Supplementary Information

for

A five-component nanorotor with speed regulation

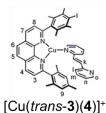
Soumen K. Samanta,^a Jan W. Bats,^b Michael Schmittel^{*,a}

^a Center for Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein Strasse, Universität Siegen, D-57068 Siegen, Germany

schmittel@chemie.uni-siegen.de

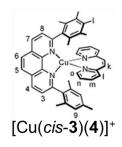
^b Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universitat, Max-von-Laue Strasse 7, D-60438 Frankfurt am Main, Germany

Contents

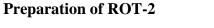

1. Synthesis	S1
2. NMR Spectra	S5
3. ESI-MS	S14
4. NMR Lineshape Analysis to Determine the Rates of Spinning	
5. UV-Vis Investigations	S17
6. X-ray Crystal Structure Analysis of [Cu ₂ (<i>trans</i> -3)(4) ₂](PF ₆) ₂	S18
7. Computed Structure of $[Cu(cis-3)(4)]^+$	S21

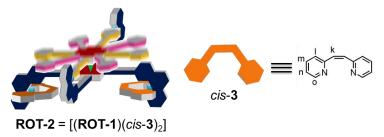
1. Synthesis

Experimental Section

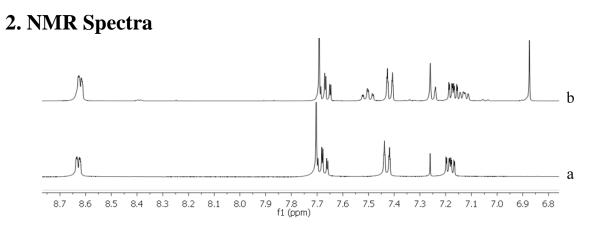

General. Commercial reagents like 3 were used without further purification. Solvents were dried with appropriate desiccants and distilled prior to use. Thin-layer chromatography was performed using Merck silica gel TLC plates (silica gel 60 F₂₅₄). Silica gel 60 was used for column chromatography. ¹H and ¹³C NMR spectra were recorded on Bruker Avance (400 MHz) and Varian (600 MHz) spectrometers using a deuterated solvent as the lock and residual protiated solvent as internal reference. The following abbreviations were utilised to describe NMR peak patterns: s = singlet, d = doublet, t = triplet, dd = doublet of doublets. The following abbreviations were used to describe peak patterns of IR spectra: s = sharp, m =medium, w = weak. The numbering of the carbon skeleton in molecular formulae as shown in the manuscript does not comply with the IUPAC nomenclature rules; it is only used for assignments of NMR signals. Electrospray ionisation (ESI) mass spectra were recorded on a Thermo-Quest LCQ Deca. Melting points were measured on a Büchi SMP-20 and are uncorrected. Infrared spectra were recorded on a Varian 1000 FT-IR instrument. Elemental analysis measurements were made using the EA 3000 CHNS. UV-Vis spectra were recorded on a Varian Cary 100 Bio UV/visible spectrometer. Photoisomerisations were performed in the photoreactor LUMOS 43 from Atlas Photonics.

Complex [Cu(trans-3)(4)](PF₆)




In an NMR tube, 2-(2,3,5,6-tetramethyl-4-iodophenyl)-9-(2,4,6-trimethylphenyl)[1,10]phenanthroline (**4**), (1.14 mg, 2.05 µmol) and [Cu(CH₃CN)₄]PF₆ (0.764 mg, 2.05 µmol) were dissolved in CD₂Cl₂ (0.45 mL). Then, *trans*-**3** (0.374 mg, 2.05 µmol) was added and the mixture stirred for 0.5 h furnishing the desired complex in quantitative yield. Mp: > 300 °C. ¹H NMR (400 MHz, CD₂Cl₂) δ = 1.87 (s, 6 H, CH₃), 1.93 (s, 6 H, CH₃), 2.03 (s, 3 H, CH₃), 2.14 (s, 6 H, CH₃), 6.60 (s, 2 H, 9-H), 7.16 (dd, ³*J* = 8.0 Hz, ³*J* = 1.6 Hz, 2 H, o-H), 7.22 (s, 2 H, k-H), 7.40 (d, ³*J* = 8.0 Hz, 2 H, 1-H), 7.74 (td, ³*J* = 8.0 Hz, ⁴*J* = 1.6 Hz, 2 H, m-H), 7.92 (d, ³*J* = 8.0 Hz, 1 H, 7-H), 7.96 (d, ³*J* = 8.0 Hz, 1 H, 4-H), 8.10 (d, ³*J* = 8.0 Hz, 2 H, n-H), 8.21 (s, 2 H, 5-, 6-H), 8.72 (d, ³*J* = 8.0 Hz, 1 H, 8-H), 8.73 (d, ³*J* = 8.0 Hz, 1 H, 3-H) ppm. ¹³C NMR $(100 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta = 2.1 \text{ (CH}_3 \text{ for acetonitrile)}, 19.8, 20.4, 20.9, 27.4, 113.0, 116.9 (CN of acetonitrile), 123.1, 123.8, 127.1, 127.2, 127.2, 127.4, 128.1, 128.2, 128.4, 132.0, 132.1, 135.5, 137.1, 137.5, 138.2, 139.2, 139.6, 139.7, 140.4, 143.8, 144.1, 149.3, 154.0, 161.3, 161.4 ppm. IR (KBr): <math>v = 3944$ (w), 3691 (w), 3054 (s), 2987 (m), 2686 (w), 2521 (w), 2411 (w), 2306 (m), 1422, 1262 (s), 1156 (w), 896 (m), 753 (s) cm⁻¹. Anal. Calcd. for C₄₃H₃₉CuF₆IN₄P•H₂O: C, 53.51; H, 4.28; N, 5.80. Found: 53.86; H, 3.93; N, 6.12.

