Supporting Information

An Efficient Strategy for the Synthesis of Polysubstituted

Chromeno[4,3-b]pyrrolidine Derivatives

Li Tian, Guo-Qiang Xu, Yun-Han Li, Yong-Min Liang* and Peng-Fei Xu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China E-mail: <u>xupf@lzu.edu.cn</u>

Contents

1.	General information	S2
2.	General procedure for the synthesis of 1	S3
3.	Characterization data of 1	S3–S4
4.	General procedure for the synthesis of 3	S4
5.	Characterization data of 3	S4–S14
6.	X-ray Crystallographic data of 3k	S15
7.	¹ H NMR and ¹³ C NMR spectra	S16–S71
8.	HPLC spectra	S72–S94

1. General information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography (TLC) was performed on silicycle silica gel plates with F-254 indicator and the compounds were visualized by irradiation with UV light. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz ¹H, 100 MHz ¹³C). The spectra were recorded in CDCl₃ as solvent at room temperature, ¹H and ¹³C NMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) ($\delta = 77.00$ ppm) or TMS (¹H) ($\delta = 0$ ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. IR spectra were recorded using Nicolet NEXUS 670 FT-IR instrument and are reported in wavenumbers (cm⁻¹). HRMS were performed on a Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC employing a Daicel Chirapak AD–H on Agilent 1100 series and eluting with *i*-PrOH and n-hexane solution. Optical rotation was measured on the Perkin Elmer 341 polarimeter with [α]_D values reported in degrees; concentration (c) is reported in g/100 mL.

2. General procedure for the synthesis of 1

To a stirred solution of diethyl aminomalonate hydrochloride (3 g, 14.2 mmol) and H_2O (30 ml) in a 50ml round-bottomed flask was added NaHCO₃ (1.31 g, 15.6mmol), after stirring for 15min, the solution was extracted with AcOEt for 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum to afford diethyl aminomalonate (2.3 g, 13.1 mmol) which was used without futher purification.

Salicylaldehyde (1.37ml, 13.1mmol) was added to a mixture of diethyl aminomalonate (2.3 g, 13.1 mmol) and MgSO₄ (7.86g, 65.5mmol) in CH₂Cl₂ (30 ml). After stirring for 48h, MgSO₄ was removed by filtration. The filtrate was concentrated under reduced pressure. The crude product can be purified by flash chromatography on Al₂O₃ or recrystallization (PE/EA) to afford products**1a-e**.

3. Characterization data of 1

(E)-diethyl 2-((2-hydroxybenzylidene)amino)malonate (1a): yellow solid; Purified by flash chromatography, yield: 56 %; mp 44–46 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.70 (s, 1H), 8.47 (s, 1H), 7.37–7.30 (m, 2H), 6.98 (d, J = 8.4Hz, 1H), 6.90 (t, J = 7.6Hz, 1H), 4.85 (s, 1H), 4.31–4.26 (m, 4H), 1.31 (t, J = 7.2Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 166.1, 161.0, 133.3, 132.2, 118.8, 118.5, 117.2, 72.7, 62.3, 13.9; IR (KBr): 3445.3, 2993.4, 1731.5, 1631.9, 1459.4, 1396.9, 1304.2, 1280.4 1174.3, 1085.6, 1024.7, 764.1 cm⁻¹; HRMS (ESI) for C₁₄H₁₇NO₅[M+H] ⁺ calcd 280.1179, found 280.1186.

(E)-diethyl 2-((5-chloro-2-hydroxybenzylidene)amino)malonate (1b): yellow solid; Purified by recrystallization, yield: 63 %; mp 58-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.70 (s, 1H), 8.42 (s, 1H), 7.31–7.29 (m, 2H), 6.95–6.92 (m, 1H), 4.88 (s, 1H), 4.33–4.27 (m, 4H), 1.32 (t, *J* = 7.2Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 165.8, 159.6, 133.2, 131.2, 123.4, 119.2, 118.9, 72.4, 62.4, 13.9; IR (KBr): 3457.9, 2989.9, 1744.8, 1638.4, 1483.1, 1375.9, 1324.9, 1237.4, 1159.9, 1114.3, 1021.1, 829.7 cm⁻¹; HRMS (ESI) for C₁₄H₁₆ClNO₅ [M+H] ⁺ calcd 314.0790, found 314.0799.

(E)-diethyl 2-((5-bromo-2-hydroxybenzylidene)amino)malonate (1c): yellow solid; Purified by recrystallization, yield: 66 %; mp 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.71 (s, 1H), 8.41 (s, 1H), 7.42–7.41 (m, 2H), 6.89–6.87 (m, 1H), 4.87 (s, 1H), 4.31–4.26 (m, 4H), 1.33–1.29 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 165.8, 160.1, 135.9, 134.2, 119.8, 119.3, 110.2, 72.4, 62.5, 13.9; IR (KBr): 3450.5, 2989.4, 1745.9 1636.6, 1468.6, 1373.9, 1325.6, 1240.7, 1178.7, 1114.7, 1020.7, 820.6 cm⁻¹; HRMS (ESI) for C₁₄H₁₆BrNO₅ [M+H] ⁺ calcd 358.0285, found 358.0294.

(E)-diethyl 2-((2-hydroxy-5-nitrobenzylidene)amino)malonate (1d): yellow solid; Purified by recrystallization, yield: 59 %; mp 76-78°C; ¹H NMR (400 MHz, CDCl₃) δ 13.84 (s, 1H), 8.62 (s, 1H), 8.33 (d, *J* = 2.4Hz, 1H), 8.26–8.22 (m, 1H), 7.08–7.05 (m, 1H), 4.99 (s, 1H), 4.36–4.30 (m, 4H), 1.36–1.32 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 166.5, 165.4, 139.7, 128.5, 128.4, 118.3, 117.4, 71.7, 62.6, 13.9; IR (KBr): 3445.4, 2994.7, 1733.3, 1639.0, 1482.2, 1335.0, 1300.9, 1243.8, 1100.9, 1029.3, 836.1, 755.5 cm⁻¹; HRMS (ESI) for C₁₄H₁₆N₂O₇ [M+H]⁺ calcd 325.1030, found 325.1032.

