Chemical Communications

SUPPORTING INFORMATION

Highly Enantioselective Synthesis of α-Azido-β-Hydroxy Methyl Ketones Catalyzed by a Cooperative Proline/Guanidinium Salt System

Ángel Martínez-Castañeda, Kinga Kędziora, Iván Lavandera, Humberto Rodríguez-Solla, Carmen Concellón* and Vicente del Amo*

Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/ Julián Claveria 8, 33006, Oviedo, Spain

ccf@uniovi.es; vdelamo@uniovi.es

General	SI_3
Synthesis of α-azidoacetone 5	SI_4
Standard procedure for the synthesis of α -azido- β -hydroxy ketones 7a-i (SP1)	SI_4
General protocols for the ADH-catalyzed synthesis of alcohols 11d and 12d	SI_4
Effect of the pH and cofactor recycling system on the stability of <i>anti</i> -7d in aqueous	SI_4
media	
Bioreduction of ketone <i>anti</i> -7d with <i>E. coli</i> /ADH-A (SP2)	SI_4
Bioreduction of ketone <i>anti</i> -7d with LBADH (SP3)	SI_5
Table S1. Screening of reaction time and stoichiometry (ratio aldehyde 4a/azidoacetone	SI_6
5) in the (<i>S</i>)-proline/tetrafluoroborate guanidinium salt co-catalyzed reaction	
Table S2. Screening of different guanidinium salt's anions in the (S)-	SI_7
proline/guanidinium salt co-catalyzed reaction	
Table S3. Screening of different stoichiometries in the (S)-proline/guanidinium salt 6 co-	SI_8
catalyzed reaction	
Table S4. Screening of reaction time and temperatures in the (S)-proline/guanidinium	SI_9
salt 6 co-catalyzed reaction	
Table S5. Screening of standard organic solvents in the (S)-proline/guanidinium salt 6	SI_10
co-catalyzed reaction	
Synthesis of (3 <i>S</i> ,4 <i>S</i>)-3-azido-4-hydroxy-4-(4-nitrophenyl)butan-2-one (7a)	SI_11
Synthesis of (3 <i>S</i> ,4 <i>S</i>)-3-azido-4-hydroxy-4-(3-nitrophenyl)butan-2-one (7b)	SI_14
Synthesis of (3 <i>S</i> ,4 <i>S</i>)-3-azido-4-hydroxy-4-(2-nitrophenyl)butan-2-one (7c)	SI_17
Synthesis of (3 <i>S</i> ,4 <i>S</i>)-3-azido-4-hydroxy-4-phenylbutan-2-one (7d)	SI_19
Synthesis of (3S,4S)-3-azido-4-(4-chlorophenyl)-4-hydroxybutan-2-one (7e)	SI 22

Synthesis of (3 <i>S</i> ,4 <i>S</i>)-3-azido-4-(4-bromophenyl)-4-hydroxybutan-2-one (7f)	SI_25
Synthesis of (3 <i>S</i> ,4 <i>S</i>)-3-azido-4-hydroxy-4-(4-methoxycarbonylphenyl)butan-2-one (7g)	SI_28
Synthesis of (3 <i>S</i> ,4 <i>R</i>)-3-azido-4-(furan-2-yl)-4-hydroxybutan-2-one (7 h)	SI_31
Synthesis of (3 <i>S</i> ,4 <i>R</i>)-3-azido-4-hydroxy-4-(pyridin-2-yl)butan-2-one (7 i)	SI_34
Synthesis of (1S,2R,3S)-2-azido-1-phenylbutane-1,3-diol (11d)	SI_37
Synthesis of (1 <i>S</i> ,2 <i>R</i> ,3 <i>R</i>)-2-azido-1-phenylbutane-1,3-diol (12d)	SI_39
Synthesis of $(3S,4S)$ -3-azido-4-hydroxy-4-(4-methoxycarbonylphenyl)butan-2-one $(7g)$ Synthesis of $(3S,4R)$ -3-azido-4-(furan-2-yl)-4-hydroxybutan-2-one $(7h)$ Synthesis of $(3S,4R)$ -3-azido-4-hydroxy-4-(pyridin-2-yl)butan-2-one $(7i)$ Synthesis of $(1S,2R,3S)$ -2-azido-1-phenylbutane-1,3-diol $(11d)$ Synthesis of $(1S,2R,3R)$ -2-azido-1-phenylbutane-1,3-diol $(12d)$	SI_28 SI_32 SI_34 SI_37 SI_37

