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General Information
Scanning electron microscope (SEM) observation was carried out using a JEOL JSM-6500F instrument
operated at an accelerating voltage of 30 kV. TEM characterization was performed using a JEM-2100F TEM
(JEOL, 200 kV) equipped with double spherical aberration (Cs) correctors for both the probe-forming and
image-forming lenses. The XPS measurements were carried out using a VG ESCALAB 250 spectrometer
(Thermo Fisher Scientific K.K.) employing monochromatic Al K X-ray radiation. The base pressure of the
analysis chamber was less than 10 Pa. '"H NMR and **C NMR spectra were recorded on JEOL JNM AL 400
(400 MHz) spectrometers. "H NMR spectra are reported as follows: chemical shift in ppm (3) relative to the
chemical shift of CDCI; at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, g = quartet,
m = multiplet and br = broadened), and coupling constants (Hz). "*C NMR spectra were recorded on JEOL
JNM AL 400 (100.5 MHz) spectrometers with complete proton decoupling, and chemical shift reported in ppm
(d) relative to the central line of triplet for CDCl; at 77 ppm. High-resolution mass spectra were obtained on a
BRUKER APEXIII spectrometer and JEOL JMS-700 MStation operator. Column chromatography was carried
out employing silica gel 60 N (neutral, 40~63 pm, Merck KGaA Co.). Analytical thin-layer chromatography
(TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F254 (Merck).
Materials. Au (99.99%) and Pd (99.99%) are purchased from Tanaka Kikinzoku Hanbai K.K. and Al (99.99%)
is purchased from Mitsuwa’s Pure Chemicals, respectively. PdNPore-2 and PdNPore-3 were prepared
following our reported methods." AuPdNPs was prepared following the reported literature.” HSiEt, and
conjugated cyclic enones are commercially available, which are used as received.
5-Methyl-2-cyclohexene-1-one was synthesized according to the literature.® Structures of the known products
2a,* 2b,* 2f° were identified by 'H, *C NMR and HRMS comparing with the reported authentic compounds.
The new products were confirmed by *H, **C NMR and HRMS.
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Fabrication of the nanoporous AuPd (AuPdNPore) alloy catalysts. Au (99.99%), Pd (99.99%) and Al
(99.99%) were melted with electric arc-melting furnace under an Argon atmosphere to form AuPdAl alloy. A
single roller melt-spinning apparatus was used to prepare the ribbon of AuPdAl alloys with 20-50 pm in
thickness and 2-5 mm in width. The resulting alloys were treated with 20 wt. % NaOH solution for 36 h at
room temperature to give the AuPdNPore catalysts. The resulting material was washed with pure water and
acetone followed by drying under reduced pressure, which was used as catalyst for 1,4-hydrosilylation.

Representative procedure of 1,4-hydrosilylation of conjugated cyclic enones using AuPdNPore-1 as a

catalyst (Tables 1, entry 5).

0}
AuPdNPore-1 (2.5mol%)
+ HSIEt; =

100°C, 4 h
1a 2a

OSiEt,

To a mixture of 1a (200 pl, 2 mmol) and HSiEt; (320 pl, 2.00 mmol) was added AuPdNPore-1 catalyst (2.5
mol%, 7.5 mg) at room temperature. The reaction mixture was stirred at 100 °C for 4 h and monitored by TLC.
After reaction, the AuPdNPore-1 catalyst was recovered by filtration and washed with diethyl ether. The
recovered AuPdNPore catalyst was washed with acetone, diethyl ether, and acetone, subsequently. The catalyst
was dried under vacuum for reuse. After concentration, the residue was purified with a Merck silica gel
chromatography which was pretreated with a mixture of hexane and Et;N (100:1) to afford 2a (365 mg, 86%).
High resolution TEM (HRTEM) of AuPdNPore-2 and AuPdNPore-3

10 nm
—

Fig S1. HRTEM images of AuPdNPore-2 (a) and AuPdNPore-3 (b).
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STEM-EDS mapping of AuPdNPore-1

Spectrum Image

Au+Pd+Al

Fig S2. STEM-EDS mapping of as-prepared AuPdNPore-1.

XPS of AuPdNPore (Au-XPS)
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Fig S3. XPS characterizationof AuPdNPore-1 vs PdNPore-1 (a) and AuPdNPore-1 vs AuNPore-1 (b).
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Fig S4. XPS characterization of AuPdNPore vs PdNPore (a) and vs AuNPore (b).

SEM images of fresh AuPdNPore-1 and after first cycle
After the first reuse, the AuPdNPore-1 catalyst did not show obvious changes in the nanopore and ligament

sizes, and surface morphology.

58

Fig S5. SEM images of AuPdNPore-1 catalyst; (a) fresh, (b) after first cycle.