Irradiation of [Cu(trans-3)(4)](PF₆)


In an NMR tube, complex [Cu(*trans*-**3**)(**4**)](PF₆) was dissolved in dry and degassed DCM (0.45 mL). The sample was irradiated for 2 h at 315 nm. The sample was characterised by ¹H NMR. Yield of [Cu(*cis*-**3**)(**4**)](PF₆): 70%. ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 1.77$ (br s, 12 H, CH₃), 2.07 (s, 3 H, CH₃), 2.17 (s, 6 H, CH₃), 6.08 (s, 1.4 H, k-H, *cis*), 6.58 (s, 2 H, 9-H), 6.93 (dd, ³J = 8.0 Hz, ³J = 4.4 Hz, 1.4 H, o-H, *cis*), 7.13 (dd, ³J = 8.0 Hz, ³J = 4.4 Hz, 0.6 H, o-H, *trans*), 7.19 (s, 0.6 H, k-H, *trans*), 7.21 (d, ³J = 8.0 Hz, 1.4 H, 1-H, *cis*), 7.37 (d, ³J = 8.0 Hz, 0.6 H, 1-H, *trans*), 7.63 (d, ³J = 4.4 Hz, 1.4 H, n-H, *cis*), 7.67 (td, ³J = 8.0 Hz, ⁴J = 1.6 Hz, 1.4 H, m-H, *cis*), 7.73 (td, ³J = 8.0 Hz, ⁴J = 1.6 Hz, 0.6 H, m-H, *trans*), 7.87 (d, ³J = 8.0 Hz, 1 H, 7-H), 7.92 (d, ³J = 8.0 Hz, 1 H, 4-H), 8.05 (d, ³J = 4.4 Hz, 0.6 H, n-H, *trans*), 8.21 (s, 2 H, 5-, 6-H), 8.70 (d, ³J = 8.0 Hz, 1 H, 8-H), 8.72 (d, ³J = 8.0 Hz, 1 H, 3-H) ppm. ESI-MS: *m/z* (%) 802.4 (100) [M+H]⁺.

In an NMR tube, **ROT-1** (1.96 mg, 0.445 µmol) and 2.85 equiv. of *trans-3* (0.231 mg, 1.27 µmol) were dissolved in dry and deoxygenated DCM (0.45 mL). The solution was irradiated for 2 h at 315 nm to afford **ROT-2** quantitatively based on **ROT-1**. ¹H NMR (400 MHz, CD_2Cl_2) $\delta = -4.56$ (s, 6 H, CH_2^{DABCO}), -4.54 (s, 6 H, CH_2^{DABCO}), 1.66 (s, 12 H, CH_3), 1.72 (s, 6 H, CH₃), 1.77 (s, 6 H, CH₃), 1.78 (s, 12 H, CH₃), 2.03 (s, 12 H, CH₃), 2.09 (s, 6 H, CH₃), 2.15 (s, 12 H CH₃), 2.19 (s, 12 H, CH₃), 2.49 (s, 6 H, CH₃), 2.58 (s, 12 H, CH₃), 2.63 (s, 6 H, CH₃), 6.21 (s, 4 H, k-H, *cis*-**3**), 6.50 (d, ${}^{3}J = 5.6$ Hz, 2 H, d-H), 6.60 (s, 4 H, 9-H, complex with *cis*-**3**), 6.69 (d, ${}^{3}J = 5.6$ Hz, 1 H, h-H), 6.94 (br s, 1 H, i-H), 6.97 (br s, 4 H, o-H, *cis*-**3**), 7.06 (d, ${}^{3}J = 5.6$ Hz, 2 H, c-H), 7.10 (s, 4 H, 9-H, HETPYP), 7.24 (d, ${}^{3}J = 8.0$ Hz, 4 H, 1-H, *cis*-**3**), 7.31 (m, 1 H, g-H), 7.34 (s, 2 H, j-H), 7.35 (s, 2 H, j-H), 7.42 (d, ³J = 4.4 Hz, 4 H, n-H, *cis-3*), 7.57 (d, ${}^{3}J = 8.0$ Hz, 4-H, [10- or 11]-H), 7.64 (td, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 4 H, m-H, *cis-3*), 7.79 (d, ${}^{3}J = 8.0$ Hz, 4-H, [10' or 11']-H), 7.86 (d, ${}^{3}J = 8.0$ Hz, 2 H, 7-H complex with *cis*-**3**), 7.91 (d, ${}^{3}J = 8.0$ Hz, 2 H, 4-H, complex with *cis*-**3**), 7.95 (d, ${}^{3}J = 8.0$ Hz, 4 H, [11 or 10]-H), 7.99 (d, ${}^{3}J = 8.0$ Hz, 4 H, [a, e]-H), 8.01 (d, ${}^{3}J = 8.0$ Hz, 4 H, [11' or 10']-H), 8.03 (d, ${}^{3}J = 8.0$ Hz, 4 H, 4-, 7-H, HETPYP), 8.20 (s, 4 H, 5-, 6-H, complex with *cis*-3), 8.26 (s, 4 H, 5-, 6-H, HETPYP), 8.29 (d, ${}^{3}J = 8.0$ Hz, 4 H, [b, f]-H), 8.36 (d, ${}^{3}J = 4.4$ Hz, 4 H, β -H), 8.37 (d, ${}^{3}J = 4.4$ Hz, 4 H, β -H), 8.56 (d, ${}^{3}J = 4.4$ Hz, 4 H, β -H), 8.57 (d, ${}^{3}J = 4.4$ Hz, 4 H, β -H), 8.69 (d, ${}^{3}J = 8.0$ Hz, 2 H, 8-H, complex with *cis*-3), 8.70 (d, ${}^{3}J = 8.0$ Hz, 2 H, 3-H complex with *cis-3*), 8.80 (d, ${}^{3}J = 8.0$ Hz, 4 H, 3-, 8-H, HETPYP) ppm. ESI-MS: m/z (%) 1046.2 (100) $[(\mathbf{ROT-1})(cis-3)_2]^{4+}$ and 1443.3 (70) $[(\mathbf{ROT-1})(cis-3)_2](\mathbf{PF}_6)^{3+}$.