General

All commercially available reagents and solvents were used without further purification unless otherwise stated. Liquid aldehydes were in all cases distilled under reduced pressure before use. LBADH from Lactobacillus brevis was obtained from Codexis. ADH from Rhodococcus ruber (ADH-A) was obtained from Prof. Wolfgang Kroutil at the University of Graz (Austria) and has been overexpressed on *E. coli* following the methodology previously described.¹ Flash chromatography of reaction products was carried out using Silica 60A, particle size 230-400 micron (Merck). Analytical thin layer chromatography (TLC) was performed on DC-Alufolien Kieselgel 60F₂₅₄ 0.2 mm plates (Merck) and compounds were visualised by UV fluorescence or 5% phosphomolybdic acid in methanol. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AC-300 or a Bruker DPX-300 spectrometer, using deuterated solvents and were referenced internally to the residual solvent peak ($\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.36$ ppm) signal.² Coupling constants (J-values) are given in hertz (Hz). The DEPT 135 technique was used to assign methylene (CH₂) signals. Chemical shifts are reported as follows: value (number of protons, description of absorption, coupling constant(s) where applicable, assignment). NMR spectra assignation was aided by comparison with literature values for similar compounds. In this experimental section only clear identifiable peaks are assigned. HPLC analyses on chiral stationary phases were performed on an Agilent 1100 Series apparatus.

^[1] K. Edegger, C. C. Gruber, T. M. Poessl, S. R. Wallner, I. Lavandera, K. Faber, F. Niehaus, J. Eck, R. Oehrlein, A. Hafner, W. Kroutil, *Chem. Commun.* 2006, 2402-2404.
[2] H. F. Gottlieb, V. Kotlwar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.

Synthesis of α-azidoacetone 5 (1-azido-2-propanone).

Sodium azide (2.60 g, 40 mmol) was poured onto a solution of chloroacetone (1.85 g, 1.6 mL, 20 mmol) in dry acetone (50 mL). The heterogeneous reaction mixture was vigorously stirred at room temperature for 24 h before it was filtered and the filtrate was washed with acetone. The mother liquors were concentrated under pressure and the resulting oil was diluted with Et_2O (50 mL) and washed with distilled water (2 x 15 mL). The organic layer was dried (MgSO₄), and the solvent and volatiles were removed in vacuum, affording the title compound **5** (1.90 g, 96%) as a pale-yellow oil.

Standard procedure for the synthesis of α-azido-β-hydroxy ketones 7a-i (SP1).

Tetraphenylborate guanidinium salt 6 (13.8 mg, 0.03 mmol), (S)-proline (2.3 mg, 0.02 mmol), aldehyde 4a-i (0.2 mmol), and azidoacetone 5 (198 mg, 2.0 mmol) were weighed together inside a screw-capped test tube in the indicated order. The resulting suspension was stirred for 120 h at -10 °C. Then, it was quenched with NH₄Cl (aq. sat.), extracted with DCM (2 x 15 mL) and the organic liquors dried (MgSO₄). Solvents and excess of azidoacetone 5 were eliminated under reduced pressure. Flash chromatography of silica gel afforded pure α -azido- β -hydroxy ketones 7.

General protocols for the ADH-catalyzed synthesis of alcohols 11d and 12d

Effect of the pH and cofactor recycling system on the stability of *anti*-7d in aqueous media

Blank reactions without enzyme were performed in the presence of *anti*-7d (1.5 mg) dissolved in Tris-HCl buffer (0.5 mL, 50 mM) at pH 6.5 and 7.5 with the addition of isopropanol (25 μ L, 5% v/v) or glucose (50 mM). The reaction tubes were shaken horizontally under orbital agitation at 30 °C for 24 h and 150 rpm. After that time, the mixture was extracted with EtOAc (3 x 0.5 mL). The organic layers were separated by centrifugation (1.5 min, 13000 rpm) and dried over anhydrous Na₂SO₄. Finally, supernatant was transferred to a fresh vial and the organic solvent was evaporated with a N₂ flow. The substrate stability was determined by HPLC analysis. It was observed that at pH 7.5 and in the absence of 2-PrOH the substrate suffered from slight epimerization at C*H*-N3 and C*H*-OH positions, therefore the bioreductions were done at pH 6.5 using 2-PrOH as hydrogen donor.

Bioreduction of ketone anti-7d with E. coli/ADH-A (SP2)

To 20 mg of overexpressed *E. coli*/ADH-A (lyophilised cells) in an Eppendorf vial (1.5 mL), 510 μ L of Tris-HCl buffer (50 mM, pH 6.5), NADH (60 μ L of a 10 mM solution, final concentration: 1 mM), 2-propanol (30 μ L, 5% v/v) and substrate *anti*-**7d** (3.7 mg,

30 mM) were added. The reaction was set up in duplicate and the microtubes were shaken horizontally at 30 °C under orbital agitation for 24 h and 150 rpm. After that time, the reaction products were extracted with EtOAc (3 x 0.5 mL). The organic layers were separated by centrifugation (1.5 min, 13000 rpm) and dried over anhydrous Na_2SO_4 . Supernatant from both tubes was transferred to the same fresh vial and the organic solvent was evaporated with a N_2 flow. Finally, the crude was dried under high vacuum. The conversion rate and absolute configuration were determined by ¹H-NMR spectroscopy.

