Electronic Supplementary Information

Gold(I)-Catalysed [1,3] $O \rightarrow C$ Rearrangement of Allenyl Ethers

Chandrababu Naidu Kona and Chepuri V. Ramana*

Division of Organic Chemistry, CSIR-National Chemical Laboratory

Dr. Homi Bhabha Road, Pune – 411 008 (India)

Email: vr.chepuri@ncl.res.in

Table of Contents:

General information	ESI 2
General Procedure A	ESI 2
Synthesis of allenyl ethers Table E1	ESI 3
Optimization Table E2	ESI 4– SI 5
Optimization studies for the best TOF Table E3	ESI 5
Scheme E1 and General Procedure B	ESI 6
Characterization data of compounds 2c-2u and 2a'-2g'	ESI 6-SI 14
General Procedure C	ESI 14
Characterization data of 4 and 5	ESI 14
Characterization data of 1b-1d, 1f, 1h, 1j, 1m, 1q and 1h'	E SI 15–ESI 16
Spectra of new compounds	ESI17–ESI 154

General information: Reactions were carried out in anhydrous solvents under an atmosphere of argon in oven-dried glassware. NMR spectra were recorded on JEOL AL-400 (400 MHz), Bruker AC 200 MHz, Bruker DRX 400 MHz and Bruker DRX 500 MHz spectrometers, and TMS was used as an internal standard of spectrometers. The chemical shifts were reported in parts per million (δ) relative to internal standard TMS (0 ppm) and for CDCl₃ (7.25 ppm). The peak patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). Mass spectroscopy was carried out on PI QStar Pulsar (Hybrid Quadrupole-TOF LC/MS/MS) and High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump, and IR spectra were recorded on FT-IR PerkinElmer spectrometer by neat for oil sample and a CH₃Cl solution for solid samples. Column chromatography was performed over silica gel 100-200 mesh. All reagents were weighed and handled in air and backfilled under argon at room temperature. Unless otherwise noted, all reactions were performed under an argon atmosphere. All reagents were purchased from Aldrich and Alfa Easer and used without further purification. Compounds **1a–1z**, and **1a'-1h'** are prepared filowing the procedures reported.^{1–3}

General Procedure A: Synthesis of allenyl ethers:¹⁻³

At room temperature, a solution of propargyl ether (2 mmol) in THF (10 mL) was treated with KO^tBu (0.5 mmol) and the resulting suspension was stirred at room temperature for 1 h before quenching it with ice water. The contents were portioned between ethyl acetate (20 mL) and water (20 mL). The organic layer was separated and the aqueous layer was extracted with (2 x 10 ml ethyl acetate). The combined organic layer was concentrated under reduced pressure and the crude was subjected for the next step. For analytical purpose, the crude was purified by flash chromatography.

References:

- 1) B. M. Trost, J. Xie, J. Am. Chem. Soc. 2006, 128, 6044.
- 2) B. M. Trost, J. Me, J. Am. Chem. Soc. 2008, 130, 6231.
- 3) D.M. Cui, Z-L. Zheng, C. Zhang, J. Org. Chem. 2009, 74, 1426.

