Supporting Information

Hydroxyamination of aryl C–H bonds with *N*-hydroxycarbamate by synergistic Rh/Cu catalysis at room temperature⁺

Wei Yang, Jiaqiong Sun, Xianxiu Xu,* Qian Zhang* and Qun Liu

Department of Chemistry, Northeast Normal University, Changchun 130024, China xuxx677@nenu.edu.cn

Table of Contents

I. General Information	S2
II. Typical Procedures and Analytical Data of Compounds 3a-3s	S2
III. Mechanism experiments	.S9
IV. Copies of ¹ H NMR and ¹³ C NMR spectra	-S15

I. General Information

All Rhodium-catalyzed reactions were carried out without any particular precautions to extrude moisture or oxygen.

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). The products were purified by flash column chromatography on silica gel (300–400 mesh). Melting points were uncorrected. NMR spectra were obtained on a Varian Inova 500 spectrometer (500 MHz for ¹H NMR; 125 MHz for ¹³C NMR), with TMS as the internal standard. All chemical shifts are given in ppm. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI). GC/MS spectra were obtained on a Agilent 6890/5975 spectrometer (EI).

The starting materials were prepared according to the literature procedures.^[1]

II. Typical Procedures and Analytical Data of 3a-3s

General procedure for the synthesis of 3a-3s (3a as an example):

Without any particular precautions to extrude oxygen or moisture, to a stirred mixture of **1a** (30.2 mg, 0.2 mmol) and **2a** (26.6 mg, 0.2 mmol) in EtOH (1.0 mL)/acetone (1.0 mL), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), CsOAc (11.5 mg, 0.06 mmol), CuCl (2.0 mg, 0.02 mmol) and PivOH (20.4 mg, 0.2 mmol) were added successively, the reaction mixture was stirred at room temperature for 24 h. Then the other portion of **2a** (26.6 mg, 0.2 mmol) was added to the reaction mixture and stirred for another 24 h. The reaction mixture was diluted with brine (10 mL) and extracted with CH₂Cl₂ (2 × 10 mL). The combined organics were dried (Na₂SO₄), and concentrated *in vacuo*. The residue was purified by column chromatography (petroleum ether/EtOAc = 30/1, v/v) to afford the desired product **3a**.

tert-Butyl 3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3a)

White solid, m.p. 144–145 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.65 (s, 9H), 7.35 (t, J = 7.5 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.1, 86.0, 111.5, 113.9, 124.9, 125.5, 136.1, 146.3, 147.5, 164.1. HRMS

(ESI-TOF) Calcd for $(C_{12}H_{13}NNaO_4^+ [MNa]^+)$ 258.0737. Found 258.0726. *tert*-Butyl 6-methyl-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3b)

White solid, m.p. 98–99 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.64 (s, 9H), 2.52 (s, 3H), 7.15 (d, J = 8.0Hz, 1H), 7.65 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 22.5, 28.1, 85.7, 109.0, 113.7, 125.1, 126.4, 146.7, 147.6, 148.0, 164.1. HRMS (ESI-TOF) Calcd for (C₁₃H₁₅NNaO₄⁺ [MNa]⁺) 272.0893. Found 272.0903.

tert-Butyl 6-ethyl-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3c)

White solid, m.p. 106–108 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.31 (t, *J* = 7.5 Hz, 3H), 1.65 (s, 9H), 2.81 (q, *J* = 7.5 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.67 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 15.1, 28.1, 29.7, 85.8, 109.2, 112.6, 125.3, 125.5, 146.8, 147.6, 154.2, 164.1. HRMS (ESI-TOF) Calcd for (C₁₄H₁₇NNaO₄⁺ [MNa]⁺) 286.1050. Found 286.1040.

tert-Butyl 6-isopropyl-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3d)

White solid, m.p. 87–88 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.32 (d, *J* = 6.5 Hz, 6H), 1.65 (s, 9H), 3.06 (q, *J* = 6.5 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.69 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 23.6, 28.1, 35.1, 85.7, 109.3, 111.3, 124.2, 125.3, 146.8, 147.6, 158.9, 164.1. HRMS (ESI-TOF) Calcd for (C₁₅H₁₉NNaO₄⁺ [MNa]⁺) 300.1206. Found 300.1216.

tert-Butyl 6-tert-butyl-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3e)

