Supplementary Information

Oxovanadium(V)-Induced Diastereoselective Oxidative Homocoupling of Boron Enolates

Toru Amaya,^a Takaya Masuda,^a Yusuke Maegawa^a and Toshikazu Hirao^{*a,b} ^aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University Yamada-oka, Suita, Osaka 565-0871, Japan ^bJST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Table of Contents

Scheme S1	S2
General and references	S 3
General procedures for the oxidative coupling	S4-5
¹ H NMR spectrum for 3a synthesized using procedure 2	S 5
¹ H NMR data for boron enolate 2a-h	S6-7
¹ H and ¹³ C NMR, IR, and HRMS data for	
1,4-diones <i>dl</i> -3d, <i>meso</i> -3d, <i>dl</i> -3e, <i>meso</i> -3e, 3f, and 3g	S7-8
X-ray crystallographic analysis for <i>dl</i> -3d and <i>dl</i> -3e	S9
¹ H and ¹³ C NMR spectra for <i>dl</i> -3d	S10
¹ H and ¹³ C NMR spectra for <i>meso-3</i> d	S11
¹ H and ¹³ C NMR spectra for <i>dl</i> -3e	S12
¹ H and ¹³ C NMR spectra for <i>meso-3</i> e	S13
¹ H and ¹³ C NMR spectra for 3f (major isomer)	S14
¹ H and ¹³ C NMR spectra for 3f (minor isomer)	S15

↓сн₃

'n

meso-1,4-dione 3

Scheme S1. Representative Configurations of Two Enolates for the Coupling Reaction in Chelation and Non-chelation Models

General. NMR spectra were recorded on a JEOL JNM-ECP 400 spectrometer. Chemical shifts in CDCl₃ were reported in ppm on the δ scale relative to a residual solvent (δ 7.26 for ¹H NMR and 77.0 ppm for ¹³C NMR) as an internal standard. VOCl₃ (0.00 ppm) was used as an external standard for ⁵¹V NMR. Infrared spectra were obtained with a JASCO FT/IR-6200 spectrometer. Mass spectra were measured on a JEOL JMS-DX-303 spectrometer using fast atom bombardment (FAB) mode. Measurement for X-ray crystallography was made on a Rigaku RAXIS-RAPID imaging plate diffractometer with graphite monochromated Cu-K α radiation.

VO(OPr-*i*)₂Cl was prepared according to the literature procedure.ⁱ VO(OPr-*i*)₃ and VO(OEt)Cl₂ were donated from Nichia corporation, and they were used after distillation. The dried CDCl₃ with MS4A was used for the reaction. The employed enones **1a**,ⁱⁱ **1b**,ⁱⁱ **1c**,ⁱⁱⁱ **1d**,ⁱⁱ **1e**,ⁱⁱⁱ **1f**,^{iv,v} and **1g**^{vi,vii} are known compounds. Chalcone (**1h**) was purchased from WAKO Pure Chemical Industries, Ltd. 9-Borabicyclo[3,3,1]nonane (9-BBN) was purchased from Aldrich as a 0.5 M THF solution. The obtained 1,4-diones **3a**,^{viii} **3b**,^{ix} **3c**,^x and **3h**^{viii} are known compounds.