Bioreduction of ketone anti-7d with LBADH (SP3)

In an Eppendorf vial (1.5 mL), LBADH (10 μ L, 3 U) was added to 450 μ L of Tris-HCl buffer (50 mM, pH 6.5), followed by NADPH (60 μ L of a 10 mM solution, final concentration: 1 mM), MgCl₂ (60 μ L of a 10 mM solution, final concentration: 1 mM), 2-propanol (30 μ L, 5% v/v) and substrate *anti*-7d (3.7 mg, 30 mM). The reaction was set up in duplicate and the microtubes were shaken horizontally at 30 °C for 24 h and 150 rpm. After that time, the reaction products were extracted with EtOAc (3 x 0.5 mL). The organic layers were separated by centrifugation (1.5 min, 13000 rpm) and dried over anhydrous Na₂SO₄. Supernatant from both tubes was transferred to the same fresh vial and organic solvent was evaporated with a N₂ flow. Finally, the crude was dried under high vacuum. Conversion rate and absolute configuration were determined by ¹H-NMR spectroscopy.

Table S1. Screening of reaction time and stoichiometry (ratio aldehyde 4a/azidoacetone 5) in the (*S*)-proline/tetrafluoroborate guanidinium salt co-catalyzed reaction.^[a]

[a] Reaction conditions: azidoacetone **5** (amount stated in the table), **4a** (0.2 mmol), (S)-proline (15 mol%), tetrafluoroborate guanidinium salt (10 mol%), no solvent. The reaction mixture was left to stand the indicate time inside a standard laboratory fridge (0-3 °C) with no stirring. [b] Number of equivalents of azidoacetone **5** used, respect to aldehyde **4a**. [c] Determined by ¹H NMR spectroscopy of the crude reaction mixtures. Conversion of aldehyde **4a** (limiting reagent) into α -azido- β -hydroxy ketone **7a**. [d] Diastereoisomeric ratio of *anti*- to *syn*-**7a** determined by ¹H NMR spectroscopy of the crude reaction mixtures. [e] Enantiomeric excess of α -azido- β -hydroxy ketones *anti*-**7a** as determined by HPLC analysis on chiral stationary phases of the crude reaction mixtures. [f] Reaction stirred at 25 °C.

We started to explore reaction conditions, which proved to be successful in related transformations disclosed by our group,³ employing a tetrafluoroborate guanidinium salt. 10 equivalents of azidocetone **5**, respect to aldehyde **4a**, were necessary to optimise d.r. values (Table S1, entry 3).

^[3] a) A. Martínez-Castañeda, B. Poladura, H. Rodríguez-Solla, C. Concellón, V. del Amo, *Org. Lett.* **2011**, *13*, 3032-3035. b) A. Martínez-Castañeda, B. Poladura, H. Rodríguez-Solla, C. Concellón, V. del Amo, *Chem. Eur. J.* **2012**, *18*, 5188-5190.

Table S2. Screening of different guanidinium salt's anions in the (S)-proline/guanidinium salt co-catalyzed reaction.^[a]

[a] Reaction conditions: azidoacetone 5 (2.0 mmol), 4a (0.2 mmol), (S)-proline (15 mol%), guanidinium salt (10 mol%), no solvent. The reaction mixture was left to stand for 48 h inside a standard laboratory fridge (0-3 °C) with no stirring. [b] Determined by ¹H NMR spectroscopy of the crude reaction mixtures. Conversion of aldehyde 4a (limiting reagent) into α -azido- β -hydroxy ketone 7a. [c] Diastereoisomeric ratio of *anti*- to *syn*-7a determined by ¹H NMR spectroscopy of the crude reaction mixtures. [d] Enantiomeric excess of α -azido- β -hydroxy ketones *anti*-7a as determined by HPLC analysis on chiral stationary phases of the crude reaction mixtures.

As we have previously demonstrated, the nature of the anion accompanying the guanidinium salt core in (*S*)-proline/guanidinium salt co-catalytic systems is of central relevance.⁴ The results from Table S2 evidence that guanidinium salt **6** is the most advantageous for this transformation (Table S2, entry 2).

^{[&}lt;sup>4</sup>]A. Martínez-Castañeda, H. Rodríguez-Solla, C. Concellón, V. del Amo, J. Org. Chem. 2012, 77, 10375-10381.

