Ruthenium-catalyzed *ortho*-arylation of acetanilides with aromatic boronic acids: an easy route to phenanthridines and carbazoles

Ravi Kiran Chinnagolla and Masilamani Jeganmohan*

Department of Chemistry, Indian Institute of Science Education and Research, Pune 411021, India

Email: mjeganmohan@iiserpune.ac.in

Electronic Supplementary Information

Table of Contents

- Page 2 Experimental Section
- Pages 3 4 Optimization Studies
- Pages 5 23 Spectral Data of all Compounds **3a-z**, **4a-h** and **5a-d**
- Pages 24 59 Copies of ¹H and ¹³C NMR Spectra of All Compounds

Experimental Section

General Procedure for the Coupling of Acetanilides 1 with Aromaticboronic Acids 2 Catalyzed by Ruthenium Complex.

A 15-mL pressure tube equipped with a magnetic stirrer and septum containing acetanilide (1) (100 mg, if it is solid), [{RuCl₂(*p*-cymene)}₂] (0.03 equiv), Ag₂O (1.0 equiv), Cu(OTf)₂ (0.20 equiv) and aromaticboronic acid **2** (1.5 equiv) was evacuated and purged with nitrogen gas three times. To the tube was added AgSbF₆ (0.12 mmol inside the glove box. Then, dry THF (3.0 mL) was added in the tube via syringe (If the acetanilide (1) is liquid, 100 mg of acetanilide (1) was dissolved in the dry THF (3.0 mL) and added to the tube via syringe). Then, the pressure tube was covered with a screw cap and the reaction mixture was allowed to stir at 110 °C for 20 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and silica gel, and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexanes and ethyl acetate as eluent to give pure **3**.

Note: The reaction is moisture sensitive. Dry THF should be used in order to get good conversation.

General Procedure for the Preparation of Phenanthridines.

Note: For Phenanthridines synthesis, crude product **3** was taken directly without column purification. In the reaction, pure as well as crude product **3** worked equally.

To a solution of Ph₃PO (3.0 equiv) in dry CH₂Cl₂ (5.0 mL), was added Tf₂O (1.5 equiv) under the nitrogen atmosphere at 0 °C. After 15 min, the above crude arylated anilides **3** (1.00 mmol) was dissolved in CH₂Cl₂ (2.0 mL) and added to the solution via syringe. The reaction was then warmed to r.t. and stirred until the complete completion (approx. 3 h). After completion, the reaction mixture was quenched by addition of sat. aq. NaHCO₃. The mixture was extracted with CH₂Cl₂ (3 × 15 mL). The combined extracts were washed with brine, dried anhydrous Na₂SO₄ and concentrated it under the reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of hexanes and EtOAc as eluent to afford phenanthridine derivatives **4**.

Optimization Studies^{*a*}

		OH) ₂ [{RuCl	$_2(p$ -cymene)} ₂] (3 Additive(12 mol %)	mol %)	NH
	Oxidant (1.0 equiv), Cocatalyst (20 mol %), Solvent, 110 °C, 20 h3a				3a
Entry	Solvent	Oxidant	Additive	Co-catalyst	Yield of 3a $(\%)^b$
		(1.0 equiv)	(12 mol %)	(20 mol %)	
1	THF	Ag ₂ O	AgSbF ₆		71
2	МеОН	Ag ₂ O	AgSbF ₆		nr
3	AcOH	Ag ₂ O	AgSbF ₆		nr
4	Toluene	Ag ₂ O	AgSbF ₆		nr
5	DCE	Ag ₂ O	AgSbF ₆		nr
6	DME	Ag ₂ O	AgSbF ₆		nr
7	DMF	Ag ₂ O	AgSbF ₆		nr
8	THF	AgOTf	AgSbF ₆		15
9	THF	AgOAc	AgSbF ₆		10
10	THF	AgF	AgSbF ₆		5
11	THF	$K_2S_2O_8$	AgSbF ₆		nr
12	THF	$(NH_4)_2S_2O_8$	AgSbF ₆		nr
13	THF	oxone	AgSbF ₆		nr
14	THF	Cu(OAc) ₂	AgSbF ₆		nr
15	THF	Ag ₂ O	AgBF ₄		60
16	THF	Ag ₂ O	AgOTf		55
17	THF	Ag ₂ O	KPF ₆		nr
18	THF	Ag ₂ O	AgSbF ₆	Cu(OTf) ₂ (1.0 equiv)	82
19	THF	Ag ₂ O	AgSbF ₆	Cu(OTf) ₂	83
20	THF	Ag ₂ O	-	Cu(OTf) ₂	68

^{*a*}All reactions were carried out using **1a** (100 mg), phenylboronic acid (**2a**) (1.5 equiv), [{RuCl₂(*p*-cymene)}₂] (0.03 equiv), AgSbF₆ (0.12 equiv), Ag₂O (1.0 equiv) and Cu(OTf)₂ (0.20 equiv) in THF (3.0 mL) at 110 °C for 20 h. ^{*b*}GC yield