References

- (i) D. C. Crans, H. Chen and R. A. Felty, J. Am. Chem. Soc., 1992, 114, 4543.
- (ii) X.-L. An, J.-R. Chen, C.-F. Li, F.-G. Zhang, Y.-Q. Zou, Y.-C. Guo and W.-J. Xiao, *Chem. Asian J.*, 2010, 5, 2258.
- S. Tamura, A. Shiomi, M. Kaneko, Y. Ye, M. Yoshida, M. Yoshikawa, T. Kimura, M. Kobayashi and N. Murakami, *Bioorg. Med. Chem. Lett.*, 2009, 19, 2555.
- (iv) M. Strohmeier, K. Leach and M. A. Zajac, *Angew. Chem. Int. Ed.*, 2011, **50**, 12335.
- (v) P. Truong, C. S. Shanahan and M. P. Doyle, Org. Lett., 2012, 14, 3608.
- (vi) E. J. Corey and G. Schmidt, *Tetrahedron Lett.*, 1979, 20, 399.
- (vii) A. Bugarin, K. D. Jones and B. T. Connell, Chem. Commun., 2010, 46, 1715.
- (viii) S. E. Drewes, C. J. Hogan, P. T. Kaye and G. H. P. Roos, J. Chem. Soc., Perkin Trans. 1, 1989, 1585.
- (ix) H. Ikeda, T. Takasaki, Y. Takahashi, A. Konno, M. Matsumoto, Y. Hoshi, T. Aoki, T. Suzuki, J. L. Goodman and T. Miyashi, *J. Org. Chem.*, 1999, 64, 1640.
- (x) S. G. A. Moinuddin, S. Hishiyama, M.-H. Cho, L. B. Davin and N. G. Lewis, Org. Biomol. Chem., 2003, 1, 2307.

Oxidative *dl* selective homocoupling of boron enolates

Procedure 1: NMR tube experiment

To a CDCl₃ (700 μ L) solution of α , β -unsaturated carbonyl compound 1 (30 µmol) with a portion of activated MS4A in a J-Young valve-attached NMR tube was added 0.5 M THF solution of 9-borabicyclo[3, 3, 1]nonane (9-BBN) (15 µL, 7.5 µmol) in N₂-filled glove box. After the mixture was shaken at room temperature for 1 min by hand, the 9-BBN solution (15 µL, 7.5 µmol) was added again. The mixture was shaken for more 1 min by hand, followed by further addition of the 9-BBN solution (30 µL, 15 µmol). After the mixture stood at room temperature for 2 h, ¹H NMR of the mixture was measured. After the formation of boron enolate 2 was confirmed, the mixture was put in refrigerator (-30 °C) for 1 h. Then, it was taken out from refrigerator. VO(OPr-i)₂Cl (17.1 µL, 90 µmol) was immediately added to the solution. The mixture was shaken for 5 sec, and then it stood in refrigerator (-30 °C) for 19 h. Then the mixture was quenched with saturated aqueous NaHCO₃. The product was extracted with CH₂Cl₂. The organic layer was washed with water, brine, dried over MgSO4, and evaporated in vacuo. The residue was filtered through a short pad of silica-gel column (h = 2.5 cm, CH_2Cl_2). The mixture was evaporated in vacuo. The yield and *dl/meso* ratio were determined by ¹H NMR using 1,1,2,2-tetrabromoethane as an internal standard. The crude product was purified by preparative thin layer chromatography (CH_2Cl_2) to give the products. The obtained product 3 was further purified by preparative thin layer chromatography (hexane/ethylacetate = 4:1) to give the pure product.

Procedure 2: 100 mg scale reaction

Experiments except work-up were carried out in N₂-filled glove box. Dry CH₂Cl₂ (7 mL), 1.73M CH₂Cl₂ solution of 1-phenylprop-2-en-1-one (**1a**) (437 μ L, 0.76 mmol, which corresponds to 100 mg of **1a**), and a portion of activated MS4A were added to a dried 50 mL round-bottomed flask. To the mixture was added 0.5 M THF solution of 9-borabicyclo[3,3,1]nonane (9-BBN) (1.66 mL, 0.83 mmol) at room temperature. After stirring at room temperature for 2 h, the mixture was cooled to -40 °C. Then, VO(OPr-*i*)₂Cl (431 μ L, 2.27 mmol) was immediately added to the solution. The mixture was stirred at -40 °C for 24 h. Then, the flask was put out of glove box.

mixture was quenched with saturated aqueous NaHCO₃. The product was extracted with Et₂O twice. The combined organic layer was washed with water twice. The aqueous layer was extracted with Et₂O. The organic layer was washed with brine, dried over MgSO₄, and evaporated *in vacuo*. The residue was purified by silica-gel column chromatography to give **3a** by eluting with hexane/CH₂Cl₂ = 1:2 to CH₂Cl₂. After evaporation and drying *in vacuo*, 2,3-dimethyl-1,4-diphenylbutane-1,4-dione (**3a**) (a *dl/meso* diastereomeric mixture) was obtained as a white solid (93.2 mg, 0.350 mmol, 93% yield, *dl/meso* = 86:14).