Table S3. Screening of different stoichiometries in the (S)-proline/guanidinium salt **6** cocatalyzed reaction.^[a]

Me N_3	+ H 4a	$ \begin{array}{c} $	$\overrightarrow{BPh_4}$ \overrightarrow{H} H	0 OH <u>:</u> N ₃ 7a	NO ₂
Entry	(S)-proline	6 (mol %)	Conversion (%) ^[b]	d.r. ^[c]	ee (%) ^[d]
	(mol %)				
1	15	10	>99	85:15	95
2	5	5	>99	84:16	95
3	10	10	>99	85:15	96
4	10	15	>99	85:15	97
5	3	3	>99	73:27	93
6	2	2	97	73:27	n.d.
7	5	15	>99	81:19	97
8	5	10	>99	83:17	97
9	10	20	>99	83:17	98
10	15	20	>99	81:19	97

[a] Reaction conditions: azidoacetone 5 (2.0 mmol), 4a (0.2 mmol), (S)-proline and guanidinium salt $\hat{\mathbf{6}}$ (amounts stated in the table), no solvent. The reaction mixture was left to stand for 48 h inside a standard laboratory fridge (0-3 °C) with no stirring. [b] Determined by ¹H NMR spectroscopy of the crude reaction mixtures. Conversion of aldehyde 4a (limiting reagent) into α -azido- β -hydroxy ketone 7a. [c] Diastereoisomeric ratio of *anti*- to *syn*-7a determined by ¹H NMR spectroscopy of the crude reaction mixtures. [d] Enantiomeric excess of α -azido- β -hydroxy ketones *anti*-7a as determined by HPLC analysis on chiral stationary phases of the crude reaction mixtures.

Considering this set of experiments, the best conditions (Table S3, entry 4) were adopted in further optimisation screenings.

Table S4. Screening of reaction time and temperatures in the (*S*)-proline/guanidinium salt **6** co-catalyzed reaction.^[a]

Me N_3	+ H 4a	$NO_2 \xrightarrow{+}{NO_2} $	$ \begin{array}{c} BPh_4 \\ BPh_4 \\ mol\%) \\ ne (10 mol\%) \\ Me \\ NEAT \\ \end{array} $	о ОН 	NO ₂
Entry	Time (h)	Temp. (°C)	Conversion (%) ^[b]	d.r. ^[c]	ee (%) ^[d]
1	72	-5	>99	86:14	97
2	72	-10	87	91:9	97
3	120	-10	>99	90:10	97
4	144	-20	40	90:10	n.d.

[a] Reaction conditions: azidoacetone 5 (2.0 mmol), 4a (0.2 mmol), (S)-proline (10 mol%), guanidinium salt 6 (15 mol%), no solvent. The reaction mixture was stirred the indicated time at the temperature stated in the table. [b] Determined by ¹H NMR spectroscopy of the crude reaction mixtures. Conversion of aldehyde 4a (limiting reagent) into α -azido- β -hydroxy ketone 7a. [c] Diastereoisomeric ratio of *anti*- to *syn*-7a determined by ¹H NMR spectroscopy of the crude reaction mixtures. [d] Enantiomeric excess of α -azido- β -hydroxy ketones *anti*-7a as determined by HPLC on chiral stationary phases of the crude reaction mixtures.

The finest reaction conditions for our transformation were found in Table S4, entry 3.

Table S5. Screening of standard organic solvents in the (S)-proline/guanidinium salt **6** cocatalyzed reaction.^[a]

[a] Reaction conditions: azidoacetone 5 (2.0 mmol), 4a (0.2 mmol), (S)-proline (10 mol%), guanidinium salt 6 (15 mol%), solvent (1 mL). The reaction mixture was stirred for 120 h at -10 °C. [b] Determined by ¹H NMR spectroscopy of the crude reaction mixtures. Conversion of aldehyde 4a (limiting reagent) into α -azido- β -hydroxy ketone 7a. [c] Diastereoisomeric ratio of *anti*- to *syn*-7a determined by ¹H NMR spectroscopy of the crude reaction mixtures. [d] Enantiomeric excess of α -azido- β -hydroxy ketones *anti*-7a as determined by HPLC on chiral stationary phases of the crude reaction mixtures. [e] The enantiomeric excess of the product was not determined as a consequence of the moderate conversion.

Table S5 outcasts the results of the (*S*)-proline/guanidinium salt **6** co-catalyzed reaction performed in the presence of typical organic solvents. For comparison with optimal reaction conditions (Table S4, entry 3) in all the experiments a 10-fold excess of azidoacetone **5** respect to aldehyde **4a** was used. Reactions carried out in toluene do not occur to any extent. CH_2Cl_2 , when used as the solvent, affords product **7a** with moderate conversion. Reactions carried out in DMSO render the desired product *anti*-**7a** with good d.r. and excellent *ee*. As DMSO is frozen at the temperature of the experiment (-10 °C), thus there is no observed agitation in the reaction mixture, Table S5, entry 3, was somehow hard to reproduce.