ROT-2 is present at the PS state aside of 0.85 equiv. of *trans*-**3** as characterised by ¹H NMR (Figure S11) and ¹H-¹H COSY (Figure S12) spectra. ¹H NMR (400 MHz, CD₂Cl₂) of *trans*-**3**: $\delta = 7.17$ (dd, ³J = 8.0 Hz, ³J = 4.4 Hz, 2 H, o-H, *trans*-**3**), 7.32 (s, 2 H, k-H, *trans*-**3**), 7.48 (brs, 2 H, 1-H, *trans*-**3**), 7.71 (td, ³J = 8.0 Hz, ⁴J = 1.6 Hz, 2 H, m-H, *trans*-**3**), 7.78 (brs, 2 H, n-H, *trans*-**3**) ppm.

Figure S1. Partial ¹H spectra (400 MHz, CDCl₃, 298 K) of (a) *trans*-**3**, and (b) of **3** after irradiation for 2 h at 315 nm (*trans:cis* = 62:38) in DCM.

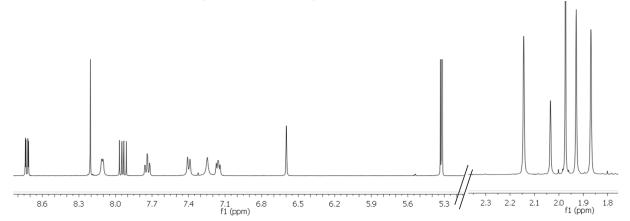
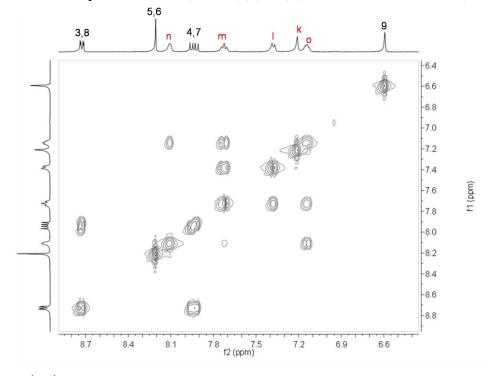
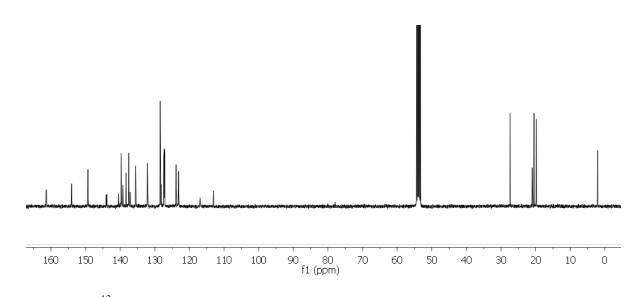
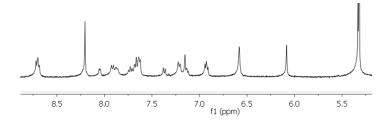
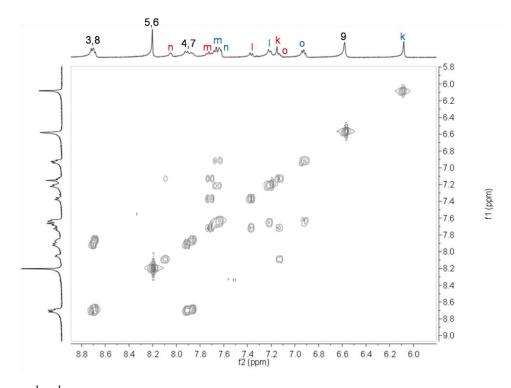
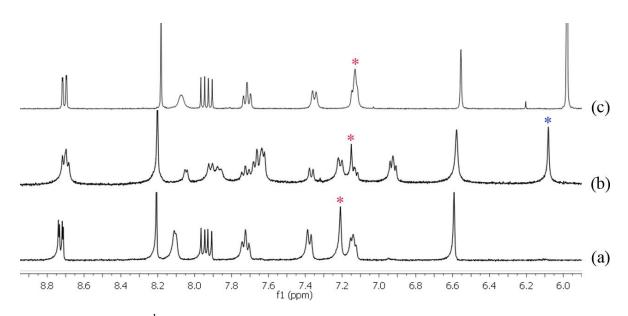
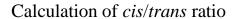



Figure S2. ¹H NMR spectrum of [Cu(*trans*-3)(4)]PF₆ (400 MHz, CD₂Cl₂, 298 K).

Figure S3. ¹H-¹H COSY spectrum of $[Cu(trans-3)(4)]PF_6$ (400 MHz, CD₂Cl₂, 298 K). Protons for *trans*-3 are shown in red.


Figure S4. ¹³C NMR spectrum of [Cu(*trans*-3)(4)]PF₆ (100 MHz, CD₂Cl₂, 298 K).


Figure S5. Partial ¹H NMR spectrum of $[Cu(trans-3)(4)]PF_6$ after irradiation for 2 h at 315 nm (400 MHz, CD₂Cl₂, 298 K).