Table E1. Synthesis of allenyl ethers

Table E2. Catalyst Optimization

Entry	Substrate	Catalyst	additive	Yield
1	1a	AuCl ₃		Hydrolysis
2	1b	AuCl ₃		Hydrolysis
3	1c	AuCl ₃		Hydrolysis
4	1a	AuBr ₃		Hydrolysis
5	1b	AuBr ₃		Hydrolysis
6	1c	AuBr ₃		Hydrolysis
7	1a	AuCl(PPh ₃)		No reaction
8	1b	AuCl(PPh ₃		No reaction
9	1c	AuCl(PPh ₃		No reaction
10	1a	AuCl(PPh ₃)	AgSbF ₆	Hydrolysis
11	1b	AuCl(PPh ₃)	AgSbF ₆	Hydrolysis
12	1c	AuCl(PPh ₃)	AgSbF ₆	70-96%
13	1a	AgSbF ₆		Hydrolysis
14	1b	AgSbF ₆		Hydrolysis
15	1c	AgSbF ₆		27%
16	1 a	AgOTf		No reaction
17	1b	AgOTf		No reaction
18	1c	AgOTf		No reaction
19	1 a	AgNTf ₂		Hydrolysis
20	1b	AgNTf ₂		Hydrolysis
21	1c	AgNTf ₂		Hydrolysis
22	1c	AgOAc		No reaction
23	1a	AuCl ₃	AgSbF ₆	Hydrolysis
24	1b	AuCl ₃	AgSbF ₆	Hydrolysis
25	1c	AuCl ₃	AgSbF ₆	Hydrolysis
26	1a	AuCl(PMe ₃)	AgSbF ₆	Hydrolysis
27	1b	AuCl(PMe ₃)	AgSbF ₆	Hydrolysis

28	1c	AuCl(PMe ₃)	Me ₃) AgSbF ₆		
29	1 a	AuCl(PMe ₃)	AgOTf	Hydrolysis	
30	1b	AuCl(PMe ₃)	AgOTf	Hydrolysis	
31	1c	AuCl(PMe ₃)	AgOTf	Hydrolysis	
32	1 a	AuCl(PPh ₃)	AgNTf ₂	Hydrolysis	
33	1b	AuCl(PPh ₃)	AgNTf ₂	Hydrolysis	
34	1c	AuCl(PPh ₃)	AgNTf ₂	Hydrolysis	
35	1 a	AuCl(PMe ₃)	AgNTf ₂	Hydrolysis	
36	1b	AuCl(PMe ₃)	AgNTf ₂	Hydrolysis	
37	1c	AuCl(PMe ₃) AgNT		Hydrolysis	
38	1 a	AuCl(Biphenyl(^t Bu) ₂) AgSbF ₆		Hydrolysis	
39	1b	AuCl(Biphenyl(^t Bu) ₂) AgSbF		Hydrolysis	
40	1c	AuCl(Biphenyl(^t Bu) ₂)	AgSbF ₆	40-45%	

[Au] Complex 5 mol% and additive 15 mol%

Table E3. Optimization studies for the best Turn over frequency

	0		(X mol%) AuPF (3X mol%) Ag	Ph₃Cl SbF ₆		`
Me	e0 1c		CH ₂ Cl ₂	MeO	2c	
S.No	X (mol%)	temp	time	Yield ^a	S/C	TOF(h ⁻¹)
1	0.050	0 °C	05 min	96%	2800	4600
2	0.045	0 °C	30 min	92%	3100	4088
3	0.040	0 °C	60 min	89%	3500	2225
4	0.035	25 °C	08 h	87%	4000	310
5	0.030	25 °C	10 h	86%	4600	286
6	0.025	25 °C	16 h	86%	5600	215
7	0.0125	reflux	12 h	90% ^b	9072	600

S/C = Substrate/Catalyst Concentration

^a isolated yields; ^bbased on the 20% starting material recovered

Scheme E1. Trapping of the intermediate with alcohols

General Procedure B:

At 0 °C, to a solution of allenylether **1c** (1.0 g, 5.68 mmol) in anhydrous CH_2Cl_2 (100 ml) was added catalyst solution [(2.80 ml, 2.83 mmol) prepared by dissolving Au(PPh₃)Cl (5 mg, 10.1 mmol) and AgSbF₆ (10 mg, 29.1 µmol) in CH_2Cl_2 (10 ml)] and allowed to stir for 5 minutes. The reaction mixture was concentrated under reduced pressure and the crude was purified by column chromatography (100-200 Silica gel) to afford **2c** (910 mg, 91%) as a colorless oil.