Synthesis of (3*S*,4*S*)-3-azido-4-hydroxy-4-(4-nitrophenyl)butan-2-one (7a)

Prepared in 90% yield according to procedure **SP1**. Orangish solid. Purified by flash chromatography (Hex/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): $\delta = 8.26$ (2H, d, J = 8.7 Hz, Ar*H*), 7.60 (2H, d, J = 8.7 Hz, Ar*H*), 5.15 (1H, dd, J = 6.9, 2.6 Hz, CHOH), 4.07 (1H, d, J = 6.9 Hz, CHN₃), 3.10 (1H, d, J = 3.7 Hz, OH), 2.23 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 205.4$ (C=O), 148.4 (ArC), 146.4 (ArC), 128.1 (2 x ArCH), 124.1 (2 x ArCH), 73.9 (CHOH), 72.4 (CHN₃), 29.3 (CH₃); MS (ES⁺) m/z (%) = 251 (100); HRMS (ES⁺): m/z calcd. for [M+H]⁺ [C₁₀H₁₁N₄O₄]⁺ 251.0780, found 251.0791.

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

Compound *anti*-7a was obtained in a maximum of 97% *ee*, from crude reaction mixtures, and in 94% *ee* as an isolated pure product. The optical purity was determined by HPLC on a chiralpak OD-H column (hexane/2-propanol 90:10), flow rate 1.0 mL/min, λ 254 nm.

HPLC chromatogram of crude product 7a

Area Percent Report							
Sorted By :	Signal						
Multiplier :	1.0000						
Dilution :	1.0000						
Use Multiplier & Dilution	n Pactor with ISIDS						
Signal 1: DADI A, Sig-254	1,4 Ref=360,100						
Peak RetTime Type Width	Area Height Area						
# [min] [min]	[mAU*s] [mAU] %						
	-						
1 16.151 BB 0.5556	5 2.54251e4 697.01508 98.4249						
2 18.205 BB 0.6127	7 406.87152 9.11707 1.5751						
Totals :	2.58320e4 706.13215						

*** End of Report ***

Synthesis of (3S,4S)-3-azido-4-hydroxy-4-(3-nitrophenyl)butan-2-one (7b)

Prepared in 91% yield according to procedure **SP1**. Orangish oil. Purified by flash chromatography (Hex/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): $\delta = 8.32$ (1H, t, J = 2.0 Hz, Ar*H*), 8.22 (1H, ddd, J = 8.2, 2.4, 1.2 Hz, Ar*H*), 7.74 (1H, dt, J = 7.7, 1.5 Hz, Ar*H*), 7.58 (1H, t, J = 7.9 Hz, Ar*H*), 5.13 (1H, d, J = 7.1 Hz, C*H*OH), 4.07 (1H, d, J = 7.2 Hz, C*H*N₃), 3.14 (1H, broad s, O*H*), 2.27 (3H, s, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 205.5$ (*C*=O), 148.7 (Ar*C*), 141.6 (Ar*C*), 133.3 (Ar*C*H), 130.0 (Ar*C*H), 124.0 (Ar*C*H), 122.3 (Ar*C*H), 73.7 (CHOH), 72.4 (CHN₃), 29.3 (CH₃); MS (ES⁺) *m/z* (%) = 251 (100); HRMS (ES⁺): *m/z* calcd. for [M+H]⁺ [C₁₀H₁₁N₄O₄]⁺ 251.0780, found 251.0788.

¹³C NMR (75 MHz, CDCl₃)

Compound *anti*-**7b** was obtained in a maximum of 97% *ee*, from crude reaction mixtures, and in 95% *ee* as an isolated pure product. The optical purity was determined by HPLC on a chiralpak OD-H column (hexane/2-propanol 95:5), flow rate 1.0 mL/min, λ 254 nm.

HPLC chromatogram of racemic syn- and anti-7b

HPLC chromatogram of crude product 7b

Peak #	RetTime [min]	туре	Width [min]	Area [mAD*s]	Height [mAU]	Area %	
1	31.498	BB	1.0469	2.29184e4	338.94775	98.5367	
2	34.840	MM	1.3038	340.33450	4.35043	1.4633	
Total	8 :			2.32587e4	343.29818		

Synthesis of (3S,4S)-3-azido-4-hydroxy-4-(2-nitrophenyl)butan-2-one (7c)

Prepared in 97% yield (crude yield) according to procedure **SP1**. Isolated as orangish oil. Stereoisomers *syn*- and *anti*-**7c** could not be separated by flash chromatography.