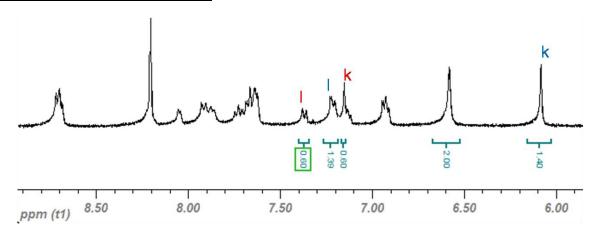
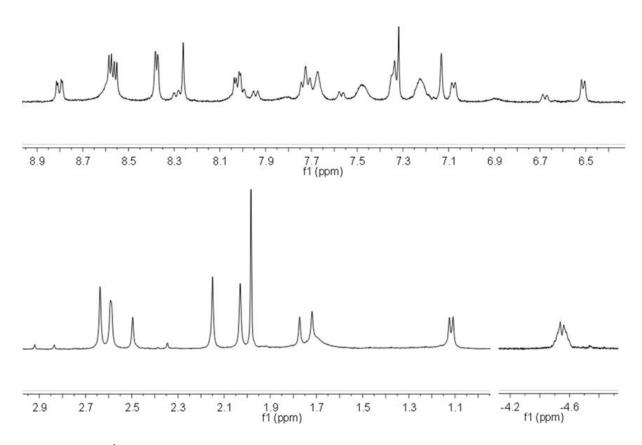
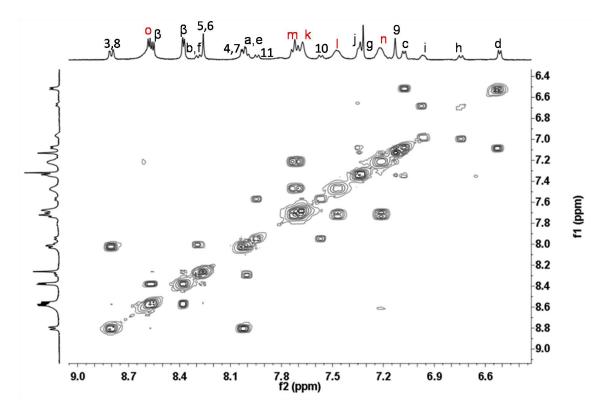
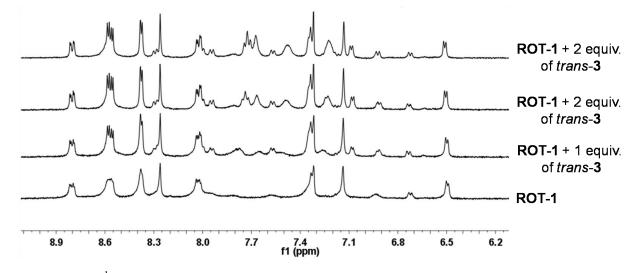


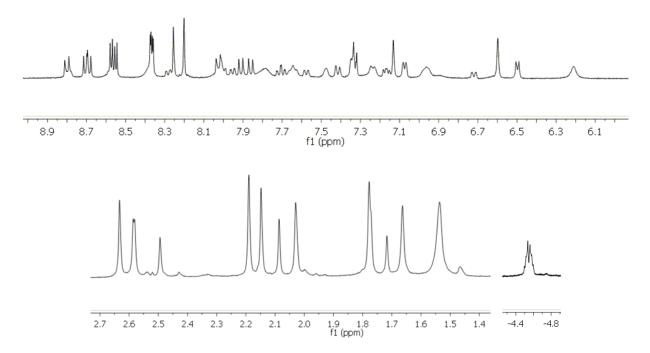
Figure S6. ¹H-¹H COSY spectrum of $[Cu(trans-3)(4)]PF_6$ after irradiation for 2 h at 315 nm (400 MHz, CD₂Cl₂, 298 K). Protons for *trans*-3 are shown in red and for *cis*-3 in blue.


Figure S7. Partial ¹H spectra (400 MHz, 298 K) of (a) complex $[Cu(trans-3)(4)]PF_6$ in CD₂Cl₂, (b) sample (a) after irradiation for 2 h at 315 nm (*trans:cis* = 30:70) in CD₂Cl₂ and (c) sample (b) after heating for 24 h at 100 °C in CD₂Cl₄, 100% conversion of *cis*-3 to *trans*-3. (* for *trans* k-H and * for *cis* k-H).



Partial ¹H spectrum of $[Cu(trans-3)(4)]PF_6$ after irradiation at 315 nm for 2 h. Protons for *trans-3* are marked in red and for *cis-3* in blue.


% of *cis*-**3** (for k-H) = [k-*cis*/(k-*cis* + k-*trans*)] × 100 = [1.40/(1.40 + 0.6)] × 100 = 70% % of *cis*-**3** (for l-H) = [l-*cis*/(l-*cis* + l-*trans*)] × 100 = [1.39/(1.39 + 0.6)] × 100 = 69.8%


Figure S8. ¹H NMR spectrum of **ROT-1** in presence of 2.85 equiv. of *trans-3* (CDCl₃:CD₂Cl₂ = 1:9, 400 MHz, 298 K).