2-(4-Methoxybenzyl)acrylaldehyde (2c): Yellow oil; 91%; ($R_f = 0.6, 5\%$ ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3361, 2998, 2954, 2836, 2700, 1690, 1611, 1509, 1464, 1300, 1248, 1178, 1035, 958, 852, 809, 769 cm⁻¹; ¹H

NMR (200 MHz, CDCl₃): δ 3.52 (s, 2H), 3.80 (s, 3H), 6.04–6.13 (m, 2H), 6.85 (m, 2H), 7.11 (m, 2H), 9.61 (s, 1H); ¹³C NMR (50 MHz, CDCl3): δ 33.3 (t), 55.2 (q), 113.9 (d, 2C), 130.1 (d, 2C), 135.0 (t), 150.1 (s, 2C), 158.2 (s), 194.1 (d) ppm; HRMS (ESI+): calcd. For C₁₁H₁₂O₂Na [M+Na]⁺ 199.0730; found 199.0728.

2-((4-Methoxyphenyl)(phenyl)methyl)acrylaldehyde (2d): colorless syrup; 97%; ($R_f = 0.5$, 5% ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3367, 3027, 2836, 1692, 1609, 1509, 1463, 1302, 1250, 1177, 1033, 966, 844, 751, 701, 545 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.72 (s, 3H), 5.33 (s, 1H),

5.96 (d, J,= 1.1 Hz, 1H), 6.23 (s, 1H) 6.78–6.86 (m, 2H), 7.02 (d, J = 8.8 Hz, 2H), 7.06–7.15 (m, 2H), 7.16–7.28 (m, 3H), 9.60 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 48.4 (d), 55.2 (q), 113.9 (d, 2C), 126.6 (d), 128.4 (d, 2C), 128.8 (d, 2C), 129.9 (d, 2C), 133.1 (s), 136.6 (t), 141.5 (s), 153.0

(s), 158.3 (s), 193.2 (d) ppm; HRMS (ESI+): calcd. For $C_{17}H_{16}O_2Na [M+Na]^+ 275.1043$; found 275.1039.

3-(4-Methoxyphenyl)-2-methylene-4-phenylbutanal (2e): colorless syrup; 81%; ($R_f = 0.6$, 10% ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3367, 3027, 2836, 1692, 1609,1509, 1463, 1302, 1250, 1177, 1033, 966, 844, 751, 701, 545 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.00–3.13 (m, 1H), 3.14–3.26 (m, 1H), 3.77 (s, 3H), 4.19 (t, *J* = 7.9 Hz, 1H), 6.10 (s, 1H), 6.38 (d, *J* = 0.9 Hz,

1H), 6.74–6.85 (m, 2H), 7.03–7.10 (m, 3H), 7.11–7.24 (m, 4H), 9.49 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 40.3 (t), 44.0 (d), 55.2 (q), 113.7 (d, 2C), 126.0 (d), 128.1 (d, 2C), 128.9 (d, 2C), 129.1 (d, 2C), 133.4 (s), 134.1 (t), 139.6 (s), 152.6 (s), 158.2 (s), 193.9 (d) ppm; HRMS (ESI+): calcd. For C₁₈H₁₈O₂Na [M+Na]⁺ 289.1199; found 289.1195.

3-(4-Methoxyphenyl)-2-methyleneheptanal (2f): Yellow gum; 92%; (Rf = 0.5, 10% ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3366, 2956, 2931, 1693, 1610, 1509, 1464, 1301, 1248, 1178, 1036, 942, 827 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.86 (t, *J* = 6.9 Hz, 3H), 1.12–1.41 (m, 4H), 1.70–1.88 (m, 2H), 3.78 (s, 3H), 3.80–3.86 (m, 1H), 6.05 (s, 1H), 6.30 (s, 1H), 6.79–6.88

(m, 2H), 7.09–7.19 (m, 2 H), 9.51 (s, 1 H); ¹³C NMR (50 MHz, CDCl₃): δ 13.9 (q), 22.5 (t), 29.8 (t), 33.8 (t), 42.0 (d), 55.1 (q), 113.7 (d, 2C), 128.9 (d, 2C), 133.3 (t), 134.4 (s), 153.7 (s), 158.1 (s), 194.0 (d) ppm; HRMS (ESI+): calcd. For C₁₅H₂₀O₂Na [M+Na]⁺ 255.1356; found 255.1352.