(E)-diethyl 2-((2-hydroxy-4-methoxybenzylidene)amino)malonate (1e): yellow liquid; Purified by flash chromatography, yield: 43 %; ¹H NMR (400 MHz, CDCl₃) δ 13.12 (s, 1H), 8.37 (s, 1H), 7.19 (d, *J* = 8.4Hz, 1H), 6.48–6.45 (m, 2H), 4.80 (s, 1H), 4.31–4.26 (m, 4H), 3.82 (s, 3H), 1.31 (t, *J* = 7.2Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 166.4, 164.0, 163.5, 133.4, 112.4, 106.8, 101.0, 72.5, 62.2, 55.3, 13.9; IR (KBr): 3459.9, 2986.7, 1743.3, 1626.6, 1512.9, 1401.3, 1292.5, 1225.9, 1159.1, 1114.8, 1028.5, 843.1 cm⁻¹; HRMS (ESI) for C₁₅H₁₉NO₆[M+H]⁺ calcd 310.1285, found 310.1291.

4. General procedure for the synthesis of 3

To a solution of catalyst **4a** (1 mol %) and alkylidene azlactone **2** (0.3 mmol) in dry CH_2Cl_2 (1.0 mL) added *o*-hydroxy aromatic aldimine **1** (0.2mmol) with stirring. After **1** disappeared (monitored by TLC), the crude mixture was purified by flash chromatography on silica gel to afford product **3**.

5. Characterization data of 3

(3R, 3aS, 9bR)-diethyl 3a-benzamido-4-oxo-3-phenyl-1,3a,4,9b-tetrahydrochromeno[4,3-*b*] pyrrole-2,2(3*H*)-dicarboxylate (3a): white solid; $[\alpha]_{D}^{20} = -99.4$ (*c* 0.926, CHCl₃); mp 70–72 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 14.7 min, t_{R(major)} = 38.2 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.6Hz, 2H), 7.48–7.39 (m, 7H), 7.37–7.30 (m, 3H), 7.15–7.09 (m, 2H), 6.77(s, 1H), 5.22 (s, 1H), 4.97 (s, 1H), 4.04–3.93 (m, 3H), 3.91–3.83 (m, 1H), 3.81–3.73 (m, 1H), 1.11 (t, J = 7.2Hz, 3H), 0.82 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.2, 167.6, 166.6, 149.4, 132.8, 132.6, 132.1, 130.0, 129.8, 129.2, 129.0, 128.5, 128.3, 126.9, 124.6, 121.8, 116.8, 76.4, 66.1, 63.2, 62.5, 62.4, 57.5, 13.6, 13.2; IR (KBr): 3419.5, 2982.0, 1763.3, 1732.3, 1669.9, 1474.6, 1269.5, 1229.3, 1199.6, 762.2, 710.8 cm⁻¹; HRMS (ESI) for C₃₀H₂₈N₂O₇ [M+H]⁺ calcd 529.1969, found 529.1980.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(naphthalen-2-yl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3b): white solid; $[\alpha]_{D}^{20} = -77.2$ (*c* 0.868, CHCl₃); mp 78–80 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 254$ nm, t_{R(minor)} = 12.5 min, t_{R(major)} = 27.0 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.91 (d, *J* = 8.8Hz, 1H), 7.84 (dd, *J* = 3.2Hz, 6.0Hz, 2H), 7.55–7.51(m, 6H), 7.42 (t, *J* = 7.2Hz, 1H), 7.36–7.28 (m, 3H), 7.17–7.12 (m, 2H), 6.89 (s, 1H), 5.32 (d, *J* = 2.8Hz, 1H), 5.14 (s, 1H), 4.11 (d, *J* = 3.6Hz, 1H), 4.03–3.86 (m, 3H), 3.71–3.63 (m, 1H), 1.13 (t, *J* = 7.2Hz, 3H), 0.68 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.3, 167.8, 166.6, 149.4, 133.3, 133.0, 132.8, 132.1, 130.1, 129.9, 129.7, 128.9, 128.6, 128.4, 127.9, 127.6, 126.94, 126.89, 126.6, 124.6, 121.8, 116.9, 76.5, 66.5, 63.2, 62.6, 62.5, 57.7, 13.7, 13.2; IR (KBr): 3419.7, 2981.2, 1732.0, 1670.3, 1507.5, 1471.4, 1273.7, 1228.6, 1211.3, 760.0, 714.2 cm⁻¹; HRMS (ESI) for C₃₄H₃₀N₂O₇ [M+H]⁺ calcd 579.2126, found 579.2121.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-4-oxo-3-(o-tolyl)-1,3a,4,9b-tetrahydrochromeno[4,3-*b*] pyrrole-2,2(3*H*)-dicarboxylate (3c): white solid; $[\alpha]_{D}^{20} = -140.1$ (*c* 0.935, CHCl₃); mp 76–78 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, $t_{R(minor)} = 9.5$ min, $t_{R(major)} = 17.5$ min, ee > 99%; ¹H NMR (400

MHz, CDCl₃) δ 7.49–7.43 (m, 5H), 7.35–7.28 (m, 6H), 7.17–7.11 (m, 2H), 6.67 (s, 1H), 5.51 (s, 1H), 5.21 (s, 1H), 3.97–3.88 (m, 3H), 3.83–3.70 (m, 2H), 2.50 (s, 3H), 1.08 (t, *J* = 7.2Hz, 3H), 0.77 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 168.7, 167.7, 167.5, 149.6, 140.0, 132.7, 132.2, 132.1, 131.4, 129.8, 128.9, 128.5, 128.4, 127.6, 126.9, 126.2, 124.6, 121.8, 116.8, 65.2, 63.4, 62.6, 62.2, 51.9, 20.1, 13.6, 13.2; IR (KBr): 3415.2, 2981.2, 1761.8, 1731.9, 1669.1, 1470.6, 1264.6, 1229.2, 1206.9, 760.9, 714.2 cm⁻¹; HRMS (ESI) for C₃₁H₃₀N₂O₇ [M+H]⁺ calcd 543.2126, found 543.2135.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-4-oxo-3-(m-tolyl)-1,3a,4,9b-tetrahydrochromeno[4,3b]pyrrole-2,2(3H)-dicarboxylate (3d): white solid; $[\alpha]_D^{20} = -107.8$ (*c* 0.900, CHCl₃); mp 70–72 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 9.7 min, t_{R(major)} = 27.1 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.2Hz, 2H), 7.48–7.37 (m, 2H), 7.30–7.22 (m, 4H), 7.15–7.11 (m, 3H), 7.07–7.01 (m, 2H), 6.72 (s, 1H), 5.18 (d, J = 2.4Hz, 1H), 4.84 (s, 1H), 3.99–3.84 (m, 3H), 3.83–3.67 (m, 2H), 2.28 (s, 3H), 1.03 (t, J = 7.2Hz, 3H), 0.76 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.1, 167.7, 166.7, 149.4, 139.2, 132.9, 132.3, 132.2, 131.1, 129.82, 129.79, 129.1, 128.5, 128.4, 127.0, 126.5, 124.5, 121.7, 116.8, 76.4, 66.2, 63.1, 62.5, 62.4, 57.7, 21.3, 13.6, 13.2; IR (KBr): 3415.4, 2980.7, 1731.7, 1671.3, 1507.2, 1474.1, 1278.1, 1227.4, 1206.4, 761.6, 713.0 cm⁻¹; HRMS (ESI) for C₃₁H₃₀N₂O₇[M+H]⁺ calcd 543.2126, found 543.2121.