White solid, m.p. 109–110 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 1.39 (s, 9H), 1.66 (s, 9H), 7.41 (d, J = 8.0Hz, 1H), 7.78 (d, J = 8.5 Hz, 1H), 7.83 (s, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 28.1, 31.1, 36.0, 85.6, 108.9, 110.4, 123.2, 124.9, 146.8, 147.5, 161.1, 164.1. **HRMS** (ESI-TOF) Calcd for (C₁₆H₂₁NNaO₄ ⁺ [MNa] ⁺) 314.1363. Found 314.1371.

tert-Butyl 6-methoxy-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3f)

White solid, m.p. 139–140 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 1.64 (s, 9H), 3.93 (s, 3H), 6.87 (dd, J =7.0, 8.5 Hz, 1H), 7.27 (d, J =7.0Hz, 1H), 7.72 (d, J =8.5Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.1, 56.0, 85.8, 96.2, 103.8, 114.9, 126.6, 147.5, 148.6, 163.8, 166.4. **HRMS** (ESI-TOF) Calcd for (C₁₃H₁₅NNaO₅⁺ [MNa]⁺) 288.0842. Found 288.0844.

tert-Butyl 6-chloro-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3g)

White solid, m.p. 102–103 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.65 (s, 9H), 7.31 (d, J = 8.5Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.88 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.1, 86.6, 109.9, 114.1, 125.8, 126.6, 143.0, 146.7, 147.1, 163.2. HRMS (ESI-TOF) Calcd for (C₁₂H₁₂ClNNaO₄⁺ [MNa]⁺) 292.0347. Found 292.0362.

White solid, m.p. 97–98 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.65 (s, 9H), 7.47 (d, J = 8.0Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 8.06 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.1, 86.6, 110.3, 117.1, 126.6, 128.6, 131.5, 146.8, 147.1, 163.3. HRMS (ESI-TOF) Calcd for (C₁₂H₁₂BrNNaO₄⁺ [MNa]⁺) 335.9842. Found 335.9832.

tert-Butyl 6-iodo-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3i)

White solid, m.p. 138–139 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.65 (s, 9H), 7.57 (d, J = 8.0Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 8.30 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.0, 86.5, 104.1, 110.9, 122.9, 126.4, 134.3, 146.5, 147.1, 163.5. HRMS (ESI-TOF) Calcd for (C₁₂H₁₂INNaO₄⁺ [MNa]⁺)383.9703. Found383.9711.

tert-Butyl 3-oxo-6-(trifluoromethyl)benzo[c]isoxazole-1(3H)-carboxylate (3j)

Yellow oil. ¹**H** NMR (500 MHz, CDCl₃): δ 1.66 (s, 9H), 7.59 (d, J = 8.5Hz, 1H), 8.02 (d, J =8.0 Hz, 1H), 8.16 (s, 1H). ¹³**C** NMR (125 MHz, CDCl₃): δ 28.0, 87.0, 111.7 (q, J = 4.3 Hz), 114.0, 121.6 (q, J = 3.4 Hz), 123.0 (q, J = 272.3 Hz), 126.6, 137.8 (q, J = 32.9 Hz), 145.9, 147.0, 162.9. HRMS (ESI-TOF) Calcd for (C₁₃H₁₂F₃NNaO₄⁺ [MNa]⁺) 326.0611. Found 326.0618.

tert-Butyl 4-methyl-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3k)

White solid, m.p. 127-128 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.64 (s, 9H), 2.68 (s, 3H), 7.08 (d, *J* = 7.0Hz, 1H), 7.57-7.62 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 17.2, 28.1, 85.7, 109.7, 111.1, 125.9, 135.9, 139.8, 146.6, 147.5, 164.2. HRMS (ESI-TOF) Calcd for (C₁₃H₁₅NNaO₄⁺ [MNa]⁺) 272.0893. Found 272.0898

tert-Butyl 5-methyl-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3l)

White solid, m.p. 97–98 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.64 (s, 9H), 2.45 (s, 3H), 7.56 (d, J = 8.5Hz, 1H), 7.64 (s, 1H), 7.69 (d, J = 8.5Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 20.9, 28.1, 85.8, 111.6, 113.6, 124.8, 135.1, 137.5, 144.6, 147.6, 164.3. HRMS (ESI-TOF) Calcd for (C₁₃H₁₅NNaO₄⁺ [MNa]⁺) 272.0893. Found 272.0915.