¹H NMR (300 MHz, CDCl₃): δ (*anti* diastereoisomer) = 8.01 (1H, dd, J = 8.2, 1.3 Hz, Ar*H*), 7.79-7.75 (1H, m, Ar*H*), 7.69 (1H, td, J = 7.6, 1.3 Hz, Ar*H*), 7.56-7.49 (1H, m, Ar*H*), 5.68 (1H, d, J = 6.0 Hz, C*H*OH), 4.24 (1H, d, J = 6.0 Hz, C*H*N₃), 3.33 (1H, broad s, O*H*), 2.27 (3H, s, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ (*anti* diastereoisomer) = 205.2 (*C*=O), 148.4 (Ar*C*), 134.0 (Ar*C*H), 129.7 (Ar*C*H), 129.5 (Ar*C*H), 125.3 (Ar*C*H), 71.8 (CHOH), 70.6 (CHN₃), 29.5 (CH₃); MS (ES⁺) *m/z* (%) = 251 (100); HRMS (ES⁺): *m/z* calcd. for [M+H]⁺ [C₁₀H₁₁N₄O₄]⁺ 251.0780, found 251.0791.

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

Compound *anti*-7c was obtained in a maximum of 96% *ee*, from crude reaction mixtures. The optical purity was determined by HPLC on a chiralpak OJ-H column (hexane/2-propanol 95:5), flow rate 1.0 mL/min, λ 254 nm.

HPLC chromatogram of racemic syn- and anti-7c

HPLC chromatogram of crude product 7c

(3S,4S)-3-azido-4-hydroxy-4-phenylbutan-2-one (7d)

Prepared in 84% yield according to procedure **SP1**. Yellow oil. Purified by flash chromatography (Hex/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.42-7.34 (5H, m, Ar*H*), 4.99 (1H, dd, *J* = 7.0, 2.4 Hz, C*H*OH), 4.07 (1H, d, *J* = 7.0 Hz, C*H*N₃), 2.87 (1H, d, *J* = 3.1 Hz, O*H*), 2.17 (3H, s, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ = 205.9 (*C*=O), 139.4 (Ar*C*), 129.2 (Ar*C*H), 129.1 (2 x Ar*C*H), 127.0 (2 x Ar*C*H), 75.0 (CHOH), 72.6 (CHN₃), 29.2 (CH₃); MS (ES⁺) *m/z* (%) = 206 (100); HRMS (ES⁺): *m/z* calcd. for [M+H]⁺ [C₁₀H₁₂N₃O₂]⁺ 206.0930, found 206.0939.

Compound *anti*-**7d** was obtained in a maximum of 97% *ee*, from crude reaction mixtures, and in 95% *ee* as an isolated pure product. The optical purity was determined by HPLC on a chiralpak OJ-H column (hexane/2-propanol 90:10), flow rate 1.0 mL/min, λ 210 nm.

HPLC chromatogram of racemic syn- and anti-7d

HPLC chromatogram of crude product 7d

Synthesis of (3*S*,4*S*)-3-azido-4-(4-chlorophenyl)-4-hydroxybutan-2-one (7e)

Prepared in 85% yield according to procedure **SP1**. Orangish oil. Purified by flash chromatography (Hex/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.42-7.29 (4H, m, Ar*H*), 4.99 (1H, d, *J* = 7.0 Hz, C*H*OH), 4.04 (1H, d, *J* = 7.0 Hz, C*H*N₃), 2.90 (1H, broad s, O*H*), 2.19 (3H, s, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ 205.7 (*C*=O), 137.9 (Ar*C*), 135.0 (Ar*C*), 129.3 (2 x Ar*C*H), 128.5 (2 x Ar*C*H), 74.6 (CHOH), 72.6 (CHN₃), 29.3 (CH₃).

¹³C NMR (75 MHz, CDCl₃)

Compound *anti*-7e was obtained in a maximum of 97% *ee*, from crude reaction mixtures, and in 94% *ee* as an isolated pure product. The optical purity was determined by HPLC on a chiralpak OJ-H column (hexane/2-propanol 90:10), flow rate 1.0 mL/min, λ 220 nm.