To optimize the arylation reaction, various additives, solvents and oxidants were examined in the reaction of **1a** with **2a** in the presence of $[{RuCl_2(p-cymene)}_2]$ (3 mol %) at 110 °C for 20 h. First, the catalytic reaction was tested with various solvents such as THF, MeOH, AcOH, Toluene, DCE, DME, and DMF in the presence of catalyst, AgSbF₆ (12 mol %) and Ag₂O (1.0 equiv). Among them, THF solvent was the best, providing coupling product 3a in 71% GC yield. The remaining solvents were totally ineffective. Next, the catalytic reaction was tested with various oxidants such as Ag₂O, AgOTf, AgOAc, AgF, K₂S₂O₈, (NH₄)₂S₂O₈, oxone and Cu(OAc)₂. Among them, Ag₂O was very effective, giving **3a** in 71% GC yield. AgOTf, AgOAc and AgF were less effective, giving 3a in 15, 10, and 5% GC yields, respectively. Remaining oxidants were totally ineffective. A variety of additives such as AgSbF₆, AgBF₄, AgOTf and KPF₆ were also tested. Among them, AgSbF₆ was very effective, giving **3a** in 71% GC yield. AgBF₄ and AgOTf were moderately effective, giving **3a** in 60% and 55% GC yields, respectively. But, KPF₆ was totally ineffective. Further, the reaction was tested with 1.0 equiv and 20 mol % of Cu(OTf)₂. In the reaction, **3a** was observed 82 and 83% GC yields, respectively. It is believed that Cu(OTf)₂ increases the rate of C-H bond activation and stabilizes the active catalyst. The catalytic reaction was also tested without AgSbF₆, only with Ag₂O (1.0 equiv) and Cu(OTf)₂ (20 mol %). In the reaction, **3a** was observed in 68% GC yield.

Spectral data and copies of ¹H, ¹³C and DEPT NMR spectra of all compounds **3a-z**, **4a-h** and **5a-d** are listed below.

Spectral Data of Compounds 3a-z, 4a-h and 5a-d

N-([1,1'-biphenyl]-2-yl)acetamide (3a).

Colorless solid; Rf value: 0.3 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.26 (d, *J* = 8.0 Hz, 1 H), 7.49 (t, *J* = 8.0 Hz, 2 H), 7.44 – 7.35 (m, 4 H), 7.25 (d, *J* = 8.0, Hz, 1 H), 7.18 (t, *J* = 8.0, Hz, 1 H), 7.14 (bs, 1 H), 2.02 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 168.2, 138.1, 134.6, 132.1, 130.0, 129.2, 129.1, 128.4, 127.9, 124.3, 121.6, 24.6.

HRMS (ESI): calc. for [(C₁₄H₁₃NO)H] (M+H) 212.1075, measured 212.1073.

N-(5-Methoxy-[1,1'-biphenyl]-2-yl)acetamide (3b).

Colorless solid; Rf value: 0.33 in 50% ethyl acetate in hexanes; eluent (50% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.00 (d, J = 8.0 Hz, 1 H), 7.48 (t, J = 8.0 Hz, 2 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.37 (d, J = 8.0, Hz, 2 H), 6.98 (bs, 1 H), 6.91 (dd, J = 8.0, 4.0, Hz, 1 H), 6.81 (s, 1 H), 3.81 (s, 3 H), 2.00 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 168.4, 156.4, 138.2, 134.7, 129.0, 128.9, 127.9, 127.6, 124.3, 115.4, 113.4, 55.5, 24.2.

HRMS (ESI): calc. for [(C₁₅H₁₅NO₂)H] (M+H) 242.1181, measured 242.1184.

N-(5-Methyl-[1,1'-biphenyl]-2-yl)acetamide (3c).

Colorless solid; Rf value: 0.33 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ 8.09 (d, J = 8.0 Hz, 1 H), 7.48 (t, J = 8.0 Hz, 2 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.37 (d, J = 8.0, Hz, 2 H), 7.18 (d, J = 8.0, Hz, 1 H), 7.07 (s, 2 H), 2.36 (s, 3 H), 2.02 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 168.3, 138.3, 134.1, 132.5, 132.0, 130.6, 129.1, 128.9, 128.9, 127.8, 122.0, 24.4, 20.8.

HRMS (ESI): calc. for [(C₁₅H₁₅NO)H] (M+H) 226.1232, measured 226.1235.

N-(5-Bromo-[1,1'-biphenyl]-2-yl)acetamide (3d).

Colorless solid; Rf value: 0.34 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.16 (d, J = 8.0 Hz, 1 H).7.48 – 7.40 (m, 4 H), 7.34 – 7.30 (m, 3 H), 7.08 (bs, 1 H), 1.97 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.2, 136.6, 133.8, 132.6, 131.2, 129.2, 129.0, 128.5, 122.9, 116.9, 24.6.

HRMS (ESI): calc. for [(C₁₄H₁₂BrNO)H] (M+H) 290.0181, measured 290.0182.

N-(5-Chloro-[1,1'-biphenyl]-2-yl)acetamide (3e).