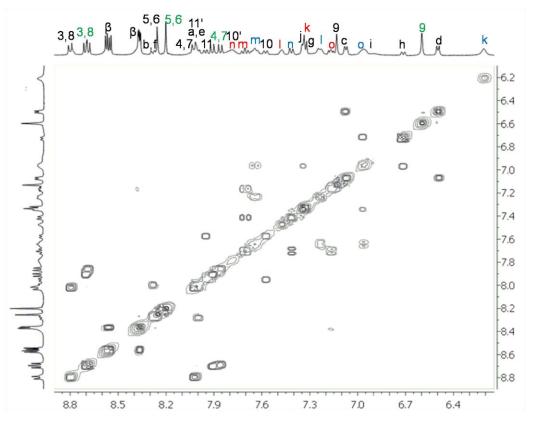

Figure S9. ¹H-¹H COSY of **ROT-1** in presence of 2.85 equiv. of *trans*-3 (CDCl₃:CD₂Cl₂ = 1:9, 400 MHz, 298 K). Protons for *trans*-3 are shown in red.

Figure S10. ¹H NMR titration of **ROT-1** with *trans*-3 (CDCl₃:CD₂Cl₂ = 1:9, 400 MHz, 298 K).

Figure S11. ¹H NMR of the mixture of **ROT-1** and 2.85 equiv. of *trans-3* after irradiation for 2 h at 315 nm in CD₂Cl₂ (400 MHz, 298 K).

Figure S12. ¹H-¹H COSY of an irradiated mixture of **ROT-1** and of 2.85 equiv. of *trans-3* (400 MHz, CD_2Cl_2 , 298 K). Protons for *trans-3* are shown in red and *cis-3* are in blue. Protons for phenanthrolines involved with *cis-3* are shown in green.

Proton assignment	δ / ppm of <i>trans</i> - 3	δ / ppm of phenanthroline
k-H	7.22	
o-H	7.16	
n-H	8.10	
m-H	7.74	
1-H	7.40	
3-Н		8.73
4-H		7.96
5-, 6-H		8.21
7-H		7.92
8-H		8.72
9-H		6.60

Table S1. Resonances of aromatic protons of complex [Cu(*trans*-3)(4)](PF₆).

Proton assignment	δ / ppm of <i>trans</i> - 3	δ / ppm of phenanthroline	δ / ppm of <i>cis-</i> 3
k-H	7.19		6.08
o-H	7.13		6.93
n-H	8.05		7.63
m-H	7.73		7.67
1-H	7.37		7.21
3-Н		8.72	
4-H		7.92	
5-, 6-H		8.21	
7 - H		7.87	
8-H		8.70	
9-H		6.58	

Table S2. Resonances of aromatic protons of complex [Cu(*trans*-3)(4)](PF₆) after irradiation.

Table S3. ¹H NMR shifts of the aromatic protons of complex **ROT-1** and 2.85 equiv. of *trans-3* in a mixture.

δ / ppm of ROT-1 protons	Proton assignment	δ / ppm of <i>trans</i> - 3 protons ^a
8.00	a- and e-H	
8.27	b- and f-H	
7.06	c-H	
6.51	d-H	
7.29	g-H	
6.71	h-H	
6.92	i-H	
7.31,7.33	j-H	
	k-H	7.67
	l-H	7.48
	m-H	7.73
	n-H	7.22

	o-H	8.58
8.03	4-, 7-H	
8.26	5-, 6-H	
8.80	3-, 8-Н	
7.10	9-H	
7.58	10- or 11-H	
7.95	11- or 10-H	
8.36, 8.38, 8.56, 8.57	ß-H	

^a NMR shifts for *trans*-**3** in the mixture are basically identical with those of free *trans*-**3** indicating that *trans*-**3** remains without coordination in the mixture (see Table S4).

Table S4. ¹H NMR shifts of the aromatic protons of *trans*-**3**.

Proton assignment	δ / ppm of <i>trans</i> - 3 protons ^a	Proton assignment	δ / ppm of <i>trans</i> - 3 protons ^a
k-H	7.68	n-H	7.19
l-H	7.44	o-H	8.63
m-H	7.70		

$ROT-2 = [(ROT-1)(cis-3)_2]$		Proton	trans-3		
δ / ppm of <i>cis</i> - 3	δ / ppm of phenanthroline in HETPYP with rotator 2	δ / ppm of phenanthroline complex with <i>cis-</i> 3	δ / ppm of protons appearing in a single set	assignment	
			7.99	a and e-H	
			8.29	b and f-H	
			7.06	c-H	
			6.50	d-H	
			7.31	g-H	
			6.69	h-H	
			6.94	i-H	
			7.34, 7.35	j-H	
6.21				k-H	7.32
7.24				l-H	7.48
7.64				m-H	7.71
7.42				n-H	7.78
6.97				o-H	7.17
	8.80	8.70		3-Н	
	8.03	7.91		4-H	
	8.26	8.20		5-, 6-H	
	8.03	7.86		7-H	
	8.80	8.69		8-H	
	7.10	6.60		9-H	
			7.57, 7.95	10- or 11-H	
			7.79, 8.01	10'- or 11'-H	
			8.36, 8.37, 8.56, 8.57	β-Н	

Table S5. ¹H NMR shifts of the aromatic protons of [(**ROT-1**)(*cis*-3)₂] and *trans*-3 at PSS.

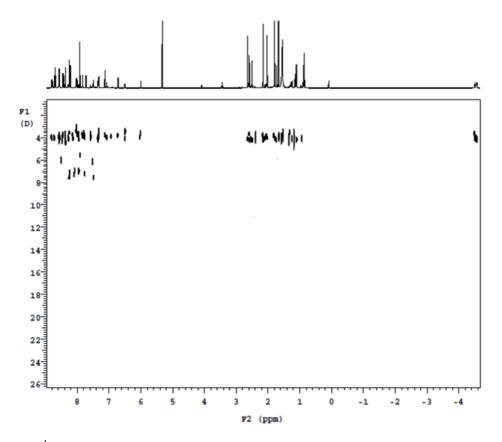


Figure S13. ¹H DOSY spectrum of mixture of ROT-2 and 0.85 equiv. of *trans*-3 in PSS (CD₂Cl₂, 400 MHz, 298 K).