HPLC chromatogram of racemic syn- and anti-7e

HPLC chromatogram of crude product 7e

Peak #	RetTime [min]	туре	Width [min]	Area [mAD*s]	Height [mAU]	Area %
1 2	16.271 18.355	EV BB	0.3910	878.43213 6.14104e4	34.51132 1565.93262	1.4103 98.5897
Total	.8 :			6.22888e4	1600.44394	

Synthesis of (3S,4S)-3-azido-4-(4-bromophenyl)-4-hydroxybutan-2-one (7f)

Prepared in 84% yield according to procedure **SP1**. Orangish oil. Purified by flash chromatography (Hex/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.53 (2H, d, *J* = 8.5 Hz, Ar*H*), 7.28 (2H, d, *J* = 8.5 Hz, Ar*H*), 4.98 (1H, d, *J* = 6.9 Hz, C*H*OH), 4.03 (1H, d, *J* = 7.0 Hz, C*H*N₃), 2.83 (1H, broad s, O*H*), 2.19 (3H, s, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ = 205.7 (*C*=O), 138.4 (Ar*C*), 132.2 (2 x Ar*C*H), 128.8 (2 x Ar*C*H), 123.2 (Ar*C*), 74.3 (CHOH), 72.5 (CHN₃), 29.3 (CH₃).

¹³C NMR (75 MHz, CDCl₃)

Compound *anti*-4f was obtained in a maximum of 97% *ee*, from crude reaction mixtures, and in 95% *ee* as an isolated pure product. The optical purity was determined by HPLC on a chiralpak OJ-H column (hexane/2-propanol 95:5), flow rate 1.0 mL/min, λ 230 nm.

HPLC chromatogram of crude product 7f

Area Percent Report							
Sorted By :	Signal						
Multiplier :	1.0000						
Dilution :	1.0000						
Use Multiplier & Dilution	1 Pactor with	ISIDS					
Signal 1: DAD1 D, Sig-230 Peak RetTime Type Width # [min] [min] 1 37.035 BB 0.7069 2 40.262 BB 1.1885 Totals :	0,16 Ref=360, Area [mAU*s] 	100 Height [mAD] 	Area * 1.2921 98.7079				

Synthesis of (3S,4S)-3-azido-4-hydroxy-4-(4-methoxycarbonylphenyl)butan-2-one (7g)

Prepared in 83% yield according to procedure **SP1**. Orangish oil. Purified by flash chromatography (Hex/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): $\delta = 8.05$ (2H, d, J = 8.4 Hz, Ar*H*), 7.48 (2H, d, J = 8.2 Hz, Ar*H*), 5.07 (1H, d, J = 6.9 Hz, CHOH), 4.07 (1H, d, J = 6.9 Hz, CHN₃), 3.92 (3H, s, CO₂CH₃); 3.02 (1H, broad s, OH), 2.18 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 205.6$ (*C*=O), 167.0 (*C*O₂), 144.3 (Ar*C*), 130.8 (Ar*C*), 130.3 (2 x Ar*C*H), 127.1 (2 x Ar*C*H), 74.5 (CHOH), 72.5 (CHN₃), 52.6 (OCH₃), 29.3 (CH₃); MS (ES⁺) *m/z* (%) = 264 (100); HRMS (ES⁺): *m/z* calcd. for [M+H]⁺ [C₁₂H₁₄N₃O₄]⁺ 264.0984, found 264.0979.

Compound *anti*-**7g** was obtained in a maximum of 97% *ee*, from crude reaction mixtures, and in 95% *ee* as an isolated pure product. The optical purity was determined by HPLC on a chiralpak OJ-H column (hexane/2-propanol 90:10), flow rate 1.0 mL/min, λ 240 nm.

HPLC chromatogram of racemic syn- and anti-7g

HPLC chromatogram of crude product 7g

Area Percent Report							
Sorted By : Multiplier : Dilution : Use Multiplier & Dilutio	Signal 1.0000 1.0000 n Factor with	1 ISIDe					
Signal 1: DAD1 E, Sig=24 Peak RetTime Type Width # [min] [min] 1 39.712 PB 0.787	0,16 Ref=360,	100 Height [mAU] 13.54938	Area * 1.4011				
2 44.013 BB 1.341 Totals :	5.61746e4	576.04773 589.59711	98.5989				

*** End of Report ***

Peak #	RetTime [min]	туре	Width [min]	Area [mAD*s]	Height [mAU]	Area %
1	45.542 49.507	BB	1.1021 2.1678	3428.98120 1.42590e5	44.64417 854.93225	2.3483 97.6517
Total	ls :			1.46019e5	899.57642	

Synthesis of (3S,4R)-3-azido-4-(furan-2-yl)-4-hydroxybutan-2-one (7h)

Prepared in 78% yield according to procedure **SP1**. Orangish oil. Purified by flash chromatography (Hex/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): δ = 7.44-7.42 (1H, m, Ar*H*), 6.43-6.38 (2H, m, Ar*H*), 5.06 (1H, d, J = 6.8 Hz, C*H*OH), 4.28 (1H, d, J = 6.8 Hz, C*H*N₃), 2.26 (3H, s, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ = 204.8 (*C*=O), 151.9 (Ar*C*), 143.3 (Ar*C*H), 111.1 (Ar*C*H), 109.4 (Ar*C*H), 70.5 (CHOH), 68.6 (CHN₃), 28.8 (CH₃); MS (ES⁺) *m/z* (%) = 196 (100); HRMS (ES⁺): *m/z* calcd. for [M+H]⁺ [C₈H₁₀N₃O₃]⁺ 196.0722, found 196.0728.