2-(2,4-Dimethoxybenzyl)acrylaldehyde (2g): Yellow gum; 91%; ($R_f = 0.6, 5\%$ ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3359, 2998, 2935, 2835, 1909, 1690, 1590, 1512, 1464, 1418, 1333, 1262, 1155, 1029, 954, 867, 805, 771, 755 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.49 (s, 2H), 3.78 (s,

3H), 3.81 (s, 3H), 5.96–6.04 (m, 2H), 6.41–6.48 (m, 2H), 7.02 (s, 1H), 9.61 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.8 (t), 55.3 (q, 2C), 98.6 (d), 103.9 (d), 118.8 (s), 131.1 (d), 134.7 (t), 149.2 (s), 158.3 (s), 159.7 (s), 194.4 (d) ppm; HRMS (ESI+): calcd. For C₁₂H₁₄O₃Na [M+Na]⁺ 229.0835; found 229.0833.

2-((2,4-Dimethoxyphenyl)(phenyl)methyl)acrylaldehyde (2h): Yellow gum; 94%; ($R_f = 0.6$, 5% ethyl acetate/pet. ether); IR (CHCl₃) v: 3367, 3023, 2957, 2836, 1693, 1591, 1514, 1417, 1265, 1141, 1028, 954, 754, 701 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.80 (s, 3H), 3.84 (s, 3H), 5.69 (s, 1H), 5.98 (s, 1H), 6.28 (s, 1H), 6.41–6.49 (m, 1H), 6.54 (d, J = 2.4 Hz,

1H), 6.81 (d, J = 8.3 Hz, 1H), 7.15–7.23 (m, 2H), 7.33 (td, J = 5.3, 1.8 Hz, 3H), 9.70 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 42.1 (d), 55.2 (q), 55.4 (q), 98.7 (d), 103.6 (d), 122.4 (s), 126.3 (d), 128.2 (d, 2C), 128.9 (d, 2C), 129.6 (d), 135.7 (t), 141.0 (s), 152.6 (s), 157.6 (s), 159.6 (s), 193.2 (d) ppm; HRMS (ESI+): calcd. For $C_{18}H_{18}O_3Na [M+Na]^+ 305.1148$; found 305.1145.

2-(3, 4-Dimethoxybenzyl)acrylaldehyde (2i): Yellow oil; 94%; ($R_f = 0.4$, 5% ethyl acetate/pet. ether); IR (CHCl₃) v: 3359, 2998, 2935, 2835, 1909, 1690, 1590, 1512, 1464, 1418, 1333, 1262, 1155, 1029, 954, 867, 805, 771,

755 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.50 (s, 2H), 3.85 (s, 6H), 6.05 (d, J = 0.8 Hz, 1H), 6.11 (s, 1H), 6.68–6.75 (m, 2H), 6.77–6.83 (m, 1H), 9.60 (s, 1H); 13 C NMR (50 MHz, CDCl₃): δ 33.7 (t), 55.7 (g), 55.8 (g), 111.2 (d), 112.3 (d), 121.0 (d), 130.6 (s), 134.9 (t), 147.6 (s), 148.9 (s), 149.9 (s), 194.0 (d) ppm; HRMS (ESI+): calcd. For $C_{12}H_{14}O_3Na [M+Na]^+ 229.0835$; found 229.0833.

2-((3,4-Dimethoxyphenyl)(phenyl)methyl)acrylaldehyde (2j): Yellow gum; 91%; ($R_f = 0.6$, 5% ethyl acetate/pet. ether); IR (CHCl₃) v: 3367, 3023, 2957, 2836, 1693, 1591, 1514, 1417, 1246, 1141, 1028, 954, 754, 701 cm⁻¹; 1H NMR (200 MHz, CDCl₃): δ 3.85 (s, 3H), 3.90 (s, 3H), 5.38 (s, 1H), 6.06 (d, J = 1.0 Hz, 1H), 6.35 (s, 1H), 6.64–6.73 (m, 2H), 6.80–6.88