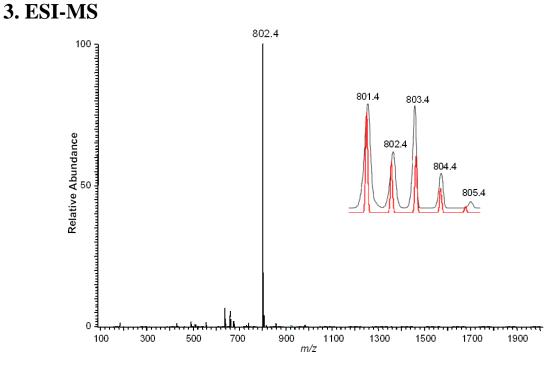


Figure S14. ESI mass spectrum of [Cu(*cis*-3)(4)](PF₆) in CH₂Cl₂.

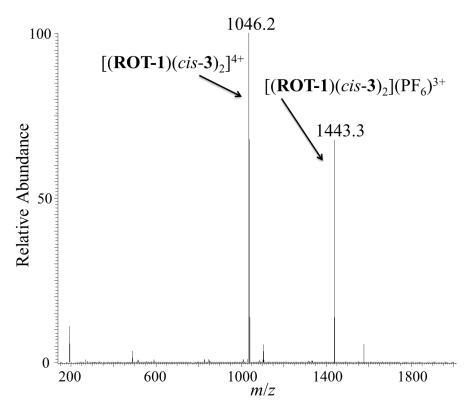
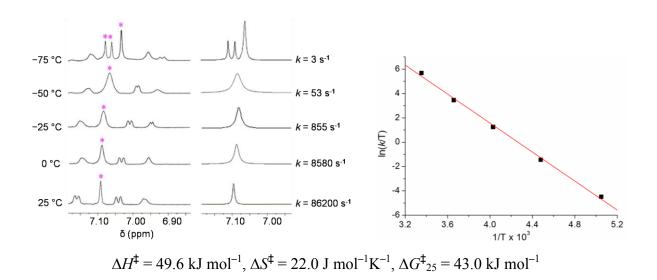
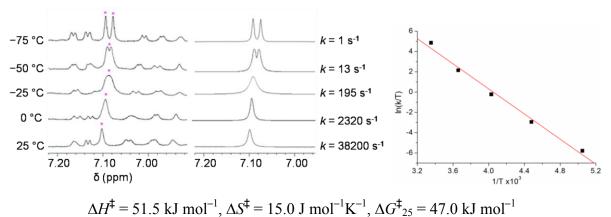


Figure S15. ESI mass spectrum of ROT-2 in CH₂Cl₂.

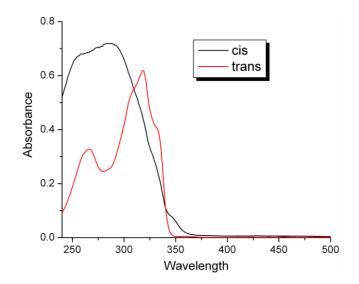

4. NMR Lineshape Analysis to Determine the Rates of Spinning

For the spectral simulations¹ we used a conventional dynamic-NMR spectroscopic method based on the model involving a two-spin system undergoing mutual exchange. The protons relevant for the lineshape analysis are indicated in the corresponding spectra by *. Since the rapid spinning motion of the main rotator leads to a degeneracy of the phenanthroline stations, which is best visible at proton 9-H of the stator, the rotational frequency was obtained from an analysis of its exchange-broadened NMR lineshape. Activation enthalpy (ΔH^{\ddagger}) and activation entropy (ΔS^{\ddagger}) were determined from transition state theory. The free activation energy was determined from $\Delta G^{\ddagger}_{298} = \Delta H^{\ddagger} - T\Delta S^{\ddagger}$


The temperature dependence of all rotors was fitted to the Eyring equation²:

$$k = (k_{\rm B}T/h)e^{-\Delta G^{\dagger}_{\star}/RT}$$

 $\ln (k/T) = -\Delta H^{\ddagger}/RT + \ln(k_B/h) + \Delta S^{\ddagger}/R$, with R being the universal gas constant.


Figure S16. (Left) ¹H NMR (600 MHz) spectra of a mixture of **ROT-1** and 2.85 equiv. of *trans-3* (CD₂Cl₂) at various temperatures (left, experimental and right, simulated) and (Right) Eyring plot for the oscillating rotation in **ROT-1** in presence of 2.85 equiv. of *trans-3*.

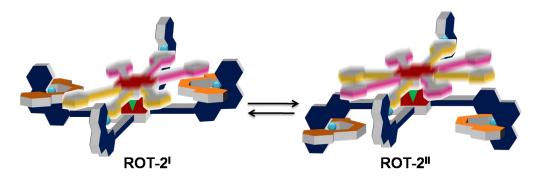

 $\Delta II = 51.5$ KJ IIIOI , $\Delta S = 15.0$ J IIIOI K , $\Delta O_{25} = 47.0$ KJ IIIOI

Figure S17. Eyring plot for the oscillating rotation in **ROT-2** = $[(ROT-1)(cis-3)_2]$.

5. UV-Vis Investigations

Figure S18. UV-Vis spectra of **3** in CH₂Cl₂ at 25 °C.