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

Product *anti*-**4h** was obtained in a maximum of 98% *ee*, from crude reaction mixtures, and in 93% *ee* as an isolated pure product. The optical purity was determined by HPLC on a chiralpak AD-H column (hexane/2-propanol 98:2), flow rate 1.0 mL/min, λ 210 nm.

HPLC chromatogram of racemic syn- and anti-7h

HPLC chromatogram of crude product 7h

*** End of Report ***

Synthesis of (3S,4R)-3-azido-4-hydroxy-4-(pyridin-2-yl)butan-2-one (7i)

Prepared in 80% yield according to procedure **SP1**. Orangish solid. Purified by flash chromatography (Hex/EtOAc, 3:1).

¹H NMR (300 MHz, CDCl₃): $\delta = 8.61-8.59$ (1H, m, Ar*H*), 7.75 (1H, td, J = 7.7, 1.7 Hz, Ar*H*), 7.36-7.28 (2H, m, Ar*H*), 5.12 (1H, d, J = 5.9 Hz, C*H*OH), 4.21 (1H, d, J = 5.9 Hz, C*H*N₃), 2.25 (3H, s, C*H*₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 204.6$ (*C*=O), 157.1 (Ar*C*), 148.8 (Ar*C*H), 137.5 (ArCH), 123.9 (ArCH), 122.1 (ArCH), 73.7 (CHOH), 72.5 (CHN₃), 29.4 (CH₃). MS (ES⁺) *m/z* (%) = 207 (100); HRMS (ES⁺): *m/z* calcd. for [M+H]⁺ [C₉H₁₁N₄O₂]⁺ 207.0882, found 207.0880.

SI_34

Compound *anti*-**7i** was obtained in a maximum of 86% *ee*, from crude reaction mixtures, and in 88% *ee* as an isolated pure product. The optical purity was determined by HPLC on a chiralpak AD-H column (hexane/2-propanol 95:5), flow rate 1.0 mL/min, λ 210 nm.

0 10

HPLC chromatogram of crude product 7i

*** End of Report ***

HPLC chromatogram of pure product anti-7i

Synthesis of (1*S*,2*R*,3*S*)-2-azido-1-phenylbutane-1,3-diol (11d)

Prepared according to procedure **SP2**. ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H} = 7.44-7.32$ (5H, m, ArC*H*), 5.00 (1H, d, J = 6.5 Hz, C*H*OH), 4.17-4.11 (1H, m, C*H*OH), 3.37 (1H, dd, J = 6.5, 2.6 Hz, C*H*N₃), 2.18 (2H, broad s, 2 x O*H*), 1.31 (3H, d, J = 6.3 Hz, C*H*₃). ¹³C NMR (CDCl₃, 75 MHz) $\delta_{\rm C} = 141.1$ (ArC), 129.1 (2 x ArCH), 128.8 (ArCH), 126.8 (2 x ArCH), 75.2 (CHOH), 70.9 (CHOH), 67.2 (CHN₃), 20.8 (CH₃).

¹³C NMR (75 MHz, CDCl₃)

HPLC (chiralpak OJ-H column, hexane/2-propanol 95:5, flow rate 1 mL/min, $\lambda = 210$ nm) $t_r = 39.1$ min.

Synthesis of (1*S*,2*R*,3*R*)-2-azido-1-phenylbutane-1,3-diol (12d)

Prepared according to procedure **SP3**. ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H} = 7.47-7.34$ (5H, m, ArC*H*), 4.76 (1H, d, *J* = 7.9 Hz, CHOH), 3.96 (1H, quintet, *J* = 6.5 Hz, CHOH), 3.52 (1H, dd, *J* = 7.9, 6.9 Hz, CHN₃), 1.96 (2H, broad s, 2 x OH), 1.34 (3H, d, *J* = 6.5 Hz, CH₃). ¹³C NMR (CDCl₃, 75 MHz) $\delta_{\rm C} = 141.2$ (ArC), 129.1 (2 x ArCH + ArCH), 127.4 (2 x ArCH), 76.8 (CHOH), 71.9 (CHOH), 69.9 (CHN₃), 20.5 (CH₃).

HPLC (chiralpak OJ-H column, hexane/2-propanol 95:5, flow rate 1 mL/min, $\lambda = 210$ nm) $t_r = 34.4$ min.