(**3R**, **3aS**, **9bR**)-**diethyl 3a-benzamido-4-oxo-3-(p-tolyl)-1,3a,4,9b-tetrahydrochromeno[4,3***b*]**pyrrole-2,2**(*3H*)-**dicarboxylate (3e):** white solid; $[\alpha]_{D}^{20} = -103.3$ (*c* 0.939, CHCl₃); mp 70–72 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 12.1 min, t_{R(major)} = 35.4 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.2Hz, 2H), 7.39 (t, J = 8.0Hz, 2H), 7.28 (t, J = 7.6Hz, 2H), 7.23 (d, J = 8.0Hz, 3H), 7.14 (d, J = 8.0Hz, 2H), 7.06–7.00 (m, 2H), 6.72 (s, 1H), 5.16 (s, 1H), 4.83 (s, 1H), 4.01–3.84 (m, 3H), 3.83–3.72 (m, 1H), 3.72–3.66 (m, 1H), 2.25 (s, 3H), 1.23 (t, J = 7.2Hz, 3H), 0.77 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.2, 167.7, 166.5, 149.3, 138.9, 132.9, 132.1, 129.8, 129.75, 129.2, 128.5, 128.3, 126.9, 124.5, 121.8, 116.7, 76.3, 66.3, 63.0, 62.4, 57.2, 20.9, 13.6, 13.2; IR (KBr): 3417.3, 2982.3, 1732.2, 1670.4, 1509.3, 1473.4, 1278.4, 1228.9, 1199.3, 762.3, 713.8 cm⁻¹; HRMS (ESI) for C₃₁H₃₀N₂O₇ [M+H]⁺ calcd 543.2126, found 543.2120.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(4-methoxyphenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3f): white solid; $[\alpha]_{D}^{20} = -81.0$ (*c* 0.741, CHCl₃); mp 72–74 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 15.3 min, t_{R(major)} = 46.3 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.2Hz, 2H), 7.50–7.46 (m, 2H), 7.39–7.30 (m, 5H), 7.15–7.09 (m, 2H), 6.94 (d, J = 8.4Hz, 2H), 6.79 (s, 1H), 5.22 (s, 1H), 4.90 (s, 1H), 4.10–3.76 (m, 8H), 1.11 (t, J = 7.2Hz, 3H), 0.89 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 169.3, 167.7, 166.7, 160.0, 149.4, 132.9, 132.2, 131.2, 129.8, 128.6, 128.3, 127.0, 124.6, 124.1, 121.8, 116.8, 114.6, 76.3, 66.2, 63.1, 62.5, 56.9, 55.3, 13.6, 13.4; IR (KBr): 3418.4, 2979.8, 1731.6, 1669.0, 1513.7, 1466.5, 1255.7, 1229.6, 1200.3, 761.9, 713.9 cm⁻¹; HRMS (ESI) for C₃₁H₃₀N₂O₈ [M+H]⁺ calcd 559.2075, found 559.2069.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(2-chlorophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3g): white solid; $[\alpha]_D^{20} = -162.5$ (*c* 0.831, CHCl₃); mp 150–152 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 10.9 min, t_{R(major)} = 34.7 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6Hz, 2H), 7.55–7.48 (m, 4H), 7.40–7.33 (m, 5H), 7.18–7.13 (m, 2H), 6.61 (s, 1H), 5.92 (s, 1H), 5.34, (s, 1H), 4.13–4.04 (m, 2H), 4.01–3.78 (m, 3H), 1.12 (t, J = 7.2Hz, 3H), 0.89 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.0, 168.1, 166.3, 149.4, 137.5, 132.9, 132.2, 131.3, 130.4, 130.1, 129.9, 128.9, 128.6, 128.4, 126.9, 126.7, 124.6, 121.5, 116.8, 76.6, 65.9, 62.9, 62.6, 62.5, 51.8, 13.6, 13.3; IR (KBr): 3450.6, 2926.2, 1774.7, 1726.3, 1672.5, 1469.9, 1289.3, 1232.4, 1199.4, 768.2, 715.3 cm⁻¹; HRMS (ESI) for C₃₀H₂₇ClN₂O₇[M+H]⁺ calcd 563.1580, found 563.1583.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(3-chlorophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3h): white solid; $[\alpha]_{D}^{20} = -78.4$ (*c* 0.753, CHCl₃); mp 72–74 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, $t_{R(minor)} = 8.1$ min, $t_{R(major)} = 28.3$ min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.62 (m, 2H), 7.52–7.48 (m, 3H), 7.42–7.31 (m, 6H), 7.16–7.09