(m, 1H), 7.14–7.20 (m, 2H), 7.28–7.41 (m, 3H), 9.70 (s, 1H); 13 C NMR (50 MHz, CDCl₃): δ 48.6 (d), 55.7 (q, 2C), 110.9 (d), 112.4 (d), 120.7 (d), 126.5 (d), 128.3 (d, 2C), 128.7 (d, 2C), 133.5 (s), 136.5 (t), 141.2 (s), 147.7 (s), 148.9 (s), 152.8 (s), 193.0 (d) ppm; HRMS (ESI+): calcd. For C₁₈H₁₈O₃Na [M+Na]⁺ 305.1148; found 305.1144.

3-(3,4-Dimethoxyphenyl)-2-methylene-4-phenylbutanal (2k): Colorless gum; 82%; ($R_f = 0.6$, 10% ethyl acetate/pet. ether); IR (CHCl₃) v: 3362, 3025, 2934, 2835, 1692, 1591, 1515, 1454, 1419, 1260, 1141, 1028, 950,

2k

MeO

MeO

2h

MeO

809, 757, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 2.99–3.13 (m, 1H), 3.13–3.26 (m, 1H), 3.79 (s, 3H), 3.84 (s, 3H), 4.17 (t, J = 7.9 Hz, 1H), 6.13 (s, 1H), 6.37–6.41 (m, 1H), 6.63 (s, 1H), 6.71–6.77 (m, 2H), 7.02–7.09 (m, 2H), 7.13–7.23 (m, 3H), 9.51 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 40.3 (t), 44.4 (d), 55.8 (q, 2C), 111.0 (d), 111.8 (d), 119.7 (d), 126.0 (d), 128.1 (d, 2C), 128.9 (d, 2C), 133.9 (s), 134.1 (t), 139.5 (s), 147.6 (s), 148.6 (s), 152.5 (s), 193.8 (d) ppm; HRMS (ESI+): calcd. For C₁₉H₂₀O₃Na [M+Na]⁺ 319.1305; found 319.1304.

2-Methylene-4-phenyl-3-(3,4,5-trimethoxyphenyl)butanal (21): White gum; 83%; ($R_f = 0.6$,

10% ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3362, 2997, 2936, 2837, 1693, 1589, 1506, 1455, 1421, 1327, 1239, 1126, 1010, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 2.98–3.13 (m, 1H), 3.13–3.26 (m, 1H), 3.78 (s, 6H), 3.81 (s, 3H), 4.16 (t, *J* = 7.8 Hz, 1H), 6.15 (s, 1H), 6.35 (s, 2H), 6.41 (s, 1H), 7.03–7.10 (m, 2H), 7.14–7.23 (m, 3H), 9.52 (s, 1H); ¹³C NMR (101 MHz,

CDCl₃): δ 40.3 (t), 45.0 (d), 56.1 (q, 2C), 60.8 (q), 105.1 (d, 2C), 126.2 (d), 128.2 (d, 2C), 128.9 (d, 2C), 134.5 (t), 136.6 (s), 137.0 (s), 139.4 (s), 152.1 (s), 153.0 (s, 2C), 193.9 (d) ppm; HRMS (ESI+): calcd. For C₂₀H₂₂O₄Na [M+Na]⁺ 349.1410; found 349.1404.

2-(Phenyl(3,4,5-trimethoxyphenyl)methyl)acrylaldehyde (**2m**): Yellow gum; 87%; ($R_f = 0.5$, 10% ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3366, 2998, 2938, 1959, 1693, 1589, 1505, 1419, 1237, 1126, 1008, 960, 823, 702 cm ⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.81 (s, 6H), 3.87 (s, 3H), 5.36 (s, 1H), 6.07 (d, *J* = 1.1 Hz, 1H), 6.35–6.38 (m, 3H), 7.13–7.20 (m, 2H), 7.28–7.40 (m, 3H), 9.70 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 49.2 (d), 56.0 (q,

2C), 60.8 (q), 106.1 (d, 2C), 126.7 (d), 128.4 (d, 2C), 128.8 (d, 2C), 136.6 (s), 136.7 (s), 136.8 (t), 140.9 (s), 152.6 (s), 153.1 (s, 2C), 193.1 (d) ppm; HRMS (ESI+): calcd. For C₁₉H₂₀O₄Na [M+Na]⁺ 335.1254; found 335.1248.