Colorless solid; Rf value: 0.33 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.25 (d, J = 8.0 Hz, 1 H), 7.53 – 7.45 (m, 3 H), 7.37 – 7.32 (m, 3 H), 7.24 (s, 1 H), 7.11 (bs, 1 H), 2.02 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.2, 136.8, 133.6, 133.3, 129.8, 129.3, 129.0, 128.5, 128.2, 127.6, 122.7, 24.6.

HRMS (ESI): calc. for [(C₁₄H₁₂ClNO)H] (M+H) 246.0686, measured 246.0681.

N-(5-Fluoro-[1,1'-biphenyl]-2-yl)acetamide (3f).

Colorless solid; Rf value: 0.29 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.14 (s, 1 H), 7.52 – 7.42 (m, 3 H), 7.36 (d, *J* = 8.0 Hz, 2 H), 7.06 (t, *J* = 8.0 Hz, 2 H), 7.36 (dd, *J* = 8.0, 4.0 Hz, 1 H), 2.02 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 160.4, 158.0, 137.1, 130.7, 129.1, 129.0, 128.3, 124.1, 124.0 (due to F-coupling), 116.7 and 116.5 (due to F-coupling), 114.9 and 114.7 (due to F-coupling), 24.4.

HRMS (ESI): calc. for [(C₁₄H₁₂FNO)H] (M+H) 230.0981, measured 230.0980.

N-(5-Cyano-[1,1'-biphenyl]-2-yl)acetamide (3g).

Colorless solid; Rf value: 0.25 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.57 (d, J = 8.0 Hz 1 H), 7.65 (d, J = 8.0 Hz 1 H), 7.57 – 7.50 (m, 4 H), 8.35 (d, J = 8.0 Hz 3 H), 2.06 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.4, 138.9, 135.6, 133.7, 132.5, 131.9, 129.6, 129.0, 128.9, 120.7, 118.7, 107.0, 24.7.

HRMS (ESI): calc. for [(C₁₅H₁₂N₂O)H] (M+H) 237.1028, measured 237.1025.

N-(5-Nitro-[1,1'-biphenyl]-2-yl)acetamide (3h).

Colorless solid; Rf value: 0.3 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.65 (d, *J* = 8.0 Hz 1 H). 8.24 (dd, *J* = 8.0, 4.0 Hz, 1 H), 8.14 (s, 1 H), 7.59 – 7.52 (m, 3 H), 7.46 (bs, 1 H), 7.40 (d, *J* = 8.0 Hz, 2 H), 2.08. (s, 3 H),

¹³C NMR (CDCl₃, 100 MHz): δ 168.4, 148.6, 141.3, 141.0, 137.9, 130.2, 129.1, 129.0, 128.5, 125.1, 122.4, 26.8.

HRMS (ESI): calc. for [(C₁₄H₁₂N₂O₃)H] (M+H) 257.0926, measured 257.0924.

Methyl 6-acetamido-[1,1'-biphenyl]-3-carboxylate. (3i).

Colorless solid; Rf value: 0.2 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ 8.49 (d, J = 8.0 Hz 1 H), 8.03 (dd, J = 8.0, 4.0 Hz 1 H), 7.92 (s, 1 H), 7.54 (t, J = 8.0 Hz, 2 H), 7.46 (t, J = 8.0 Hz 1 H), 8.49 (dd, J = 8.0, 4.0 Hz, 2 H), 7.36 (bs, 1 H), 3.90 (s, 3 H), 2.05 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.3, 166.5, 138.9, 137.0, 131.5, 131.1, 130.0, 129.6, 129.2, 128.5, 135.3, 120.0, 52.0, 24.8.

HRMS (ESI): calc. for [(C₁₆H₁₅NO₃)H] (M+H) 270.1130, measured 270.1133.

N-(4-Bromo-[1,1'-biphenyl]-2-yl)acetamide (3j).

Colorless solid; Rf value: 0.33 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.53 (s, 1 H), 7.50 (t, *J* = 8.0 Hz, 2 H), 7.44 (t, *J* = 8.0 Hz, 1 H), 7.34 (d, *J* = 8.0 Hz, 2 H), 7.30 (d, *J* = 8.0, Hz, 1 H), 7.17 (s, 1 H), 7.10 (d, *J* = 8.0, Hz, 1 H), 2.02 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 168.2, 137.0, 135.8, 131.1, 130.6, 129.2, 129.0, 128.3, 127.2, 124.0, 122.0, 24.6.

HRMS (ESI): calc. for [(C₁₄H₁₂BrNO)H] (M+H) 290.0181, measured 290.0182.

N-(3-Phenylnaphthalen-2-yl)acetamide (3k).

Colorless solid; Rf value: 0.34 in 25% ethyl acetate in hexanes; eluent (25% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.84 (s, 1 H), 7.88 (d, *J* = 8.0 Hz, 1 H), 7.78 (d, *J* = 8.0 Hz, 1 H), 7.72 (s, 1 H), 7.56 – 7.41 (m, 7 H), 7.30 (bs, 1 H), 2.07 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.3, 137.9, 133.6, 132.5, 132.0, 130.2, 129.4, 129.1, 128.2, 127.7, 127.4, 126.5, 125.4, 118.0, 24.8.