Boron enolates (Z)-9-(1-phenylprop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2a)

o^{-B}

¹H NMR (400 MHz, CDCl₃) δ 1.13-2.00 (m, 14H), 1.66 (d, 3H, *J* = 6.9 Hz), 5.55 (q, 1H, *J* = 6.9 Hz), 7.12-7.18 (m, 1H), 7.18-7.25 (m, 2H), 7.36-7.41 (m, 2H).

(Z)-9-(1-p-tolylprop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2b)

¹H NMR (400 MHz, CDCl₃) δ 1.07-1.91 (m, 14H), 1.59 (d, 3H, J = 6.9 Hz), 2.19 (s, 3H), 5.44 (q, 1H, J = 6.9 Hz), 6.98 (d, 2H, J = 8.2 Hz), 7.22 (d, 2H, J = 8.2 Hz).

(*Z*)-(4-(1-(9-borabicyclo[3.3.1]nonan-9-yloxy)prop-1-enyl)phenoxy)(*tert*-butyl)dime thylsilane (2c)

¹H NMR (400 MHz, CDCl₃) δ 0.07 (s, 6H), 0.86 (s, 9H), 1.08-1.94 (m, 14H), 1.59 (d, 3H, J = 6.9 Hz), 5.36 (q, 1H, J = 6.9 Hz), 6.63-6.68 (m, 2H), 7.18-7.23 (m, 2H).

(Z)-9-(1-(4-fluorophenyl)prop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2d)

¹H NMR (400 MHz, CDCl₃) δ 1.08-1.93 (m, 14H), 1.61 (d, 3H, *J* = 6.8 Hz), 5.43 (q, 1H, *J* = 6.9 Hz), 6.85-6.91 (m, 2H), 7.32 (m, 2H).

(Z)-9-(1-(4-chlorophenyl)prop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2e)

¹H NMR (400 MHz, CDCl₃) δ 1.06-1.70 (m, 14H), 1.58 (d, 3H, J = 6.9 Hz), 5.48 (q, 1H, J = 6.9 Hz), 7.10-7.15 (m, 2H), 7.23-7.28 (m, 2H).

(Z)-9-(1-(4-(trifluoromethyl)phenyl)prop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2f)

¹H NMR (400 MHz, CDCl₃) δ 1.07-1.94 (m, 14H), 1.64 (d, 3H, *J* = 6.8 Hz), 5.65 (q, 1H, *J* = 6.9 Hz), 7.42-7.50 (m, 4H).

(Z)-9-(1-cyclohexylprop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2g)

¹H NMR (400 MHz, CDCl₃) δ 0.99-1.92 (m, 25H), 1.35 (d, 3H, *J* = 6.9 Hz), 4.56 (q, 1H, *J* = 6.9 Hz).

(Z)-9-(1,3-diphenylprop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2h)

¹H NMR (400 MHz, CDCl₃) δ 1.09-1.90 (m, 16H), 3.39 (d. 2H, J = 7.3 Hz), 5.58 (t, 1H, J = 7.3 Hz), 7.01-7.19 (m, 8H), 7.36 (m, 2H).

1,4-Diones

dl-1,4-bis(4-fluorophenyl)-2,3-dimethylbutane-1,4-dione (*dl*-3d)

¹H-NMR (400 MHz, CDCl₃) δ 1.29 (m, 6H), 3.90 (m, 2H), 7.13 (m, 2H), 8.01 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) 15.66, 43.68, 115.71 (d, $J_{C-F} = 22.0$ Hz), 131.11 (d, $J_{C-F} = 9.6$ Hz), 132.39 (d, $J_{C-F} = 2.9$ Hz), 164.46, 202.81 ppm; IR(ATR) v 2980,

2929, 1667, 1598, 1228, 1209, 1156, 971, 849 cm⁻¹; HRMS (FAB) calcd for $C_{18}H_{16}F_2O_2$: 302.1118, found $[(M+H)^+]$: 303.1199.