(m, 2H), 6.82 (s, 1H), 5.25 (s, 1H), 4.90 (s, 1H), 4.09–3.81 (m, 5H), 1.14 (t, J = 7.2Hz, 3H), 0.90 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.3, 167.7, 166.1, 149.3, 135.0, 134.6, 132.8, 132.3, 130.4, 130.02, 129.96, 129.1, 128.7, 128.3, 128.2, 127.0, 124.7, 121.5, 116.9, 76.3, 66.4, 63.1, 62.8, 62.6, 56.6, 13.7, 13.3; IR (KBr): 3427.5, 2983.4, 1734.1, 1671.4, 1513.2, 1477.4, 1268.8, 1229.8, 1200.4, 762.4, 710.1 cm⁻¹; HRMS (ESI) for C₃₀H₂₇ClN₂O₇ [M+H]⁺ calcd 563.1580, found 563.1574.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(4-chlorophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3i): white solid; $[\alpha]_{D}^{20} = -61.7$ (*c* 0.973, CHCl₃); mp 80–82 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 11.1 min, t_{R(major)} = 37.2 min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.2Hz, 2H), 7.53–7.45 (m, 4H), 7.42–7.39 (m, 4H), 7.33 (t, *J* = 7.6Hz, 1H), 7.17–7.10 (m, 2H), 6.85 (s, 1H), 5.22 (s, 1H), 4.93 (s, 1H), 4.10–3.89 (m, 4H), 3.85–3.77 (m, 1H), 1.14 (t, *J* = 7.2Hz, 3H), 0.91 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.4, 167.6, 166.1, 149.2, 135.0, 132.7, 132.3, 131.3, 131.1, 129.9, 129.2, 128.7, 128.2, 126.9, 124.7, 121.6, 116.9, 76.2, 66.3, 63.2, 62.7, 62.6, 56.2, 13.6, 13.3; IR (KBr): 3427.6, 2926.9, 1734.8, 1670.4, 1490.9, 1464.6, 1266.9, 1229.9, 1144.9, 761.5, 714.6 cm⁻¹; HRMS (ESI) for C₃₀H₂₇ClN₂O₇[M+H]⁺ calcd 563.1580, found 563.1573.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(2,4-dichlorophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3j): white solid; $[\alpha]_{D}^{20} = -130.3$ (*c* 0.921, CHCl₃); mp 86–88 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 7.9 min, t_{R(major)} = 20.6 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6Hz, 2H), 7.55 (d, *J* = 2.0Hz, 1H), 7.53–7.46 (m, 3H), 7.42–7.38 (m, 2H), 7.36–7.33 (m, 2H), 7.18–7.13 (m, 2H), 6.57 (s, 1H), 5.81 (s, 1H), 5.32 (d, *J* = 3.2Hz, 1H), 4.17–4.09 (m, 2H), 4.01–3.81 (m, 3H), 1.11 (t, *J* = 7.2Hz, 3H), 0.96 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 169.0, 168.1, 166.2, 149.3, 138.2, 135.5, 132.9, 132.3, 130.9, 130.0, 129.8, 129.1, 128.7, 128.4, 126.9, 124.7, 121.4, 116.9, 76.4, 66.0, 62.8, 62.7, 51.3, 13.6, 13.4; IR (KBr): 3432.3, 2982.2, 1737.1, 1671.6, 1471.0, 1265.1, 1229.9, 1141.2, 761.7, 714.5 cm⁻¹; HRMS (ESI) for C₃₀H₂₆Cl₂N₂O₇ [M+H]⁺ calcd 597.1190, found 597.1183.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(2-bromophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3k): white solid; $[\alpha]_{D}^{20} = -163.8$ (*c* 0.995, CHCl₃); mp 164–166 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 10.1 min, t_{R(major)} = 29.5 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.71 (m, 1H), 7.57–7.46 (m, 5H), 7.42–7.31 (m, 4H), 7.27–7.22 (m, 1H), 7.17–7.12 (m, 2H), 6.59 (s, 1H), 5.89 (s, 1H), 5.32 (d, *J* = 2.8Hz, 1H), 4.10–4.01 (m, 2H), 3.99–3.76 (m, 3H), 1.11 (t, *J* = 7.2Hz, 3H), 0.87 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 168.8, 168.0, 166.4, 149.4, 134.7, 132.9, 132.3, 132.2, 130.3, 129.9, 129.0, 128.6, 128.5, 128.3, 127.3, 126.9, 124.6, 121.5, 116.8, 76.8, 65.8, 62.9, 62.6, 62.5, 54.8, 13.6, 13.3; IR (KBr): 3454.1, 2985.6, 1773.9, 1724.4, 1671.4, 1468.9, 1289.3, 1232.1, 1200.0, 768.4, 717.3 cm⁻¹; HRMS (ESI) for C₃₀H₂₇BrN₂O₇ [M+H]⁺ calcd 607.1074, found 607.1067.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(4-bromophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3l): white solid; $[\alpha]_{D}^{20} = -51.5$ (*c* 0.873, CHCl₃); mp 150–152 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 10.5 min, t_{R(major)} = 27.8 min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.59 (m, 2H), 7.55–7.45 (m, 4H), 7.42–7.37 (m, 4H), 7.34–7.30 (m, 1H), 7.16–7.09 (m, 2H), 6.83 (s, 1H), 5.20 (s, 1H), 4.89 (s, 1H), 4.10–3.88 (m, 4H), 3.84–3.76 (m, 1H), 1.13 (t, *J* = 7.2Hz, 3H), 0.90 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.4, 167.6, 166.1, 149.2, 132.7, 132.3, 132.2, 131.60, 131.57, 129.9, 128.7, 128.2, 127.0, 124.7, 123.2, 121.6, 116.9, 76.2, 66.3, 63.2, 62.7, 62.6, 56.3, 13.7, 13.4; IR (KBr): 3426.7, 2981.7, 1734.5, 1671.1, 1509.5, 1488.6, 1265.5, 1229.7, 1144.6, 760.1, 712.7 cm⁻¹; HRMS (ESI) for C₃₀H₂₇BrN₂O₇ [M+H]⁺ calcd 607.1074, found 607.1067.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(2-fluorophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3m): white solid; $[\alpha]_{D}^{20} = -118.4$ (*c* 1.022, CHCl₃); mp 78–80 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, $t_{R(minor)} = 14.1$ min, $t_{R(major)} = 43.2$ min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.2Hz, 2H), 7.55–7.49 (m, 2H), 7.43–7.27 (m, 6H),