Leaching experiments of AuPdNPore-1

Supernatant
o OSiEt, without AuPdNPore-1
~ » Stiring 2a: 29%
@ _ AuPdNPore-1 100°C ,6 h ’
+ HSiEty ———> E—
100 °C, 0.5h Stiring .
1a 2a Residue 100 °C, 6h 2a: 91%
2mmol 2 mmol TH NMR: 29% with AuPdNPore-1

Scheme S1. Leaching experiments of AuPdNPore-1.
2-Cyclohexen-1-one la was treated with HSIEt; in the presence of AuPdNPore-1 catalyst (2.5 mol%) under
neat condition at 100 °C. After 0.5 h, a part of supernatant was transferred to the other reaction vessel and 2a
was produced in 29 % 'H NMR yield at this time. The supernatant was continuously heated at 100 °C in the
absence of catalyst for 6 h, affording 2a in 29 % 'H NMR yield. In contrast, the residual containing the

AuPdNPore-1 catalyst was completed in 6 h, giving 2a in 91 % "H NMR vyield.
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Hydrosilylation of 1a using PdNPore-3 (PdgNi3P;) as catalyst

The PdNPore-2 catalyst was fabricated by electrochemical dealloying of PdsNisyP,o metallic glass in 1 M
H,S0,, which has been reported by our group including the fabrication method and characterization. The EDX
analysis indicated that the composition of PdNPore-2 catalyst was Pd;sNisPg. Following this reviewer’s
comment, we further fabricated the nanoporous PdgNi;sP; (PdNPore-3) catalyst under the same fabrication
method by using Pd,oNigP,, metallic glass. The SEM image of PdNPore-3 was shown as Fig. S6. Under the
standard reaction conditions, the hydrosilylation of 1a using PdNPore-3 catalyst produced the corresponding
1,4-adduct 2a and by-product 4a in 48% and 19% yields, respectively, without forming the 1,2-adduct 3a
(Scheme S2).

O OSiEts OSiEty OSiEts
PdNPore-3 (2.51 mol%)
+ HSiEty > + +
100 °C, neat, 6 h
1a 2a 3a 4a
"H NMR vyield: 48% 0% 19%

Scheme S2. The catalytic activity of PANPore-3 (PdggNi3P-).

Fig S6. SEM image of PdNPore-3.

Hydrosilylation of 1a with DSiEt; using AuPdNPore-1 as catalyst

We performed the AuPdNPore-1-catalyzed hydrosilylation of 1a with DSiEt; instead of using HSiEt; under
the standard conditions. The reaction showed a high 1,4-addition selectivity within 4 h at 100 °C, but the yield
of the corresponding 1,4-adduct (70%) was lower than that using HSiEt; (Scheme S3). Interestingly, we found
that the corresponding product was a mixture of deuterium (D) containing 1,4-adducts (2a”), in which several
deuterium atoms were substituted on the cyclohexyl ring which was determined by 'H, *C NMR (see NMR
spectra), and high resolution mass (HRMS, Fig. S6), while the precise D-substitution position cannot be
confirmed. This result indicates that there is an exchange between H from cyclohexyl ring and D from DSiEt;
on AuPdNPore surface. The result also suggests that the H-Si bond should be cleaved on AuPdNPore surface
before the 1,4-addition, and cyclohexenone (1a) should be activated by chemisorption on AuPdNPore catalyst
as this reviewer commented.

In the presence of the AuNPore catalyst, the disproportionation reaction of cycloehexenone (1a) did not

proceed at all as shown in Scheme S4. However, the mechanism of the disproportionation of enone catalyzed
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by metals is not clear, taking into consideration those supplementary experiment results, we thought that the
disproportionation of enone should be related to the hydride species, which may be formed by chemisorption of

enone on the Pd of AuPdNPore catalyst.

o} OSiEt, OSiEt, OSiEt,
AuPdNPore-1 (2.5 mol%) SN SN
+ DSiEt, - —D, + Lo, + | Pt
100 °C, neat, 4 h
1a 2a' 3a’ 4a'
"H NMR vyield: 70% 0% 3%
n=0,1,2

Scheme S3. Hydrosilylation of 1a using DSiEts.
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Fig S7. High resolution mass spectra of 2a’.

Disproportionation reaction without using organosilane
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OH (0]
ij catalyst (3 mol%) © é
_—> +
100°C, 10 h

100% conversion

catalyst: PdNPore-1: 1:1
AuPdNPore-1: 1:0.85
AuNPore-2: no reaction

Scheme S4. Disproportionation reactions of 2-cyclohexen-1-one la in the presence of PdNPore-1,

AuPdNPore-1, and AuNPore-2, respectively, without using organosilanes.

TEM image of AuPdNPs on TiO,
AuPdNPs on TiO, was fabricated following the reported literature. The average nanoparticle size is about 10

nm. The catalytic activity was shown in Table 1, entry 11 in the text.

Fig S8 TEM image of AuPdNPs on TiO,.

Analysis data
(Cyclohex-1-en-1-yloxy)triethylsilane (2a)

OSiEt,

2a
Colorless liquid; '"H NMR (400 MHz, CDCl;) & 4.91-4.83 (m, 1H), 2.09-1.93 (m, 4H), 1.71-1.61 (m, 2H),
1.55-1.46 (m, 2H), 0.98 (t, J = 8 Hz, 9H), 0.66 (q, J = 8 Hz, 6H); **C NMR (100 MHz, CDCI3) & 150.3, 103.9,
29.9, 23.9, 23.2, 22.4, 6.8, 5.1; HRMS (ESI positive) calcd for C;,H,,0Si [M+H]+: 213.1669, found: 213.1668.