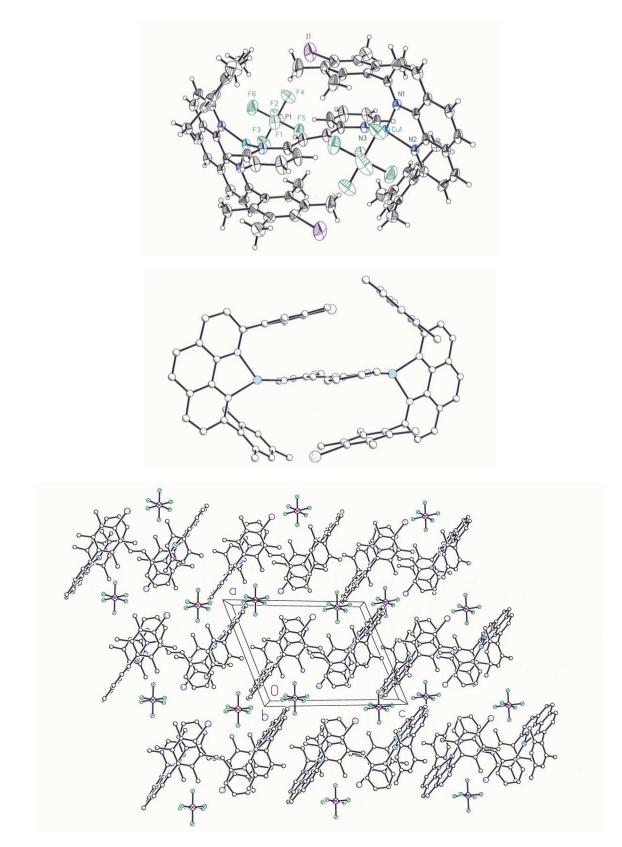
Figure S19. Two selected conformations of the 5-component nanorotor **ROT-2**. Conformation **ROT-2^I**: The side rotators are within the trajectory of the main rotator thus interfering with the rotation. Conformation **ROT-2^{II}**: Both side rotators are outside of the trajectory of the main rotator allowing uninhibited motion.

6. X-ray Crystal Structure Analysis of [Cu₂(trans-3)(4)₂](PF₆)₂

X-ray single-crystal diffraction data was collected on a SIEMENS SMART 1K CCD diffractometer with Mo K α radiation. The structure was determined using program SHELXS-97 and refined by full-matrix least-squares using program SHELXL-97.³ The hydrogen atoms were generated theoretically onto the specific atoms and were treated as riding atoms. The nonhydrogen atoms were refined with anisotropic thermal parameters. Further details are provided in the table below.

The $[Cu_2(trans-3)(4)_2]^{2+}$ is centrosymmetric and has a crystallographic inversion center at the midpoint of the central C=C double bond. It contains two 2-(2,3,5,6-tetramethyl-4-iodophenyl)-9-(2,4,6-trimethylphenyl)[1,10]-phenanthroline (4) units and a *trans*-1,2-bis(2-pyridyl)ethylene (*trans*-3) group connected by two copper(I) ions. The Cu atom has a heavily distorted trigonal coordination of N atoms. The Cu-N_{phenanthroline} bond distances are 2.039(4) and 2.076(4) Å and the Cu-N_{pyridyl} bond distance is 1.932(4) Å.

The phenanthroline group only shows a very small distortion from planarity, the mean deviation from the best plane is 0.028 Å. The angle between the plane of the phenanthroline group and the planes of the 2,4,6-trimethylphenyl (mesityl) and 2,3,5,6-tetramethyl-4-iodophenyl groups is 65.9 and 77.0°, respectively. The angle between the planes of the latter two groups is 55.6°. The pyridyl group is almost coplanar with the 2,3,5,6-tetramethyl-4-iodophenyl group (angle between planes: 3.5°). The crystal packing shows 10 intermolecular C-H...F contacts with H...F distances between 2.39 and 2.65 Å.


Crystal Data f	or complex	$[Cu_2(trans-3)(4)_2](PF_6)_2:$
----------------	------------	---------------------------------

CCDC	975665	
Empirical formula	$C_{74}H_{68}Cu_2F_{12}I_2N_6P_2$	
Formula weight	1712.16	
Temperature	171(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
space group	<i>P</i> -1 (Nr. 2)	
Unit cell dimensions	a = 11.4761(6) Å	$\alpha = 107.8770(10)^{\circ}$
	b = 12.0349(6) Å	$\beta = 106.8250(10)^{\circ}$

	$c = 14.8885(7) \text{ Å}$ $\gamma = 101.5750(10)^{\circ}$
Volume	1776.14(15) Å ³
Z	1
Density (calculated)	1.601 g.cm ⁻³
Absorption coefficient	1.592 mm^{-1}
F(000)	856
Crystal size	0.40 x 0.40 x 0.30 mm ³
Theta range for data collection	1.6 to 26.2°.
Limiting indices	–14≤h≤14, –14≤k≤14, –18≤l≤18
Reflections collected / unique	$18413 / 6778 [R_{int} = 0.049]$
Completeness to theta = 25.0°	98.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.620 and 0.446
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6778 / 0 / 449
Goodness-of-fit on F ²	1.08
Final R indices [I>2 σ (I)]	R1 = 0.061, $wR2 = 0.158$
R indices (all data)	R1 = 0.085, wR2 = 0.171
Largest diff. peak and hole	2.11 and $-1.32 \text{ e.}\text{Å}^{-3}$

Selected bond lengths (Å) and bond angles (°).

2.076(4)
2.039(4)
1.932(4)
80.86(15)
130.68(16)
145.92(16)

Figure S20. (Top) Crystal structure of complex $[Cu_2(trans-3)(4)_2](PF_6)_2$. Thermal ellipsoids are drawn at the 50% probability level. (Middle) View of the cation showing the relative orientations of the planar groups. (Bottom) Packing diagram along the b-axis. Hydrogen atoms omitted for clarity.