7.20–7.11 (m, 4H), 5.28 (s, 1H), 5.17 (s, 1H), 4.33–4.18 (m, 2H), 4.04–3.89 (m, 3H), 1.13 (t, J = 7.2Hz, 3H), 0.96 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 169.4, 167.8, 165.5, 162.8, 160.4, 149.0, 132.9, 132.5, 132.2, 131.1, 131.0, 129.9, 128.6, 128.4, 127.0, 125.0, 124.97, 124.7, 122.0, 119.1, 118.9, 116.8, 116.4, 116.2, 74.8, 67.5, 62.83, 62.77, 62.5, 13.7, 13.3; IR (KBr): 3427.5, 2982.6, 1770.5, 1732.5, 1671.0, 1490.2, 1274.1, 1231.3, 1209.2, 762.6, 713.9 cm⁻¹; HRMS (ESI) for C₃₀H₂₇FN₂O₇ [M+H]⁺ calcd 547.1875, found 547.1885.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(4-fluorophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3n): white solid; $[\alpha]_{D}^{20} = -80.0$ (*c* 0.912, CHCl₃); mp 78–80 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 11.0 min, t_{R(major)} = 54.5 min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.2Hz, 2H), 7.51–7.45 (m, 4H), 7.40–7.37 (m, 2H), 7.34–7.31 (m, 1H), 7.16–7.09 (m, 4H), 6.80 (s, 1H), 5.20 (s, 1H), 4.94 (s, 1H), 4.07–3.75 (m, 5H), 1.12 (t, J = 7.2Hz, 3H), 0.88 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.3, 167.6, 166.4, 164.0, 161.6, 149.3, 132.7, 132.3, 131.9, 131.8, 129.9, 128.6, 128.42, 128.38, 128.2, 126.9, 124.7, 121.7, 116.9, 116.2, 116.0, 76.3, 66.1, 63.2, 62.6, 56.3, 13.6, 13.4; IR (KBr): 3426.2, 2983.0, 1734.3, 1670.2, 1511.5, 1466.5, 1264.6, 1229.6, 1143.8, 761.5, 713.5 cm⁻¹; HRMS (ESI) for C₃₀H₂₇FN₂O₇[M+H]⁺ calcd 547.1875, found 547.1877.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-4-oxo-3-(4-(trifluoromethyl)phenyl)-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3o): white solid; $[\alpha]_D^{20} = -55.2$ (*c* 1.142, CHCl₃); mp 156–158 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, $t_{R(minor)} = 6.5$ min, $t_{R(major)} = 14.4$ min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.64 (m, 4H), 7.58 (d, *J* = 7.2Hz, 2H), 7.51–7.45 (m, 2H), 7.39–7.31 (m, 3H), 7.16–7.09 (m, 2H), 6.93 (s, 1H), 5.22 (d, *J* = 2.4Hz, 1H), 5.02 (s, 1H), 4.09–3.92 (m, 4H), 3.81–3.73 (m, 1H), 1.15 (t, *J* = 7.2Hz, 3H), 0.84 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.6, 167.5, 165.8, 149.2, 136.9, 132.7, 132.3, 131.0, 130.7, 130.5, 130.0, 128.6, 128.2, 126.9, 125.74, 125.70, 125.0, 124.7, 122.3, 121.4, 116.9, 76.2, 66.3, 63.3, 62.8, 62.7, 56.0, 13.6, 13.2; IR (KBr): 3434.2, 2988.7, 1739.3, 1641.2, 1465.8, 1328.8, 1298.1, 1213.7, 1169.0, 760.5, 689.1 cm⁻¹; HRMS (ESI) for C₃₁H₂₇F₃N₂O₇ [M+H]⁺ calcd 597.1843, found 597.1838.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(4-nitrophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno [4,3-*b*]pyrrole-2,2(*3H*)-dicarboxylate (3p): white solid; $[\alpha]_{D}^{20} = -19.9$ (*c* 0.905, CHCl₃); mp 96–98 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 11.7 min, t_{R(major)} = 36.0 min, ee = 98%; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.8Hz, 2H), 7.78 (d, J = 8.8Hz, 2H), 7.62 (d, J = 7.2Hz, 2H), 7.51–7.45 (m, 2H), 7.40–7.32 (m, 3H), 7.16–7.09 (m, 3H), 5.22 (s, 1H), 5.06 (s, 1H), 4.14–3.98 (m, 4H), 3.79–3.71 (m, 1H), 1.19 (t, J = 7.2Hz, 3H), 0.90 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.6, 167.4, 165.2, 149.2, 147.6, 140.2, 132.6, 132.4, 131.1, 130.1, 128.7, 128.2, 126.9, 124.8, 123.6, 121.2, 116.9, 76.2, 66.5, 63.4, 63.0, 62.8, 55.2, 13.7, 13.4; IR (KBr): 3432.3, 2982.9, 1736.7, 1668.9, 1523.5, 1463.9, 1349.1, 1266.5, 1230.6, 761.8, 713.1 cm⁻¹; HRMS (ESI) for C₃₀H₂₇N₃O₉ [M+H]⁺ calcd 574.1820, found 574.1815.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(4-cyanophenyl)-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(*3H*)-dicarboxylate (3q): white solid; $[\alpha]_{D}^{20} = -24.4$ (*c* 0.982, CHCl₃); mp 96–98 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 12.6 min, t_{R(major)} = 57.8 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd, J = 8.4Hz, 17.6Hz, 4H), 7.59 (d, J = 7.2Hz, 2H), 7.50 (t, J =7.2Hz, 1H), 7.45 (d, J = 7.6Hz, 1H), 7.40–7.32 (m, 3H), 7.14 (t, J = 7.2Hz, 1H), 7.09 (d, J =8.0Hz, 1H), 7.03 (s, 1H), 5.19 (s, 1H), 5.01 (s, 1H), 4.11–3.95 (m, 4H), 3.79–3.71 (m, 1H), 1.17 (t, J = 7.2Hz, 3H), 0.89 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.6, 167.4, 165.4, 149.2, 138.3, 132.5, 132.4, 132.3, 130.8, 130.1, 128.7, 128.2, 126.9, 124.8, 121.2, 118.0, 116.9, 112.4, 76.2, 66.3, 63.3, 62.9, 62.7, 55.6, 13.7, 13.3; IR (KBr): 3432.0, 2983.2, 1735.9, 1671.9, 1508.9, 1465.5, 1264.1, 1230.2, 1145.9, 761.0, 714.3 cm⁻¹; HRMS (ESI) for C₃₁H₂₇N₃O₇[M+H]⁺ calcd 554.1922, found 554.1927.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-(furan-2-yl)-4-oxo-1,3a,4,9b-tetrahydrochromeno-[4,3-b]pyrrole-2,2(3H)-dicarboxylate (3r): white solid; $[\alpha]_{D}^{20} = -72.9$ (*c* 0.796, CHCl₃); mp 164–166 °C; The enantiomeric excess was determined by HPLC with an AD-H column.