A mixture of triethyl((3-methylcyclohex-1-en-1-yl)oxy)silane (2b) and
triethyl((5-methylcyclohex-1-en-1-yl)oxy)silane (2c)
OSiEty OSiEty
+
2b 2c

2b + 2¢: 0.78-0.74:1
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Light yellow liquid; *H NMR (400 MHz, CDCl5) & 4.85 (bs, 1H, 2€), 4.74 (bs, 1H, 2d), 2.30-2.15 (m, 1H, 2d),
2.10-1.89 (M, 5H, 2d+2¢); 1.83-1.48 (m, 8H, 2d+2e), 1.01-0.87 (m, 24H, 2d+2¢), 0.73-0.57 (m, 12H, 2d+2e);
3C NMR (100 MHz, CDCl3) & 150.0, 149.8, 110.6, 103.2, 38.3, 31.2, 30.5, 29.7, 29.5, 29.4, 23.4, 22.5, 21.8,
21.6, 6.7, 5.14, 5.13; HRMS (ESI positive) calcd for C13H,60Si [M+H]": 227.1825, found: 227.1824.
((3,5-Dimethylcyclohex-1-en-1-yl)oxy)triethylsilane (2d)

OSiEt,
OSiEts
H H
~7
noe
2d cis:trans = 91:9 cis-configuration

Cis-isomer: colorless liquid; *H NMR (600 MHz, CDCly) § 4.70 (bs, 1H), 2.27-2.24 (m, 1H), 1.99-1.96 (m,
1H), 1.74-1.70 (m, 1H), 1.69-1.64 (m, 2H), 1.00-0.92 (m, 15H), 0.74-0.61 (m, 7H); *C NMR (176 MHz,
CDCly) & 149.7, 110.4, 40.8, 38.4, 30.3, 29.7, 22.7, 22.1, 6.8, 5.1; HRMS (ESI positive) caled for C14H550Si
[M+Na]": 263.1801, found: 263.1800.

((4,4-Dimethylcyclohex-1-en-1-yl)oxy)triethylsilane (2e)
OSiEt,

2e
Light yellow liquid; "H NMR (400 MHz, CDCl,) & 4.86-4.71 (bs, 1H), 2.12-1.94 (m, 2H), 1.89-1.73 (m, 2H),

1.49-1.35 (m, 2H), 0.98 (t, J = 8 Hz, 9H), 0.92 (s, 6H), 0.66 (g, J = 8 Hz, 6H); *C NMR (100 MHz, CDCls) &
149.1, 102.6, 37.9, 36.0, 28.6, 28.0, 27.5, 6.7, 5.1; HRMS (ESI positive) calcd for C.4H,s0Si [M+H]":
241.1982, found: 241.1981.

(Cyclopent-1-en-1-yloxy)triethylsilane (2f)

OSiEty

2f

Colorless liquid; *H NMR (400 MHz, CDCI;)  4.62 (bs, 1H), 2.26 (t, J = 7.2 Hz, 4H), 1.94-1.77 (m, 2H), 0.98
(t, =8 Hz, 9H), 0.68 (g, J = 8 Hz, 6H); "*C NMR (100 MHz, CDCl3) 5 155.1, 101.8, 33.5,28.7, 21.4, 6.6, 4.8;
HRMS (ESI positive) calcd for Cy;H,,0Si [M+H]": 199.1512, found: 199.1511.
Triethyl((2-methylcyclopent-1-en-1-yl)oxy)silane (29g)

OSiEt,
29
Light yellow liquid; *H NMR (400 MHz, CDCly) & 2.37-2.27 (m, 2H), 2.23-2.09 (m, 2H), 1.83-1.74 (m, 2H),

1.60-1.48 (m, 3H), 0.98 (t, J = 8 Hz, 9H), 0.65 (q, J = 8 Hz, 6H) ; **C NMR (100 MHz, CDCls) & 146.7, 112.8,
34.0, 33.8, 20.0, 12.1, 7.0, 5.7; HRMS (ESI positive) calcd for C;,H,,0Si [M+Na]+: 235.1488, found:
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235.1487.
(Cyclohept-1-en-1-yloxy)triethylsilane (2h)
OSiEt,

2h
Colorless liquid; *H NMR (400 MHz, CDCl,) § 5.01 (dd, J = 6.4, 6.4 Hz, 1H), 2.27-2.21 (m, 2H), 2.01-1.95 (m,
2H), 1.71-1.65 (m, 2H), 1.61-1.48 (m, 4H), 0.97 (t, J = 7.6 Hz, 9H), 0.65 (g, J = 7.6, 6H); *C NMR (100 MHz,
CDCly) 8 156.0, 107.9, 35.5, 31.5, 27.8, 25.4, 25.2, 6.8, 5.0, HRMS (ESI positive) caled for Cy3H,60Si
[M+H]": 227.1825, found: 227.1824.
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