tert-Butyl 5-methoxy-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3m)

White solid, m.p. 144–145 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 1.64 (s, 9H), 3.86 (s, 3H), 7.23 (s, 1H), 7.35 (d, *J* = 8.5Hz, 1H), 7.71 (d, *J* = 9.0Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 28.1, 55.9, 85.7, 105.2, 112.1, 115.2, 126.2, 141.3, 147.7, 157.2, 164.3. **HRMS** (ESI-TOF) Calcd for (C₁₃H₁₅NNaO₅⁺ [MNa]⁺) 288.0842. Found 288.0873.

tert-Butyl 5-chloro-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3n)

White solid, m.p. 74–75 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.64 (s, 9H), 7.70 (dd, J = 2.0, 9.0Hz, 1H), 7.79 (d, J = 9.0Hz, 1H), 7.83 (d, J = 1.5Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.1, 86.5, 112.8, 115.2, 124.9, 130.6, 136.5, 144.8, 147.2, 162.8. HRMS (ESI-TOF) Calcd for (C₁₂H₁₂ClNNaO₄⁺ [MNa]⁺) 292.0347. Found 292.0340.

White solid, m.p. 97–98 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.63 (s, 9H), 3.91 (s, 3H), 4.16 (s, 3H), 7.35 (d, *J* = 9.0Hz, 1H), 7.43 (d, *J* = 9.0Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.1, 57.6, 62.5, 85.6, 105.1, 107.7, 123.1, 141.3, 147.5, 148.0, 148.2, 162.0. HRMS (ESI-TOF) Calcd for (C₁₄H₁₇NNaO₆⁺ [MNa]⁺)318.0948. Found 318.0926.

tert-Butyl 4,6-dimethyl-3-oxobenzo[c]isoxazole-1(3H)-carboxylate (3p)

White solid, m.p. 106–107 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.64 (s, 9H), 2.34 (s, 3H), 2.41 (s, 3H), 7.59 (s, 1H), 7.62 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 17.2, 22.4, 28.1, 85.6, 107.4, 111.1, 127.5, 139.3, 147.0, 147.7, 147.7, 164.2. HRMS (ESI-TOF) Calcd for (C₁₄H₁₇NNaO₄⁺ [MNa]⁺) 286.1050. Found 286.1048.

tert-Butyl 5,6-dimethyl-3-oxobenzo[*c*]isoxazole-1(3*H*)-carboxylate (3q)

White solid, m.p. 144–145 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.63 (s, 9H), 2.45 (s, 3H), 2.62 (s, 3H), 6.90 (s, 1H), 7.45 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 19.7, 21.3, 28.1, 85.6, 109.3, 114.2, 125.0, 134.4, 145.3, 147.2, 147.8, 164.3. HRMS (ESI-TOF) Calcd for (C₁₄H₁₇NNaO₄⁺ [MNa]⁺) 286.1050. Found 286.1050.

tert-Butyl 3-oxonaphtho[2,3-c]isoxazole-1(3H)-carboxylate (3r)

White solid, m.p. 164–165 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.68 (s, 9H), 7.59 (t, J = 7.5 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 9.0 Hz, 1H), 8.16 (d, J = 9.0 Hz, 1H), 8.75 (d, J = 8.0Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.1, 86.3, 103.4, 112.5, 122.7, 126.4, 128.5, 128.6, 129.9, 130.1, 137.9, 147.0, 147.1, 164.1. HRMS (ESI-TOF) Calcd for (C₁₆H₁₅NNaO₄⁺ [MNa]⁺) 308.0893. Found 308.0895.

tert-Butyl 1-oxonaphtho[2,1-*c*]isoxazole-3(1*H*)-carboxylate (3s)

White solid, m.p. 177–178°C. ¹H NMR (500 MHz, CDCl₃): δ 1.68 (s, 9H), 7.52 (t, *J* = 7.5Hz, 1H), 7.65 (t, *J* = 7.5Hz, 1H), 7.93 (d, *J* = 8.5Hz, 1H), 7.99 (d, *J* = 8.0Hz, 1H), 8.17 (s, 1H), 8.48 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 28.2, 85.7, 110.3, 112.2, 126.0, 127.4, 128.2, 129.8, 130.3, 137.6, 140.7, 148.4, 164.2. HRMS (ESI-TOF) Calcd for (C₁₆H₁₅NNaO₄⁺ [MNa] ⁺) 308.0893. Found 308.0923.