HRMS (ESI): calc. for [(C₁₈H₁₅NO)H] (M+H) 262.1232, measured 262.1230.

N-([1,1'-biphenyl]-2-yl)propionamide (3l).

Colorless solid; Rf value: 0.3 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ 8.32 (d, *J* = 8.0 Hz, 1 H), 7.50 (t, *J* = 8.0, 4.0 Hz, 2 H), 7.43 (d, *J* = 8.0 Hz, 1 H), 7.39-7.35 (m, 3 H), 7.25 (d, *J* = 8.0 Hz, 1 H), 7.20-7.16 (m, 2 H), 2.24 (q, *J* = 8.0 Hz, 2 H), 1.12 (t, *J* = 8.0 Hz, 3 H)

¹³C NMR (CDCl₃, 100 MHz): δ 171.8, 138.1, 134.7, 132.0, 129.9, 129.2, 129.0, 128.4, 127.9, 124.1, 121.4, 30.8, 9.5.

HRMS (ESI): calc. for [(C₁₅H₁₅NO)H] (M+H) 226.1232, measured 226.1233.

N-(4',5-Dichloro-[1,1'-biphenyl]-2-yl)acetamide (30).

Colorless solid; Rf value: 0.33 in 30% ethyl acetate in hexanes; (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.19 (d, J = 8.0 Hz, 1 H), 7.48 (d, J = 8.0 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 1 H), 7.30 (d, J = 8.0 Hz, 2 H), 7.21 (s, 1 H), 6.98 (bs, 1 H), 2.01 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.3, 135.3, 134.7, 133.2, 132.7, 130.4, 129.7, 129.5, 128.6, 123.4, 24.5.

HRMS (ESI): calc. for [(C₁₄H₁₁Cl₂NO)H] (M+H) 280.0296, measured 280.0293.

N-(4'-Bromo-5-chloro-[1,1'-biphenyl]-2-yl)acetamide (3p).

Colorless solid; Rf value: 0.34 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ 8.14 (d, J = 8.0 Hz, 1 H), 7.62 (d, J = 8.0 Hz, 2 H), 7.33 (dd, J = 8.0, 4.0 Hz, 1 H), 7.23 (d, J = 8.0 Hz, 2 H), 7.20 (s, 1 H), 7.03 (bs, 1 H), 2.03 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.3, 135.7, 133.1, 132.8, 132.4, 130.6, 129.6, 128.6, 123.5, 122.8, 24.4.

HRMS (ESI): calc. for [(C₁₄H₁₁ClBrNO)H] (M+H) 323.9791, measured 323.9794.

N-(5-Chloro-4'-iodo-[1,1'-biphenyl]-2-yl)acetamide (3q).

Colorless solid; Rf value: 0.35 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.15 (d, *J* = 8.0 Hz, 1 H), 7.83 (d, *J* = 8.0 Hz, 2 H), 7.33 (dd, *J* = 8.0, 4.0 Hz, 1 H), 7.20 (s, 1 H), 7.10 (d, *J* = 8.0 Hz, 2 H), 7.01 (bs, 1 H), 2.04 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.3, 138.6, 136.3, 133.1, 132.8, 130.8, 129.6, 129.5, 128.6, 123.5, 94.5, 24.5.

HRMS (ESI): calc. for [(C₁₄H₁₁ClINO)H] (M+H) 371.9652, measured 371.9651.

N-(4-Chloro-2-(naphthalen-2-yl)phenyl)acetamide (3r).

Colorless solid; Rf value: 0.39 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ 8.27 (d, J = 8.0 Hz, 1 H), 7.98 (d, J = 8.0 Hz, 1 H), 7.94 – 7.88 (m, 2 H), 7.84 (s, 1 H), 7.60 – 7.57 (m, 2 H), 7.45 (d, J = 8.0, Hz, 1 H), 7.36 (d, J = 8.0 Hz, 1 H), 7.34 (s, 1 H), 7.18 (bs, 1 H), 1.98 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.3, 134.2, 133.6, 133.5, 133.4, 132.1, 129.9, 129.3, 129.0, 128.34, 128.32, 128.0, 127.8, 126.9, 126.8, 126.5, 122.9, 24.5.

HRMS (ESI): calc. for [(C₁₈H₁₄ClNO)H] (M+H) 296.0842, measured 296.0842.

N-(5-Chloro-3',4'-dimethoxy-[1,1'-biphenyl]-2-yl)acetamide.(3s).

Colorless solid; Rf value: 0.35 in 50% ethyl acetate in hexanes; eluent (50% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.34 (d, *J* = 8.0 Hz, 1 H), 7.39 (d, *J* = 8.0 Hz, 1 H), 7.21 (s, 2 H), 6.97 (d, *J* = 8.0 Hz, 1 H), 6.89 (d, *J* = 8.0 Hz, 1 H), 6.83 (s, 1 H), 3.94 (s, 3 H), 3.89 (s, 3 H), 2.03 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 173.2, 168.1, 149.4, 149.0, 133.5, 129.7, 129.1, 129.0, 127.9, 122.5, 121.2, 112.0, 111.5, 55.97, 55.91, 24.6.

