Journal Name

# **Supporting Information**

### Pseudo-capacitive performance of titanate nanotubes as a supercapacitor electrode

Jie Yang,<sup>a,b</sup> Lifang Lian,<sup>a,b</sup> Peixun Xiong<sup>a,b</sup> and Mingdeng Wei \*<sup>a,b</sup>

<sup>a</sup> State Key Laboratory of Photocatalysis on Energy and Environmental (Fuzhou University), Fuzhou, Fujian 350002,

China

<sup>b</sup> Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China \*Corresponding author: Mingdeng Wei Tel./fax: +86-591-83753180 *E-mail address:* wei-mingdeng@fzu.edu.cn

## **Experimental**

## 1. Preparation of the titanate nanotubes

The synthesis of titanate  $H_2Ti_3O_7$  nanotubes was similar to our previous reports.<sup>10</sup> Typically, 0.1 g of TiO<sub>2</sub> (P25) was dispersed in a 50 mL of 10 M aqueous NaOH solution. Then, the suspension was transferred into a Teflon-lined stainless steel autoclave with a capacity of 75 mL. The autoclave was kept at 120 °C for 48 h and then cooled to room temperature. The resulting precipitate was acid-washed with 0.1 M HCl solution until pH value of 1-2 was reached, then stirred at a solution with its pH value of 5-6 to make the ion-exchange completely, and again washed with alcohol for some times. Finally, the white product was dried at 70 °C for 12 h in air.

### 2. Sample Characterization

The power X-ray diffraction (XRD) patterns were recorded on PANalytical X'Pert spectrometer using the Co-K $\alpha$  radiation and the data were changed to Cu-K $\alpha$  data. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were taken on a Hitachi S4800 instrument and a FEI F20 S-TWIN instrument, respectively. Surface area was determined by Brunauer–Emmet–Teller (BET) method using ASAP 2020 from Quanta Chrome. Fourier Transform Infrared (FT-IR) transmission spectra were taken on a BRUKER-EQUINOX-55 IR spectrophotometer. Differential scanning calorimetry (DSC) was performed using the Setsys Evolution instrumentation with a temperature increment of 10 °C min<sup>-1</sup> under ambient conditions.

#### 3. Sample Tests

For the electrochemical measurements, 70 wt% active material was mixed and grounded with 20 wt% polyvinylidene fluoride (PVDF) powder as a binder and 10 wt% acetylene back carbon (AB) powder as the conductive assistant

materials. The mixture was added to N-methyl-2-pyrrolidinone solvent to form homogeneous slurry and pressed on Al foil circular flakes as the working electrode, and dried at 100°C for 24 h under vacuum conditions. Metallic lithium foils were used as the counter electrodes. The electrolyte was 1 M LiPF<sub>6</sub> in a 1:1:1 (volume ratio) mixture of ethyl carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC). The separator was an UP 3093 (Japan) macroporous polypropylene membrane. The cells were assembled in a glove box filled with highly pure argon gas (O<sub>2</sub> and H<sub>2</sub>O levels <1 ppm), and charge/discharge tests were performed in the voltage range of 1-2.5V (Li<sup>+</sup>/Li) at different current densities on a Land automatic batteries tester (Land CT 2001A,Wuhan, China). The cyclic voltammetry (CV) measurements were performed on an IM6 Electrochemical Workstation (Zahner) at a scan rate of 5 mVs<sup>-1</sup> in a range of 1-2.5 V *vs*. Li/Li<sup>+</sup>. The electrochemical impedance spectroscopy (EIS) was performed on IM6 Electrochemical Workstation (Zahner). The EIS data were collected with an AC voltage of 10 mV amplitude in the frequency range from 1 MHz to 100 mHz. The discharge specific capacitance was calculated according to the following equation (1)

$$C_{\rm sp} = \frac{I \times \Delta t}{m \times \Delta U} \qquad (1)$$

where I (A) is the applied current, E (V) is the tested potential range, t (s) is the discharge time, and m (g) is the mass of single electrode active materials. The energy density value was calculated according to Equation (2)

$$E = \frac{1}{2}CV^2 \qquad (2)$$

where C is the capacitance  $(Fg^{-1})$  of supcapacitor and V is its operating potential window, respectively. The average power density value was calculated according to Equation (2) and (3):

$$P = \frac{E}{t}$$
(3)

where t is the discharge time (s).

## **TG-DTA and IR analysis**



Fig. S1 (a) TG-DTA curves and (b) IR spectrum of the titanate nanotubes.

Fig. S1a shows the TG-DTA curves of the titanate nanotubes. There are three endothermic peaks on the DTA curve, corresponding to the three thermal decomposition stages on the TG curve. The first range between  $50-120^{\circ}$ C and the second range between  $120-200^{\circ}$ C are attributed to the evaporation of surface water and interlayered water,<sup>1</sup> whereas the third stage between  $200-500^{\circ}$ C is ascribed to the loss of the constitution water that arises from the formation of TiO<sub>2</sub>.<sup>2</sup> The percentage of the constitution water loss is nearly 7.5% at approximately  $250^{\circ}$ C, which is close to the theoretical structural water loss of 7.0% for the thermal decomposition of  $H_2Ti_3O_7$ .<sup>3</sup> Fig. S1b shows the IR spectrum of the titanate nanotubes. The broad bands at ca. 3200 and  $1630 \text{ cm}^{-1}$  are attributed to the O–H stretching vibration and H–O–H bending vibration, respectively, indicating that the bonded H exists within the material. Two absorption bands locate at 473 and 670 cm<sup>-1</sup>, corresponding to stretching Vibrations of the octahedral [MO<sub>6</sub>] lattice, respectively. The IR measured results are good in agreement with the reports about  $H_2Ti_3O_7$  titanate.<sup>4,5</sup>

References

- 2 M. J. Edisson, A. S. Marco and R. C. Oscar, Solid State Sci., 2006, 8, 888.
- 3 H. S. Kim, W. T. Moon, Y. K. Jun and S. H. Hong, Sens. Actuators B, 2006, 120, 63.
- 4 R. Xu, J. Li, Z. Tang and T. Zhang, Electrochim Acta, 2011, 566, 330.
- 5 G. Guo, C. He, Z. Wang, F. Gu and D. Han, *Talanta*, 2007, 72, 1687.

This journal is © The Royal Society of Chemistry 2012

<sup>1</sup> J. R. Li, Z. Tang and Z. Zhang, Chem. Mater., 2005, 17, 5848.

## The ragone plot of the titanate electrodes





## The HRTEM image of the titanate nanotubes





## EIS plots of the titanate electrodes



Fig. S4 EIS plots of the electrodes (a) the 10<sup>th</sup> cycle and (b) the 1000<sup>th</sup> cycle. (Inset: the corresponding equivalent circuit model).