(*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, $t_{R(minor)} = 18.3$ min, $t_{R(major)} = 64.7$ min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.85 (d, J = 7.6Hz, 2H), 7.55–7.53 (m, 2H), 7.50–7.45 (m, 3H), 7.32 (t, J = 7.6Hz, 1H), 7.15–7.08 (m, 2H), 6.43–6.39 (m, 2H), 5.36 (d, J = 5.2Hz, 1H), 4.87 (s, 1H), 4.41 (d, J = 5.6Hz, 1H), 4.29–4.21 (m, 1H), 4.07 (dd, J = 7.2Hz, 14.0Hz, 2H), 3.92–3.84 (m, 1H), 1.18 (t, J = 7.2Hz, 3H), 1.04 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 169.2, 167.7, 164.7, 148.8, 146.1, 143.8, 133.4, 132.1, 129.9, 128.7, 128.4, 127.2, 124.7, 122.0, 116.9, 113.3, 111.4, 74.3, 68.3, 63.3, 62.6, 62.4, 49.7, 13.8, 13.5; IR (KBr): 3440.1, 2969.8, 1779.2, 1727.3, 1676.3, 1520.6, 1485.1, 1276.2, 1227.8, 1204.2, 766.6, 708.3 cm⁻¹; HRMS (ESI) for C₂₈H₂₆N₂O₈ [M+H]⁺ calcd 519.1762, found 519.1767.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-3-cyclohexyl-4-oxo-1,3a,4,9b-tetrahydrochromeno[4,3*b*]pyrrole-2,2(*3H*)-dicarboxylate (3s): white solid; $[\alpha]_D^{20} = -35.4$ (*c* 0.905, CHCl₃); mp 162–164 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, t_{R(minor)} = 8.6 min, t_{R(major)} = 29.9 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.86 (m, 2H), 7.58–7.54 (m, 1H), 7.51–7.47 (m, 2H), 7.42 (m, 1H), 7.29–7.26 (m, 1H), 7.10–7.03 (m, 3H), 5.28 (d, *J* = 4.4Hz, 1H), 4.44–4.40 (m, 1H), 4.31–4.27 (m, 1H), 4.10–4.05 (m, 2H), 3.99 (d, *J* = 5.2Hz, 1H), 3.33 (d, *J* = 6.8Hz, 1H), 2.07 (d, *J* = 12Hz, 1H), 1.80–1.71 (m, 4H), 1.60 (s, 1H), 1.34–1.25 (m, 4H), 1.22–1.54 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 170.3, 166.6, 165.7, 148.7, 133.7, 132.0, 129.6, 128.7, 128.2, 127.0, 124.3, 122.6, 116.3, 75.0, 67.3, 63.4, 63.1, 62.0, 55.2, 37.6, 33.5, 30.0, 26.7, 26.5, 25.6, 13.82, 13.78; IR (KBr): 3449.4, 2925.3, 1773.5, 1718.1, 1672.4, 1504.3, 1478.9, 1278.7, 1235.5, 1205.1, 1144.7, 1100.8, 1025.2, 764.2, 721.3 cm⁻¹; HRMS (ESI) for C₃₀H₃₄N₂O₇[M+H]⁺ calcd 535.2439, found 535.2426.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-8-chloro-4-oxo-3-phenyl-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(*3H*)-dicarboxylate (3t): white solid; $[\alpha]_{D}^{20} = -76.3$ (*c* 1.114, CHCl₃); mp 78–80 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 254$ nm, t_{R(minor)} = 10.1 min, t_{R(major)} = 29.3 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.57 (m, 2H), 7.50–7.47 (m, 2H), 7.42–7.36 (m, 7H), 7.30–7.27 (m, 1H), 7.06 (d, *J* =8.8Hz, 1H), 6.79 (s, 1H), 5.22 (d, *J* = 4.8Hz, 1H), 4.93 (s, 1H), 4.11–3.93 (m, 4H), 3.81–3.73 (m, 1H), 1.18 (t, *J* = 7.2Hz, 3H), 0.83 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.0, 167.9, 166.0, 148.0, 132.6, 132.3, 132.2, 129.9, 129.8, 129.3, 129.2, 128.6, 128.2, 127.0, 123.6, 118.4, 76.5, 66.2, 62.9, 62.8, 62.6, 57.4, 13.7, 13.3; IR (KBr): 3419.0, 2982.3, 1771.5, 1731.5, 1669.7, 1506.1, 1477.5, 1277.7, 1228.4, 1194.6, 711.6 cm⁻¹; HRMS (ESI) for C₃₀H₂₇ClN₂O₇[M+H]⁺ calcd 563.1580, found 563.1586.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-8-bromo-4-oxo-3-phenyl-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3u): white solid; $[\alpha]_D^{20} = -63.6$ (*c* 1.211, CHCl₃); mp 78–80 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 254$ nm, t_{R(minor)} = 10.2 min, t_{R(major)} = 27.0 min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 1.6Hz, 1H), 7.58 (d, J = 7.2Hz, 2H), 7.50–7.35 (m, 9H), 7.00 (d, J = 8.8Hz, 1H), 6.79 (s, 1H), 5.22 (d, J = 4.4Hz, 1H), 4.93 (s, 1H), 4.11–3.93 (m, 4H), 3.81–3.73 (m, 1H), 1.19 (t, J = 7.2Hz, 3H), 0.83 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.0, 167.9, 166.0, 148.5, 132.8, 132.6, 132.3, 132.2, 131.2, 129.9, 129.3, 129.1, 128.6, 127.0, 124.0, 118.7, 117.2, 76.5, 66.2, 62.9, 62.8, 62.6, 57.4, 13.7, 13.3; IR (KBr): 3419.6, 2982.0, 1771.8, 1731.5, 1669.7, 1506.0, 1475.9, 1278.8, 1228.3, 1194.1, 711.5 cm⁻¹; HRMS (ESI) for C₃₀H₂₇BrN₂O₇[M+H]⁺ calcd 607.1074, found 607.1080.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-8-nitro-4-oxo-3-phenyl-1,3a,4,9b-tetrahydrochromeno-[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3v): white solid; $[\alpha]_D^{20} = -68.3$ (*c* 1.084, CHCl₃); mp 84–86 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane: *i*-PrOH = 70:30), 1.0 mL/min, $\lambda = 230$ nm, $t_{R(minor)} = 13.3$ min, $t_{R(major)} = 32.1$ min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 2.4Hz, 1H), 8.22 (dd, J = 2.4Hz, 8.8Hz, 1H), 7.55–7.35 (m, 10H), 7.25 (d, J = 8.8Hz, 1H), 6.82 (s, 1H), 5.25 (d, J = 4.8Hz, 1H), 4.95 (s, 1H), 4.17 (d, J = 4.8Hz, 1H), 4.17–3.99 (m, 2H), 3.97–3.89 (m, 1H), 3.81–3.73 (m, 1H), 1.14 (t, J = 7.2Hz, 3H), 0.84 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.0, 167.8, 165.3, 153.9, 144.3, 132.5, 132.2, 131.9, 129.9, 129.4, 129.3, 128.7, 126.9, 125.5, 124.6, 123.7, 118.0, 76.2, 65.9, 63.0, 62.8, 62.7, 57.4, 13.5, 13.2; IR (KBr): 3418.7, 2983.2, 1779.2, 1731.7, 1670.0, 1529.6, 1477.3, 1345.5, 1247.5, 1188.7, 712.3 cm⁻¹; HRMS (ESI) for C₃₀H₂₇N₃O₉ [M+H]⁺ calcd 574.1820, found 574.1826.