HRMS (ESI): calc. for [(C₁₆H₁₆ClNO₃)H] (M+H) 306.0897, measured 306.0894.

N-(2-(Benzo[d][1,3]dioxol-5-yl)-4-chlorophenyl)acetamide (3t).

Colorless solid; Rf value: 0.37 in 50% ethyl acetate in hexanes; eluent (50% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ 8.18 (d, J = 8.0 Hz, 1 H), 7.26 (dd, J = 8.0, 4.0 Hz, 1 H), 7.16 (s, 2 H), 6.88 (d, J = 8.0 Hz, 1 H), 6.77 (s, 1 H), 6.76 (d, J = 8.0 Hz, 1 H), 6.01 (s, 2 H), 2.01 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.2, 148.3, 147.7, 133.4, 130.3, 129.8, 129.1, 128.0, 122.7, 122.5, 120.9, 109.4, 108.9, 101.4, 24.5.

HRMS (ESI): calc. for [(C₁₅H₁₂ClNO₃)H] (M+H) 290.0584, measured 290.0583.

N-(3'-Bromo-5-chloro-[1,1'-biphenyl]-2-yl)acetamide (3u).

Colorless solid; Rf value: 0.34 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.15 (d, *J* = 8.0 Hz, 1 H), 7.58 (d, *J* = 8.0 Hz, 1 H), 7.52 (s, 1 H), 7.39 – 7.28 (m, 3 H), 7.22 (s, 1 H), 7.05 (bs, 1 H), 2.04 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.3, 138.9, 133.1, 132.5, 132.1, 131.5, 130.6, 129.6, 128.7, 127.5, 123.6, 123.3, 24.4.

HRMS (ESI): calc. for [(C₁₄H₁₁BrClNO)H] (M+H) 323.9791, measured 323.9790.

(E)-N-(4-bromo-2-styrylphenyl)acetamide (3v).

Colorless solid; Rf value: 0.35 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 7.67 (d, *J* = 8.0 Hz, 1 H), 7.64 (s, 1 H), 7.49 (d, *J* = 8.0 Hz, 2 H), 7.41 – 7.31 (m, 5 H), 7.33 (dd, *J* = 16.0, 8.0 Hz, 2 H), 2.19 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.7, 136.4, 133.6, 132.2, 130.9, 129.4, 128.8, 128.5, 126.8, 125.8, 121.9, 118.7, 24.2.

HRMS (ESI): calc. for [(C₁₆H₁₄BrNO)H] (M+H) 316.0337, measured 316.0338.

N-(4'-acetyl-5-methoxy-[1,1'-biphenyl]-2-yl)acetamide(3w).

Colorless solid; Rf value: 0.29 in 50% ethyl acetate in hexanes; eluent (50% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ 8.04 (d, J = 8.0 Hz, 2 H), 7.88 (d, J = 8.0, Hz, 1 H), 7.48 (d, J = 8.0 Hz, 2 H), 6.95 (dd, J = 8.0, 4.0 Hz, 1 H), 6.94 (bs, 1 H), 6.81 (s, 1 H), 3.82 (s, 3 H), 2.65 (s, 3 H), 2.02 (s, 3 H).

¹³C NMR (DMSO-d₆, 100 MHz): δ 197.7, 168.9, 157.4, 143.9, 137.7, 135.5, 129.5, 128.9, 128.2, 127.7, 114.8, 113.9, 55.4, 26.8, 22.8.

HRMS (ESI): calc. for [(C₁₇H₁₇NO₃)H] (M+H) 284.1287, measured 284.1287.

N-(4'-formyl-5-methoxy-[1,1'-biphenyl]-2-yl)acetamide (3x).

Colorless semisolid; Rf value: 0.28 in 50% ethyl acetate in hexanes; eluent (50% ethyl acetate in hexanes).

¹**H NMR (DMSO-d₆, 400 MHz):** δ 10.05 (s, 1 H), 9.30 (s, 1 H), 7.96 (d, *J* = 8.0 Hz, 2 H), 7.61 (d, *J* = 8.0, Hz, 2 H), 7.29 (d, *J* = 8.0 Hz, 1 H), 6.98 (dd, *J* = 8.0, 4.0 Hz, 1 H), 6.93 (s, 1 H), 3.79 (s, 3 H), 1.84 (s, 3 H).

¹³C NMR (DMSO-d₆, 100 MHz): δ 192.9, 168.9, 157.4, 145.4, 137.6, 134.9, 129.5, 129.4, 127.8, 120.6, 114.8, 114.2, 55.4, 22.8.

HRMS (ESI): calc. for [(C₁₆H₁₅NO₃)H] (M+H) 270.1130, measured 270.1132.

N-(3-Phenylthiophen-2-yl)acetamide (3y).