2-(4-(Dimethylamino)benzyl)acrylaldehyde (2n): Yelow oil; 92%; ($R_f = 0.6$, 10% ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3358, 2916, 2802, 1885, 1686, 1615, 1523, 1479, 1347, 1163, 1061, 947, 857, 800 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.94 (s, 6H), 3.49 (s, 2H), 6.04 (d, J = 0.9 Hz, 1H),

6.12 (s, 1H), 6.72 (m, J = 8.7 Hz, 2H), 7.08 (m, J = 8.7 Hz, 2H), 9.62 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 33.0 (t), 40.7 (q, 2C), 112.9 (d, 2C), 125.8 (s), 129.7 (d, 2C), 134.7 (t), 149.3 (s), 150.4 (s), 194.2 (d) ppm; HRMS (ESI+): calcd. For C₁₂H₁₆ON [M+H]⁺ 190.1226; found 190.1225.

2-((4-(Dimethylamino)phenyl)(phenyl)methyl)acrylaldehyde (20): Yellow gum; 95%; ($R_f =$

0.5, 10% ethyl acetate/pet. ether); IR (CHCl₃) v: 3365, 3026, 2885, 2803, 2696, 1884, 1692, 1612, 1520, 1449, 1350, 1221, 1162, 1061, 948, 806, 761, 701 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.00 (s, 6H), 5.37 (s, 1H), 6.08 (s, 1H), 6.34 (s, 1H), 6.71–6.80 (m, 2H), 7.01–7.10 (m, 2H), 7.16–7.24 (m, 2H), 7.29–7.42 (m, 3H), 9.72 (s, 1 H); ¹³C NMR (50 MHz,

CDCl₃): δ 40.6 (q, 2C), 48.2 (d), 112.7 (d, 2C), 126.4 (d), 128.3 (d, 2C), 128.8 (d, 2C), 129.6 (d, 2C), 136.4 (t), 141.9 (s), 149.2 (s), 153.2 (s, 2C), 193.4 (d) ppm; HRMS (ESI+): calcd. For C₁₈H₂₀ON [M+H]⁺ 266.1539; found 266.1539.

3-(4-(Dimethylamino)phenyl)-2-methyleneheptanal (2p): Yellow Syrup; 93%; ($R_f = 0.6, 10\%$

ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3363, 2955, 2929, 1693, 1614, 1520, 1445, 1348, 1223, 1163, 1061, 812 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.84 (t, *J* = 6.9 Hz, 3H), 1.14–1.37 (m, 4H), 1.70–1.84 (m, 2H), 2.91 (s, 6H), 3.75 (t, *J* = 7.6 Hz, 1H), 6.00 (s, 1H), 6.26 (s, 1H), 6.61–6.74 (m, 2H), 7.02–7.11 (m, 2H), 9.50 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 13.9 (q), 22.6 (t), 29.9

(t), 33.8 (t), 40.7 (q, 2C), 41.8 (d), 112.6 (d, 2C), 128.6 (d, 2C), 130.3 (s), 133.1 (t), 149.2 (s), 154.1 (s), 194.3 (d) ppm; HRMS (ESI+): calcd. For $C_{16}H_{24}ON$ [M+H]⁺ 246.1852; found 246.1851.