meso-1,4-bis(4-fluorophenyl)-2,3-dimethylbutane-1,4-dione (*meso*-3d)

¹H-NMR (400 MHz, CDCl₃) δ 1.12 (m, 6H), 3.98 (m, 2H), 7.18 (m, 2H), 8.08 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 17.42, 43.24, 115.91 (d, $J_{C-F} = 21.1$ Hz), 131.14 (d, $J_{C-F} = 9.6$ Hz), 133.14 (d, $J_{C-F} = 2.9$ Hz), 164.71, 202.01; IR(ATR) v 2977,

2937, 1668, 1595, 1225, 1191, 1159, 978, 844 cm⁻¹; HRMS (FAB) calcd for $C_{18}H_{16}F_2O_2$: 302.1118, found $[(M+H)^+]$: 303.1203.

dl-1,4-bis(4-chlorophenyl)-2,3-dimethylbutane-1,4-dione (*dl*-3e)

¹H-NMR (400 MHz, CDCl₃) δ 1.28 (m, 6H), 3.89 (m, 2H), 7.44 (m, 2H), 7.92 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 15.58, 43.72, 128.94, 129.90, 134.32, 139.47, 203.12; IR(ATR) v 2960, 2928, 1672, 1587, 1092, 970, 842 cm⁻¹, HRMS (FAB)

calcd for $C_{18}H_{16}Cl_2O_2$: 334.0527, found $[(M+H)^+]$: 335.0604.

meso-1,4-bis(4-chlorophenyl)-2,3-dimethylbutane-1,4-dione (meso-3e)

¹H-NMR (400 MHz, CDCl₃) δ 1.11 (m, 6H), 3.96 (m 2H), 7.48 (m, 2H), 7.99 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 17.35, 43.28, 129.14, 129.87, 135.01, 139.96, 202.30; IR(ATR) v 2955, 2928, 1670, 1588, 1091, 977, 841 cm⁻¹;

HRMS (FAB) calcd for $C_{18}H_{16}Cl_2O_2$: 334.0527, found $[(M+H)^+]$: 335.0605.

2,3-dimethyl-1,4-bis(4-(trifluoromethyl)phenyl)butane-1,4-dione (3f)

1,4-dicyclohexyl-2,3-dimethylbutane-1,4-dione (3g)

Diastereomeric mixtures. Selectivity was calculated from the integral ratio for the methyl protons. ¹H-NMR (400 MHz, CDCl₃) δ 0.92-0.94 (m, -CH₃ for minor isomer), 1.04-1.06 (m, -CH₃ for minor isomer), 1.0-1.43 (m), 1.60-1.96 (m), 2.38-2.56 (m), 2.92-3.06 (m).

X-ray structures

dl-3d $i = 11.1477(5) \text{ Å} \qquad \beta = 98.775(2)^{\circ}$ $b = 13.3381(6) \text{ Å} \qquad V = 1552.5(2) \text{ Å}^{3}$ $c = 10.5647(5) \text{ Å} \qquad Z = 4$ $R1 = 0.1517 \qquad WR2 = 0.4909$ $P2_{1}/c (\#14) \qquad \text{monoclinic}$

The data have been deposited with the Cambridge Crystallographic Data Centre: CCDC-969201.

dl-3e

The data have been deposited with the Cambridge Crystallographic Data Centre: CCDC-969200.

¹H-NMR (400 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

meso-1,4-bis(4-fluorophenyl)-2,3-dimethylbutane-1,4-dione (meso-3d)

).0210.0200.0190.0180.0170.0160.0150.0140.0130.0120.0110.0100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

dl-1,4-bis(4-chlorophenyl)-2,3-dimethylbutane-1,4-dione (*dl*-3e)

¹H-NMR (400 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

meso-1,4-bis(4-chlorophenyl)-2,3-dimethylbutane-1,4-dione (*meso*-3e)

¹H-NMR (400 MHz, CDCl₃)

¹³C-NMR (100 MHz, CDCl₃)