(3R, 3aS, 9bR)-diethyl 3a-benzamido-7-methoxy-4-oxo-3-phenyl-1,3a,4,9b-tetrahydrochromeno[4,3-*b*]pyrrole-2,2(3*H*)-dicarboxylate (3w): white solid; $[\alpha]_{D}^{20} = -83.7$ (*c* 1.075, CHCl₃); mp 76–78 °C; The enantiomeric excess was determined by HPLC with an AD–H column. (*n*-hexane:

i-PrOH = 70:30), 1.0 mL/min, λ = 230 nm, t_{R(minor)} = 14.2 min, t_{R(major)} = 34.4 min, ee > 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.6Hz, 2H), 7.48–7.34 (m, 9H), 6.75–6.63 (m, 3H), 5.16 (s, 1H), 4.97 (s, 1H), 4.06–3.87 (m, 4H), 3.80–3.73 (m, 4H), 1.14 (t, *J* = 7.2Hz, 3H), 0.82 (t, *J* = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.2, 167.6, 166.7, 160.7, 150.2, 132.8, 132.6, 132.1, 130.0, 129.2, 129.1, 129.0, 128.5, 126.9, 113.5, 111.3, 101.6, 76.4, 66.2, 62.9, 62.5, 62.4, 57.5, 55.4, 13.7, 13.2; IR (KBr): 3420.2, 2981.4, 1732.7, 1670.3, 1627.7, 1510.3, 1474.2, 1280.1, 1221.1, 1159.0, 710.9 cm⁻¹; HRMS (ESI) for C₃₁H₃₀N₂O₈ [M+H]⁺ calcd 559.2075, found 559.2083.

6. X-ray Crystallographic data of 3k

Empirical formula	$C_{30}H_{27}N_2O_7Br$		
Formula weight	607.45		
Temperature/K	293(2)		
Crystal system	orthorhombic		
Space group	P2 ₁ 2 ₁ 2 ₁		
a/Å	9.3949(3)		
b/Å	15.4269(5)		
c/Å	19.7387(8)		
α/°	90.00		
β/°	90.00		
$\gamma/^{\circ}$	90.00		
Volume/Å ³	2860.81(17)		
Ζ	4		
$\rho_{calc}mg/mm^3$	1.413		
m/mm ⁻¹	1.488		
F(000)	1248.0		
Crystal size/mm ³	$0.24 \times 0.22 \times 0.18$		
2Θ range for data collection	5.98 to 57.12°		
Index ranges	$\text{-}11 \leq h \leq 12, \text{-}19 \leq k \leq 18, \text{-}25 \leq l \leq 26$		
Reflections collected	13749		
Independent reflections	6345[R(int) = 0.0599]		
Data/restraints/parameters	6345/0/368		
Goodness-of-fit on F ²	1.021		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0562, wR_2 = 0.1003$		
Final R indexes [all data]	$R_1 = 0.1185, wR_2 = 0.1274$		
Largest diff. peak/hole / e Å ⁻³ 0.33/-0.52			
Flack parameter	-0.007(10)		

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

7. ¹H NMR and ¹³C NMR spectra

3-Me

S33

3–Cl

S45

S59

8. HPLC spectra

3a: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =70:30, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	14.516	4.42561e4	931.22510	50.0543
2	DAD 230.16 nm	38.094	4.41601e4	360.54883	49.9457

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	14.704	65.72226	1.32549	0.2164
2	DAD 230.16 nm	38.187	3.03025e4	246.92838	99.7836

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min) (mAU*s)	(mAU)	(%)	
1	DAD 254.4 nm	12.489	7043.68359	172.06007	50.0770
2	DAD 254.4 nm	27.377	7022.02246	75.90296	49.9230

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254.4 nm	12.517	58.06630	1.44128	0.3331
2	DAD 254.4 nm	26.965	1.73717e4	188.06601	99.6669

D . 1	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min) (mAU*s) (mAU)	(%)		
1	DAD 230.16 nm	9.488	47.91438	1.70864	0.0776
2	DAD 230.16 nm	17.546	6.17004e4	1046.78967	99.9224

Deele	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	Ition Peak Area Peak Height (min) (mAU*s) (mAU) 47 2.93854e4 933.64313	(%)	
1	DAD 230.16 nm	9.947	2.93854e4	933.64313	49.6160
2	DAD 230.16 nm	28.412	2.98403e4	342.00146	50.3840

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	9.658	229.77553	7.98003	0.1836
2	DAD 230.16 nm	27.104	1.24909e5	1368.79395	99.8164

3e: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =70:30, 1.0 mL/min)

Deele	Processed	Retention	Peak Area	Peak Height	Peak Area
Геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	11.943	1.51561e4	406.85596	49.3734
2	DAD 230.16 nm	35.460	1.55408e4	138.02827	50.6266