2-((3,5-Dimethoxyphenyl)(phenyl)methyl)acrylaldehyde (**2q):** Yellow liquid; 74%; ($R_f = 0.6$, 10% ethyl acetate/pet. ether); IR (CHCl₃) *v*: 3367, 3023, 2957, 2836, 1693, 1591, 1514, 1417, 1265, 1141, 1028, 954, 754, 701 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.79 (s, 6H), 5.36 (s, 1H), 6.09 (d, J = 1.0 Hz, 1H), 6.31–6.37 (m, 3H), 6.38 (d, J = 2.1 Hz, 1H), 7.14–7.21 (m,

2H), 7.29–7.36 (m, 3H), 9.69 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 49.3 (d), 55.2 (q, 2C), 98.4 (d), 107.4 (d, 2C), 126.7 (d), 128.5 (d, 2C), 128.9 (d, 2C), 136.8 (t), 140.8 (s), 143.5 (s), 152.4

(s), 160.8 (s, 2C), 193.1 (d) ppm; HRMS (ESI+): calcd. For $C_{18}H_{18}O_3Na [M+Na]^+$ 305.1148; found 305.1146.

2-Benzhydrylacrylaldehyde (2r): Yellow gum; 87%; ($R_f = 0.6$, 10% ethyl acetate/pet. ether); IR (CHCl₃) v: 3362, 2995, 2932, 1894, 1690, 1617, 1509, 1456, 1253, 1229, 1162, 1047, 940, 830 cm⁻¹; ¹H NMR (200 MHz, CDCl3): δ 5.43 (s, 1H), 6.05 (d, J = 1.1 Hz, 1H), 6.36 (s, 1H), 7.12–7.21 (m, 4H), 7.28–7.41 (m, 6H), 9.70 (s, 1H); ¹³C NMR (50 MHz, CDCl3): δ 49.2 (d), 126.7 (d, 2C), 128.5 (d, 4C), 128.9 (d, 4C), 136.8 (t), 141.1 (s, 2C), 152.7 (s), 193.1 (d) ppm; HRMS (ESI+): calcd. For $C_{16}H_{14}ONa [M+Na]^+ 245.0937$; found 254.0933.

2-(6-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)acrylaldehyde (2s):Yellow Syrup; 89%; (R_f

= 0.6, 10% ethyl acetate/pet. ether); IR (CHCl₃) v: 3362, 2995, 2932, 1894, 1690, 1608, 1500, 1456, 1253, 1226, 1162, 1038, 940, 830 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.66–1.81 (m, 3H), 1.87–2.01 (m, 1H), 2.72–2.82 (m, 2H), 3.79 (s, 3H), 4.11 (br. s., 1H), 5.81 (s, 1H), 6.12 (s, 1H), 6.64–6.72 (m, 2H), 6.77–6.84 (m, 1H), 9.61 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 19.2 (t),

28.3 (t), 29.7 (t), 36.4 (d), 55.2 (q), 112.4 (d), 113.3 (d), 129.2 (s), 130.6 (d), 137.0 (t), 139.1 (s), 155.4 (s), 157.8 (s), 194.0 (d) ppm; HRMS (ESI+): calcd. For $C_{14}H_{16}O_2Na [M+Na]^+ 239.1043$; found 239.1040.

2-((4-Methoxyphenyl)(phenyl)methyl)-3-phenylacrylaldehyde (2t):

Colorless syrup; 91%; ($R_f = 0.4$, 10% ethyl acetate/pet. ether); ¹H NMR (400 MHz, CDCl₃): δ 3.8 (s, 3H), 5.62 (s, 1H), 6.90 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 7.18–7.26 (m, H), 7.28–7.48 (m, 9H), 9.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 49.4 (d), 55.2 (q), 79.4 (d), 113.7 (d), 113.9 (d), 126.5 (d), 127.0 (d), 127.1 (d), 127.2 (d), 127.2 (d), 128.3

(d), 128.4 (d), 128.5 (d), 128.6 (d), 129.1 (d), 129.2 (d), 129.9 (d), 130.1 (d), 133.7 (s), 133.9 (s), 142.1 (s), 142.7 (s), 144.6 (s), 148.3 (d), 158.2 (s), 158.9 (s), 192.0 (d) ppm; HRMS (ESI+): calcd. For C₂₃H₂₀O₂Na [M+Na]⁺ 351.1356; found 351.1354.