7. Computed Structure of [Cu(*cis*-3)(4)]⁺

The energy-minimised structure of $[Cu(cis-3)(4)]^+$ was calculated using Gaussian03 at the B3LYP/6-31G* level, applying the LANL2DZ⁴ effective core potential for copper.

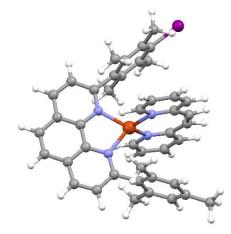


Figure S21. Optimised structure of $[Cu(cis-3)(4)]^+$.

Table S6. X,Y,Z cartesian coo	rdinates of complex $[Cu(cis-3)(4)]^+$.
-------------------------------	--

С	-4.199600 0.91090	000000.0 00	Η	5.850100 -3.790800 -0.888000
С	-5.021600 -0.19630	000000.00	Η	5.850100 -3.790800 0.888000
С	-4.454400 -1.49310	00 0.000000 00	С	-2.025300 1.950700 2.545700
С	-3.041800 -1.57620	00 0.000000 00	Η	-2.662900 2.675300 3.065200
С	-2.793200 0.75340	000000.00	Η	-2.621500 1.048400 2.398100
С	-5.231200 -2.69870	00 0.000000 00	Н	-1.209400 1.695200 3.229000
С	-2.404200 -2.86200	00 0.000000 00	С	-0.295500 4.329300 2.544100
С	-3.195100 -4.03490	00 0.000000 00	Η	-0.695000 3.810700 3.414400
С	-4.624900 -3.92120	00 0.000000 00	Η	0.794600 4.367800 2.647700
С	-2.508200 -5.27210	00 0.000000 00	Η	-0.650900 5.364600 2.585600
Н	-3.073100 -6.2003	00 0.000000	Ι	0.960800 5.935600 0.000000
С	-1.129900 -5.28850	00 0.000000 00	С	-2.025300 1.950700 -2.545700
С	-0.397100 -4.07650	00 0.000000 00	Н	-2.621500 1.048400 -2.398100
Н	-6.314100 -2.6195	00 0.000000	Н	-2.662900 2.675300 -3.065200
Н	-4.610500 1.91500	000000.0	Н	-1.209400 1.695200 -3.229000
Η	-6.102100 -0.0825	00 0.000000	С	-0.295500 4.329300 -2.544100
Н	-5.218100 -4.8307	00 0.000000	Н	0.794600 4.367800 -2.647700
Н	-0.581200 -6.2242	00 0.000000	Н	-0.695000 3.810700 -3.414400
Ν	-2.245300 -0.4656	00 0.000000	Н	-0.650900 5.364600 -2.585600
Ν	-1.038700 -2.9007	00 0.000000	Cu	-0.249900 -0.993300 0.000000
С	-1.882400 1.94670	000000.0 00	С	0.172100 -0.824900 2.836000
С	-1.510200 2.52120	00 1.238400	С	2.075700 0.041500 1.810600
С	-1.510200 2.52120	00 -1.238400	С	0.675900 -0.630600 4.116500
С	-0.698600 3.67220	00 1.244200	Н	-0.815200 -1.255800 2.701500
С	-0.698600 3.67220	00 -1.244200	С	2.639300 0.264700 3.085200
С	-0.297500 4.20210	000000.0	С	1.947100 -0.070500 4.241400
С	1.098600 -4.08450	000000.0 00	Η	0.086300 -0.911900 4.982400
С	1.796800 -4.13390	00 -1.229100	Η	3.628900 0.702700 3.155200
С	1.796800 -4.13390	00 1.229100	Н	2.389400 0.102200 5.217800

			r			
С	3.192900 -4.166200	-1.201400	C	0.172100	-0.824900	-2.836000
С	3.192900 -4.166200	1.201400	С	2.075700	0.041500	-1.810600
С	3.913300 -4.180400	0.000000	С	0.675900	-0.630600	-4.116500
Η	3.734600 -4.205900	-2.143700	Η	-0.815200	-1.255800	-2.701500
Η	3.734600 -4.205900	2.143700	С	2.639300	0.264700	-3.085200
С	1.078400 -4.245000	2.556100	С	1.947100	-0.070500	-4.241400
Η	0.152100 -3.664500	2.591800	Η	0.086300	-0.911900	-4.982400
Η	0.810800 -5.289200	2.765200	Η	3.628900	0.702700	-3.155200
Н	1.718700 -3.910200	3.376900	Н	2.389400	0.102200	-5.217800
С	1.078400 -4.245000	-2.556100	Ν	0.836200	-0.507500	-1.705800
Н	0.810800 -5.289200	-2.765200	Ν	0.836200	-0.507500	1.705800
Н	0.152100 -3.664500	-2.591800	С	2.915300	0.443500	0.679500
Η	1.718700 -3.910200	-3.376900	С	2.915300	0.443500	-0.679500
С	5.419100 -4.263100	0.000000	Η	3.836900	0.874200	1.063200
Η	5.746900 -5.311000	0.000000	Н	3.836900	0.874200	-1.063200

⁽¹⁾ H. J. Reich, *NMR Spectrum Calculations: WinDNMR, Version 7.1.13*. Department of Chemistry, University of Wisconsin.

(2) H. L. Eyring, J. Chem. Phys. 1935, 3, 107.

(3) (a) G. M. Sheldrick, *SHELXS97: Program for Crystal Structure Determination*; University of Göttingen: Göttingen, Germany, 1997. (b) G. M. Sheldrick, *SHELXL97: Program for Crystal Structural Refinement*; University of Göttingen: Göttingen, Germany, 1997.

(4) P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 299.