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	12.052	699.63135	17.98186	0.2232
2	DAD 230.16 nm	35.404	3.12771e5	1974.31396	99.7768

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	14.922	7.09226e4	1316.09509	50.0516
2	DAD 230.16 nm	45.337	7.07763e4	441.24490	49.9484

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	15.341	53.95940	1.05002	0.1183
2	DAD 230.16 nm	46.313	4.55607e4	281.78635	99.8817

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	10.473	2.24628e4	646.72772	50.0281
2	DAD 230.16 nm	33.431	2.24376e4	209.84456	49.9719

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	10.866	48.91969	1.32402	0.1267
2	DAD 230.16 nm	34.665	3.85705e4	336.63397	99.8733

3h: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =70:30, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	8.119	1.32298e4	540.00916	49.9065
2	DAD 230.16 nm	28.471	1.32793e4	150.43208	50.0935

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s) (mAU)	(%)	
1	DAD 230.16 nm	8.131	100.70414	4.14770	0.1697
2	DAD 230.16 nm	28.279	5.92512e4	647.06018	99.8303

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	11.015	2.00165e4	529.26758	50.4564
2	DAD 230.16 nm	36.347	1.96543e4	165.33336	49.5436

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Геак	Channel	Time (min)	in) (mAU*s) (mAU) 5 239.04121 6.43722	(%)	
1	DAD 230.16 nm	11.125	239.04121	6.43722	0.4699
2	DAD 230.16 nm	37.188	5.06324e4	395.58185	99.5301

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	Peak Area Peak Height) (mAU*s) (mAU) 2.40812e4 984.50940 2.45115e4 372.62677	(%)	
1	DAD 230.16 nm	7.862	2.40812e4	984.50940	49.5573
2	DAD 230.16 nm	20.505	2.45115e4	372.62677	50.4427

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min) (mAU*s) (mAU)	(mAU)	(%)	
1	DAD 230.16 nm	7.948	118.13894	3.60138	0.1517
2	DAD 230.16 nm	20.649	7.77663e4	1140.08362	99.8483

3k:HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =70:30, 1.0 mL/min)

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	10.114	42.15909	1.07290	0.2252
2	DAD 230.16 nm	29.470	1.86825e4	194.16730	99.7748

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Геак	Channel	Time (min)	n Peak Area Peak Height n) (mAU*s) (mAU) 319.44400 9.45661	(%)	
1	DAD 230.16 nm	10.504	319.44400	9.45661	0.3971
2	DAD 230.16 nm	27.834	8.01273e4	850.75189	99.6029

Dools	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	14.311	3.26665e4	680.86188	50.0742
2	DAD 230.16 nm	43.823	3.25697e4	234.41856	49.9258

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	14.116	28.79625	6.40862e-1	0.0622
2	DAD 230.16 nm	43.233	4.62597e4	324.35739	99.9378

3n:HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =70:30, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	10.937	2.17395e4	578.34674	50.2087
2	DAD 230.16 nm	55.621	2.15588e4	113.59769	49.7913

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	in) (mAU*s) (mAU)	(%)	
1	DAD 230.16 nm	11.006	181.87411	4.94089	0.4010
2	DAD 230.16 nm	54.508	4.51783e4	238.48979	99.5990

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	Peak Area Peak Height) (mAU*s) (mAU) 2.49199e4 1067.90808	(%)	
1	DAD 230.16 nm	6.473	2.49199e4	1067.90808	50.0339
2	DAD 230.16 nm	14.381	2.48860e4	484.83890	49.9661

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	nin) (mAU*s) (n	(mAU)	(%)
1	DAD 230.16 nm	6.455	110.25813	4.12542	0.6595
2	DAD 230.16 nm	14.379	1.66078e4	329.38794	99.3405

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	11.246	1.87441e4	389.62531	50.7824
2	DAD 230.16 nm	35.556	1.81665e4	124.27949	49.2176

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	11.711	429.86615	6.96837	1.1178
2	DAD 230.16 nm	35.991	3.80263e4	239.78430	98.8822

3q:HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =70:30, 1.0 mL/min)

Doolt	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	min) (mAU*s) (mAU	(mAU)	(%)
1	DAD 230.16 nm	12.690	4.25759e4	922.08051	50.1293
2	DAD 230.16 nm	59.372	4.23563e4	209.81834	49.8707

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	e (min) (mAU*s) (mA	(mAU)	(%)
1	DAD 230.16 nm	12.590	121.49043	2.71774	0.4664
2	DAD 230.16 nm	57.773	2.59255e4	128.00862	99.5336

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s) (mAU)	(mAU)	(%)
1	DAD 230.16 nm	19.593	8.54262e4	1144.53760	50.1086
2	DAD 230.16 nm	65.082	8.50560e4	412.88434	49.8914

Deele	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	18.251	166.70596	2.00678	0.3872
2	DAD 230.16 nm	64.696	4.28897e4	203.96678	99.6128

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	8.655	3.06431e4	998.09821	50.0975
2	DAD 230.16 nm	30.310	3.05239e4	295.44714	49.9025

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(min) (mAU*s) (mA	(mAU)	(%)
1	DAD 230.16 nm	8.634	158.97664	5.39230	0.1715
2	DAD 230.16 nm	29.920	9.25320e4	866.61578	99.8285

3t:HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =70:30, 1.0 mL/min)

Deele	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	e (min) (mAU*s) (mA	(mAU)	(%)
1	DAD 254.16 nm	10.108	15.22353	6.26461e-1	0.2360
2	DAD 254.16 nm	29.286	6435.04883	93.01656	99.7640

15

20

25

30

35mii

10

80

60 -40 -

20

0

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254.4 nm	10.165	48.94022	1.76480	0.4435
2	DAD 254.4 nm	26.970	1.09855e4	166.81984	99.5565

10.165

10

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	13.307	94.95272	1.95824	0.4820
2	DAD 230.16 nm	32.148	1.96035e4	180.42715	99.5180

13.307

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	13.995	6.12049e4	1198.13342	50.0643
2	DAD 230.16 nm	34.215	6.10477e4	508.87573	49.9357

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	14.153	47.37370	8.79817e-1	0.1508
2	DAD 230.16 nm	34.417	3.13618e4	264.83795	99.8492