III. Mechanism experiments

Interemolecular isotopic reaction:

According to the general procedure, to a stirred mixture of **1a** (30.2 mg, 0.2 mmol), d_5 -**1a** (31.2 mg, 0.2 mmol), and **2a** (26.6 mg, 0.2 mmol) in EtOH (1.0 mL)/acetone (1.0 mL), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol), CsOAc (11.5 mg, 0.06 mmol), CuCl (2.0 mg, 0.02 mmol) and PivOH (20.4 mg, 0.2 mmol) were added successively, the reaction mixture was stirred at room temperature for 4.5 h. The reaction mixture was diluted with brine (10 mL) and extracted with CH₂Cl₂ (2 × 10 mL). The combined organics were dried (Na₂SO₄), and concentrated *in vacuo*. The residue was purified by column chromatography (petroleum ether/EtOAc = 30/1, v/v) to afford the desired product **3a** and d₄-**3a** yield 35%. **KIE=1.5**.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2014

According to the general procedure, to a stirred mixture of **1a** (30.2 mg, 0.2 mmol) in CD₃OD-D₄ (1.0 mL)/actone-D₆ (1.0 mL), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol), CsOAc (11.5 mg, 0.06 mmol), CuCl (2.0 mg, 0.02 mmol) and PivOH (20.4 mg, 0.2 mmol) were added successively, the reaction mixture was stirred at room temperature for 48 h. The reaction mixture was diluted with brine (10 mL) and extracted with CH₂Cl₂ (2 × 10 mL). The combined organics were dried (Na₂SO₄), and concentrated *in vacuo*. The residue was purified by column chromatography (petroleum ether/EtOAc = 10/1, v/v) to afford the desired product d₂-**1a** yield 94% and recycle the starting material **1a** yield 6%.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2014

According to the general procedure, to a stirred mixture of **1a** (30.2 mg, 0.2 mmol) and **2a** (26.6 mg, 0.2 mmol) in CD₃OD-D₄ (1.0 mL)/actone-D₆ (1.0 mL), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol), CsOAc (11.5 mg, 0.06 mmol), CuCl (2.0 mg, 0.02 mmol) and PivOH (20.4 mg, 0.2 mmol) were added successively, the reaction mixture was stirred at room temperature for 15 h. The reaction mixture was diluted with brine (10 mL) and extracted with CH_2Cl_2 (2 × 10 mL). The combined organics were dried (Na₂SO₄), and concentrated *in vacuo*. The residue was purified by column chromatography (petroleum ether/EtOAc = 30/1, v/v) to afford the desired product **3a** and d-**3a** yield 15% and recycle the starting material **1a** and d₂-**1a** yield 80%. d-**3a/3a**=89%:11%; d₂-**1a/1a**=94%:6%.

Trapping the nitrosocarbonyl compound:

According to the general procedure, to a stirred mixture of **1a** (30.2 mg, 0.2 mmol) and **2a** (31.9 mg, 0.24 mmol) in EtOH (1.0 mL)/acetone (1.0 mL), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), CsOAc (11.5 mg, 0.06 mmol), CuCl (2.0 mg, 0.02 mmol) and PivOH (20.4 mg, 0.2 mmol) were added successively. Cyclohexa-1,3-diene (38 uL, 0.4 mmol) was added to the mixture reaction for 48 h. The reaction mixture was diluted with brine (10 mL) and extracted with CH₂Cl₂ (2 × 10 mL). The combined organics were dried (Na₂SO₄), and concentrated *in vacuo*. The residue was purified by column chromatography (petroleum ether/EtOAc = 30/1, v/v) to afford the desired product **4** yield 44% and **3a** yield 10% and recycle the starting material **1a** yield 80%.

190

170

150

130

110

f1 (ppm) 80

70

60 50

40 30 20 10 0

GC/MS spectrum

The reaction mixture of **3a** was filtered and then tested on a Agilent 6890/5975 spectrometer (EI).

Standard sample

IV. Copies of ¹H NMR and ¹³C NMR spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

f1 (ppm) 5.0

4.0

3.0

9.11-

1.0

0.0

2.0

8.0

7.0

1.00-1

9.0

12.0

10.5