Colorless solid; Rf value: 0.32 in 25% ethyl acetate in hexanes; eluent (25% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 7.96 (bs, 1 H), 7.49 (t, *J* = 8.0, Hz, 2 H), 7.41 (d, *J* = 8.0 Hz, 2 H), 7.38 (t, *J* = 8.0, Hz, 1 H), 6.96 – 6.92 (m, 2 H), 2.16 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 166.5, 135.2, 133.4, 129.4, 128.3, 127.4, 126.0, 125.7, 117.8, 23.3.

HRMS (ESI): calc. for [(C₁₂H₁₁NOS)H] (M+H) 218.0640, measured 218.0634.

N-(3-(4-methoxyphenyl)thiophen-2-yl)acetamide (3z).

Colorless solid; Rf value: 0.35 in 30% ethyl acetate in hexanes; eluent (30% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 7.85 (bs, 1 H), 7.73 (d, *J* = 8.0, Hz, 2 H), 7.02 (d, *J* = 8.0, Hz, 2 H), 6.94 (d, *J* = 8.0, Hz, 1 H), 6.89 (d, *J* = 8.0, Hz, 1 H), 3.87 (s, 3 H), 2.16 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 166.5, 158.9, 132.9, 129.5, 127.5, 125.8, 125.8, 117.6, 114.8, 55.4, 23.4.

HRMS (ESI): calc. for [(C₁₃H₁₃NO₂S)H] (M+H) 248.0745, measured 248.0744.

6-Methylphenanthridine (4a).

Colorless solid; Rf value: 0.4 in 10% ethyl acetate in hexanes; eluent (10% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ): 8.62 (d, J = 8.0 Hz, 1 H), 8.54 (d, J = 8.0 Hz, 1 H), 8.22 (d, J = 8.0 Hz, 1 H), 8.13 (d, J = 8.0 Hz, 1 H), 7.85 (t, J = 8.0 Hz, 1 H), 7.74 – 7.68 (m, 2 H), 7.63 (t, J = 8.0 Hz, 1 H), 3.06 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 158.9, 143.4, 132.5, 130.6, 129.1, 128.7, 127.3, 126.6, 126.4, 125.8, 123.7, 122.3, 121.9, 23.2.

HRMS (ESI): calc. for [(C₁₄H₁₁N)H] (M+H) 194.0970, measured 194.0972.

2-Methoxy-6-methylphenanthridine (4b).

Colorless solid; Rf value: 0.36 in 15% ethyl acetate in hexanes; eluent (15% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.56 (d, *J* = 8.0 Hz, 1 H), 8.22 (d, *J* = 8.0 Hz, 1 H), 8.11 (d, *J* = 8.0 Hz, 1 H), 7.87 (s, 1 H), 7.85 (t, *J* = 8.0 Hz, 1 H), 7.71 (t, *J* = 8.0 Hz, 1 H), 7.35 (dd, *J* = 8.0, 4.0 Hz, 1 H), 4.02 (s, 3 H), 3.06 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 158.1, 156.2, 137.9, 132.2, 130.6, 130.1, 127.6, 126.7, 125.8, 124.8, 122.4, 118.5, 103.1, 55.6, 22.6.
HRMS (ESI): calc. for [(C₁₅H₁₃NO)H] (M+H) 224.1075, measured 224.1081.

2,6-Dimethylphenanthridine (4c).

Colorless solid; Rf value: 0.4 in 10% ethyl acetate in hexanes; eluent (10% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.60 (d, *J* = 8.0 Hz, 1 H), 8.30 (s, 1 H), 8.19 (d, *J* = 8.0 Hz, 1 H), 8.00 (d, *J* = 8.0 Hz, 1 H), 7.81 (t, *J* = 8.0 Hz, 1 H), 7.67 (t, *J* = 8.0 Hz, 1 H), 7.53 (dd, *J* = 8.0, 4.0 Hz, 1 H), 3.03 (s, 3 H), 2.61 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 157.7, 141.8, 136.0, 132.25, 130.24, 130.2, 128.9, 127.0, 126.4, 125.7, 123.5, 122.2, 121.5, 23.2, 21.8.

HRMS (ESI): calc. for [(C₁₅H₁₃N)H] (M+H) 208.1126, measured 208.1128.

2-Chloro-6-methylphenanthridine(4d).

Colorless solid; Rf value: 0.39 in 10% ethyl acetate in hexanes; eluent (10% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.53 (d, *J* = 8.0 Hz, 1 H), 8.47 (s, 1 H), 8.23 (d, *J* = 8.0 Hz, 1 H), 8.04 (d, *J* = 8.0 Hz, 1 H), 7.87 (t, *J* = 8.0 Hz, 1 H), 7.74 (t, *J* = 8.0 Hz, 1 H), 7.64 (dd, *J* = 8.0, 4.0, Hz, 1 H), 3.04 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 159.2, 141.8, 132.2, 131.5, 130.8, 130.6, 129.1, 128.0, 126.6, 125.9, 124.8, 122.3, 121.6, 23.23.

HRMS (ESI): calc. for [(C₁₄H₁₀ClN)H] (M+H) 228.0580, measured 228.0584.

