained from hexane/ CHCl_{3} solvent system at $0{ }^{\circ} \mathrm{C}$ and $\mathbf{3 k}$ was obtained from $\mathrm{Et}_{2} \mathrm{O}$ solvent at room temperature.

The single crystal thus obtained was mounted on CryoLoop. Data of X-ray diffraction were collected at 123 K on a Brucker SMART APEX CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda=$ $0.71073 \AA$ A). An absorption correction was made using SADABS. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on F^{2} by using SHELXTL. ${ }^{3}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions. The crystallographic data are summarized in the following table.

Table S1. Crystal data and structure refinement for $\mathbf{3 g}$

Empirical formula	C 24 H 25 Cl O 4	
Formula weight	412.89	
Temperature	$123(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Orthorhombic	
Space group	P 212121	$\alpha=90^{\circ}$.

[^1]| | $\mathrm{b}=7.7509(17) \AA$ | |
| :---: | :---: | :---: |
| | $\mathrm{c}=42.666(9) \AA$ | $\gamma=90^{\circ}$. |
| Volume | 2133.2(8) \AA^{3} | |
| Z | 4 | |
| Density (calculated) | $1.286 \mathrm{Mg} / \mathrm{m}^{3}$ | |
| Absorption coefficient | $0.206 \mathrm{~mm}^{-1}$ | |
| F(000) | 872 | |
| Crystal size | $0.50 \times 0.45 \times 0.40$ | |
| Theta range for data collection | 0.954 to 28.317°. | |
| Index ranges | $-8<=\mathrm{h}<=8,-9<=\mathrm{k}$ | $=1<=48$ |
| Reflections collected | 15427 | |
| Independent reflections | $5294[\mathrm{R}(\mathrm{int})=0$. | |
| Completeness to theta $=25.242^{\circ}$ | 99.9 \% | |
| Absorption correction | None | |
| Refinement method | Full-matrix least-s | |
| Data / restraints / parameters | 5294 / 0 / 266 | |
| Goodness-of-fit on F^{2} | 0.719 | |
| Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$] | $\mathrm{R} 1=0.0419, \mathrm{wR}$ | |
| R indices (all data) | $\mathrm{R} 1=0.0506, \mathrm{wR} 2$ | |
| Absolute structure parameter | 0.03(3) | |
| Extinction coefficient | n / a | |
| Largest diff. peak and hole | 0.391 and -0.291 | |

Figure S1. Molecular structure of $\mathbf{3 g}$. All calculated hydrogen atoms are omitted for clarity. green = chlorine, red $=$ oxygen, black $=$ carbon .

Table S2. Crystal data and structure refinement for $\mathbf{3 j}$

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

C21 H23 O5 P
386.36

123(2) K
$0.71073 \AA$
Orthorhombic
P 212121

$$
\begin{array}{ll}
\mathrm{a}=8.647(3) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=9.403(4) \AA & \beta=90^{\circ} . \\
\mathrm{c}=24.219(9) \AA & \gamma=90^{\circ} .
\end{array}
$$

Volume	1969.0(13) \AA^{3}
Z	4
Density (calculated)	$1.303 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.168 \mathrm{~mm}^{-1}$
F(000)	816
Crystal size	$0.30 \times 0.25 \times 0.21 \mathrm{~mm}^{3}$
Theta range for data collection	2.324 to 28.273°.
Index ranges	$-7<=\mathrm{h}<=11,-12<=\mathrm{k}<=10,-29<=\mathrm{l}<=32$
Reflections collected	13602
Independent reflections	$4824[\mathrm{R}(\mathrm{int})=0.0443]$
Completeness to theta $=25.242^{\circ}$	98.9 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4824 / 0 / 247
Goodness-of-fit on F^{2}	1.184
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0789, \mathrm{wR} 2=0.2183$
R indices (all data)	$\mathrm{R} 1=0.1131, \mathrm{w} 2=0.2892$
Absolute structure parameter	0.05(5)
Extinction coefficient	n / a
Largest diff. peak and hole	1.425 and -1.438 e. \AA^{-3}

Figure S2. Molecular structure of $\mathbf{3 j}$. All calculated hydrogen atoms are omitted for clarity. Purple $=$ phosphorus, red $=$ oxygen, black $=$ carbon.

Table S3. Crystal data and structure refinement for $\mathbf{3 k}$

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z

C20 H17 N O2
303.35

123(2) K
$0.71073 \AA$
Monoclinic
P 21

$$
\begin{array}{ll}
\mathrm{a}=6.6395(10) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=15.610(2) \AA & \beta=91.710(3)^{\circ} . \\
\mathrm{c}=7.8147(12) \AA & \gamma=90^{\circ} .
\end{array}
$$

Density (calculated)	$1.244 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.080 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	320
Crystal size	$0.5 \times 0.45 \times 0.4 \mathrm{~mm}^{3}$
Theta range for data collection	2.608 to 28.270°.
Index ranges	$-6<=\mathrm{h}<=8,-20<=\mathrm{k}<=17,-10<=1<=10$
Reflections collected	5814
Independent reflections	$3186[\mathrm{R}(\mathrm{int})=0.0243]$
Completeness to theta $=25.242^{\circ}$	99.9%
Absorption correction	None
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$3186 / 1 / 209$
Goodness-of-fit on F^{2}	0.962
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0478, \mathrm{wR} 2=0.1204$
R indices (all data)	$\mathrm{R} 1=0.0504, \mathrm{wR} 2=0.1233$
Absolute structure parameter	$0.1(8)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.295 and -0.232 e. \AA^{-3}

Figure S3. Molecular structure of 3k. All calculated hydrogen atoms are omitted for clarity. blue $=$ nitrogen, red $=$ oxygen, black $=$ carbon.

Copies of 1 H and ${ }_{13} \mathrm{C}$ NMR Spectra:

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

$3 e$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Copies of HPLC Chromatograms:

3b

3c

3d

3e

3g

3h

$3 i$

3j

3k

31

[^0]: ${ }^{1}$ (a) Shaw, S. A.; Aleman, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925. (b) Azzena, U.; Pisano, L.; Pittalis, M. Appl. Organomet. Chem. 2008, 22, 523. (c) Kalinin, A. V.; Miah, M. A. J.; Chattopadhyay, S.; Tsukazaki, M.; Wicki, M.; Nguen, T.; Coelho, A. L.; Kerr, M.; Snieckus, V. Synlett. 1997, 839.
 ${ }^{2}$ Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880.

[^1]: ${ }^{3}$ Sheldrick, G. M. SHELXTL 5.1, Bruker AXS Inc., Madison, Wisconsin, 1997.