6-methylphenanthridine-2-carbonitrile (4e).

Colorless solid; Rf value: 0.34 in 10% ethyl acetate in hexanes; eluent (10% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.87 (s, 1 H), 8.59 (d, *J* = 8.0 Hz, 1 H), 8.29 (d, *J* = 8.0 Hz, 1 H), 8.16 (d, *J* = 8.0 Hz, 1 H), 7.94 (t, *J* = 8.0 Hz, 1 H), 7.90 (dd, *J* = 8.0, 4.0 Hz, 1 H), 7.81 (t, *J* = 8.0 Hz, 1 H), 3.09 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 162.5, 145.4, 131.5, 131.4, 130.6, 130.3, 128.7, 127.7, 126.9, 126.2, 123.9, 122.3, 119.2, 109.7, 23.6.

HRMS (ESI): calc. for [(C₁₅H₁₀N₂)H] (M+H) 219.0922, measured 219.0923.

3-Bromo-6-methylphenanthridine (4f).

Colorless solid; Rf value: 0.4 in 10% ethyl acetate in hexanes; eluent (10% ethyl acetate in hexanes).

¹**H NMR** (**CDCl**₃, **400 MHz**): δ 8.57 (d, *J* = 8.0 Hz, 1 H), 8.37 (dd, *J* = 8.0, 4.0 Hz, 1 H), 8.29 (s, 1 H), 8.23 (d, *J* = 8.0 Hz, 1 H), 7.87 (t, *J* = 8.0 Hz, 1 H), 7.76 - 7.69 (m, 2 H), 3.05 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 160.3, 144.3, 132.2, 131.6, 131.0, 129.6, 127.8, 126.7, 125.8, 123.4, 122.6, 122.3, 122.2, 23.2.

HRMS (ESI): calc. for [(C₁₄H₁₀BrN)H] (M+H) 272.0075, measured 272.0078.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

5-Methylbenzo[b]phenanthridine (4g).

Colorless solid; Rf value: 0.42 in 10% ethyl acetate in hexanes; eluent (10% ethyl acetate in hexanes).

¹**H** NMR (CDCl₃, 400 MHz): δ 8.99 (s, 1 H), 8.75 (d, J = 8.0 Hz, 1 H), 8.58 (s, 1 H), 8.18 (d, J = 8.0 Hz, 1 H), 8.11 – 8.08 (m, 2 H), 7.86 (t, J = 8.0 Hz, 1 H), 7.70 (t, J = 8.0 Hz, 1 H), 7.58 – 7.56 (m, 2 H), 3.04 (s, 3 H)

¹³C NMR (CDCl₃, 100 MHz):δ 159.7, 141.2, 133.3, 132.5, 131.5, 130.7, 128.2, 128.1, 127.7, 127.0, 126.7, 126.0, 125.9, 123.0, 122.5, 121.0, 23.7.

HRMS (ESI): calc. for [(C₁₈H₁₃N)H] (M+H) 244.1126, measured 244.1125.

5-Methylthieno[2,3-c]isoquinoline (4h).

Colorless solid; Rf value: 0.43 in 10% ethyl acetate in hexanes; eluent (10% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.27 (d, J = 8.0 Hz, 1 H), 8.23 (d, J = 8.0 Hz, 1 H), 7.82 - 7.78 (m, 2 H), 7.64 (t, J = 8.0 Hz, 1 H), 7.54 (d, J = 8.0 Hz, 1 H), 3.05 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 156.1, 131.9, 130.3, 126.6, 126.0, 124.7, 124.4, 123.3, 119.7, 22.8.

HRMS (ESI): calc. for [(C₁₂H₉NS)H] (M+H) 200.0534, measured 200.0530.

1-(9*H*-Carbazol-9-yl)ethanone (5a).¹

Colorless solid; Rf value: 0.43 in 5% ethyl acetate in hexanes; eluent (5% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.22 (d, *J* = 8.0 Hz, 2 H), 8.00 (d, *J* = 8.0 Hz, 2 H), 7.49 (t, *J* = 8.0 Hz, 2 H), 7.40 (t, *J* = 8.0 Hz, 2 H), 2.89 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 170.1, 138.6, 127.3, 126.4, 123.7, 119.8, 116.2, 27.7.

HRMS (ESI): calc. for [(C₁₄H₁₁NO)H] (M+H) 210.0919, measured 210.0920.

Methyl 9-acetyl-9H-carbazole-3-carboxylate (5b).²

Colorless solid; Rf value: 0.4 in 5% ethyl acetate in hexanes; eluent (5% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.65 (s, 1 H), 8.28 (d, *J* = 8.0 Hz, 1 H), 8.15 (d, *J* = 8.0 Hz, 2 H), 8.04 (d, *J* = 4.0 Hz, 1 H), 7.52 (t, *J* = 8.0 Hz, 1 H), 7.43 (t, *J* = 8.0 Hz, 1 H), 4.00 (s, 3 H) 2.09 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 170.1, 116.9, 141.3, 138.9, 128.7, 127.9, 126.2, 125.8, 125.4, 124.0, 121.6, 120.2, 116.0, 115.9, 52.2, 27.7.

HRMS (ESI): calc. for [(C₁₆H₁₃NO₃)H] (M+H) 268.0974, measured 268.0973.

1-(3-Bromo-9*H*-carbazol-9-yl)ethanone (5c).²

Colorless solid; Rf value: 0.44 in 5% ethyl acetate in hexanes; eluent (5% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.15 (d, *J* = 8.0 Hz, 1 H), 8.08 (d, *J* = 8.0 Hz, 1 H), 8.04 (s, 1 H), 7.91 (t, *J* = 8.0 Hz, 1 H), 7.54 (d, *J* = 8.0 Hz, 1 H), 7.50 (t, *J* = 8.0 Hz, 1 H), 7.39 (t, *J* = 8.0 Hz, 1 H), 2.85 (s, 3 H).

¹³C NMR (CDCl₃, 100 MHz):δ 170.0, 138.6, 137.4, 130.1, 128.0, 125.2, 123.6, 122.6, 122.4, 120.0, 117.8, 116.8, 115.7, 27.8.

HRMS (ESI): calc. for [(C₁₄H₁₀BrNO)H] (M+H) 288.0024, measured 288.0021.

1-(3-Fluoro-9*H*-carbazol-9-yl)ethanone (5d).²

Colorless solid; Rf value: 0.41 in 5% ethyl acetate in hexanes; eluent (5% ethyl acetate in hexanes).

¹**H NMR (CDCl₃, 400 MHz):** δ 8.31 (m, 1 H), 8.11 (d, *J* = 8.0 Hz, 1 H), 7.96 (d, *J* = 8.0 Hz, 1 H), 7.64 (dd, *J* = 8.0, 4.0 Hz, 1 H), 7.52 (t, *J* = 8.0 Hz, 1 H), 7.41 (t, *J* = 8.0 Hz, 1 H), 7.21 (t, *J* = 8.0 Hz, 1 H), 2.89 (s, 3 H).

HRMS (ESI): calc. for [(C₁₄H₁₀FNO)H] (M+H) 228.0825, measured 228.0823.

The compounds 5a-d was prepared based on the following reported procedure:

- 1. W. C. P. Tsang, N. Zheng, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 14560.
- 2. S. H. Cho, J. Yoon, and S. Chang, J. Am. Chem. Soc. 2011, 133, 5996.

¹H, ¹³C and DEPT NMR Spectra of Compound **3a.**

¹H, ¹³C and DEPT NMR Spectra of Compound **3b.**

¹H, ¹³C and DEPT NMR Spectra of Compound **3c.**

¹H, ¹³C and DEPT NMR Spectra of Compound **3d.**

¹H, ¹³C and DEPT NMR Spectra of Compound **3e.**

¹H, ¹³C and DEPT NMR Spectra of Compound **3f.**

¹H, ¹³C and DEPT NMR Spectra of Compound **3g**

¹H, ¹³C and DEPT NMR Spectra of Compound **3h**

¹H, ¹³C and DEPT NMR Spectra of Compound **3i**

¹H, ¹³C and DEPT NMR Spectra of Compound **3**j

¹H, ¹³C and DEPT NMR Spectra of Compound **3k**

¹H and ¹³C NMR Spectra of Compound **3**l

¹H, ¹³C and DEPT NMR Spectra of Compound **30**

¹H, ¹³C and DEPT NMR Spectra of Compound **3p**

¹H, ¹³C and DEPT NMR Spectra of Compound **3q**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2014

¹H, ¹³C and DEPT NMR Spectra of Compound **3r**

¹H, ¹³C and DEPT NMR Spectra of Compound **3s**

¹H, ¹³C and DEPT NMR Spectra of Compound **3t**

¹H, ¹³C and DEPT NMR Spectra of Compound 3u

¹H, ¹³C and DEPT NMR Spectra of Compound **3v**

^{150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15} f1 (ppm)

¹H and ¹³C NMR Spectra of Compound 3w

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

¹H and ¹³C NMR Spectra of Compound 3x

110 100 f1 (ppm) 0 210 200 . 190 . 180 . 170 160 150 140 130 120 . 90 . 80 . 70 . 60 . 50 40 30 20 10

¹H, ¹³C and DEPT NMR Spectra of Compound **3y**

¹H, ¹³C and DEPT NMR Spectra of Compound **3z**

¹H, ¹³C and DEPT NMR Spectra of Compound **4a**

¹H, ¹³C and DEPT NMR Spectra of Compound **4b**

¹H, ¹³C and DEPT NMR Spectra of Compound **4c**

¹H, ¹³C and DEPT NMR Spectra of Compound **4d**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2014

¹H and ¹³C NMR Spectra of Compound 4e

¹H, ¹³C and DEPT NMR Spectra of Compound **4f**

¹H and ¹³C NMR Spectra of Compound **4h.**

¹H and ¹³C NMR Spectra of Compound **5b.**

¹H and ¹³C NMR Spectra of Compound **5c.**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

¹H and ¹³C NMR Spectra of Compound **5d.**