2-((2,4-Bimethoxyphenyl)(phenyl)methyl)-3-phenylacrylaldehyde (2u): Colorless syrup; 94%; ($R_f = 0.4$, 10% ethyl acetate/pet. ether); ¹H NMR (400 MHz, CDCl₃): δ 3.72 (s, 3H), 3.76

MeC

2t

(s, 4H), 5.60 (s, 1H), 5.90 (s, 1H), 6.20 (s, 1H), 6.33–6.43 (m, 1H), 6.43–6.50 (m, 1H), 6.72 (d, J = 8.6 Hz, 1H), 7.11 (d, J = 7.1 Hz, 2H), 7.17–7.41 (m, 5H), 9.62 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 42.1 (d), 43.3 (d), 55.3 (q), 55.5 (q), 98.7 (d), 98.8 (d), 103.6 (d), 122.5 (s), 126.4 (d), 128.3 (d), 129.0(d), 129.2 (d), 129.7 (d), 129.9 (d), 130.0 (d),

Fe

2a'

134.2 (s), 135.7 (t), 141.0(s), 141.6 (s), 144.3 (s), 147.1 (d), 152.6 (s), 157.7 (s), 159.7 (s), 191.9 (s), 193.3 (d) ppm; HRMS (ESI+): calcd. For C₂₄H₂₂O₃Na [M+Na]⁺ 381.1461; found 381.1461.

Cyclopenta-2,4-dien-1-yl(2-(2-formylallyl)cyclopenta-2,4-dien-1-yl)iron (2a'):Orange color

powder; 96%; ($R_f = 0.6$, 5% ethyl acetate/pet. ether); IR (CHCl₃) v: 3362, 3093, 2924, 2853, 1894, 1693, 1627, 1464, 1340, 1245, 1105, 959, 819 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 3.31 (bs, 2H), 4.06–4.20 (m, 9H), 5.95 (s, 1H), 6.08 (s, 1H), 9.56 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 28.1 (t), 67.7 (d, 2C),

68.4 (d), 68.7 (d, 3C), 68.9 (d, 2C), 69.4 (d), 84.6 (s), 134.6 (t), 150.2 (s), 194.0 (d) ppm; HRMS (ESI+): calcd. For C₁₄H₁₄OFe [M⁺] 254.0389; found 254.0386.

3-(1-Methyl-1H-pyrrol-2-yl)-2-methylenebutanal (2b'): Yellow oil; 89%; ($R_f = 0.5$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 1.40 (d, J = 7.1 Hz, 3H), 3.39 (s, 3H), 4.04 (q, J = 7.1 Hz, 1H), 5.95 (s, 1H), 6.02–6.04 (m, 1H), 6.04–6.07 (m, 1H), 6.07–6.12 (m, 1H), 6.54–6.60 (m, 1H), 9.63 (s, 1H); ¹³C NMR

(100 MHz, CDCl₃): δ 19.6 (q), 28.9 (d), 33.4 (q), 106.1 (d), 106.5 (d), 121.8 (d), 134.4 (s), 134.8 (t), 154.0 (s), 193.7 (d) ppm; HRMS (ESI+): calcd. For C₁₀H₁₄ON [M+1]⁺ 164.1070; found 164.1070; C₁₀H₁₃ONNa [M+Na]⁺ 186.0889; found 186.0889.

2-Methylene-3-(thiophen-2-yl)butanal (**2c'):** Colorless oil; 91%; ($R_f = 0.5$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 1.52 (d, J = 7.2 Hz, 3H), 4.34 (q, J = 7.2 Hz, 1H), 6.09 (s, 1H), 6.28 (d, J = 1.0 Hz, 1H), 6.86 (dt, J = 3.4, 1.1 Hz, 1H), 6.94 (dd, J = 5.12, 3.5 Hz, 1H), 7.16 (dd, J = 5.1, 1.3 Hz,

1H), 9.58 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.4 (q), 32.5 (d), 123.5 (d), 124.1 (d), 126.6 (d), 134.2 (t), 147.4 (s), 154.2 (s), 193.4 (d) ppm; HRMS (ESI+): calcd. For C₉H₁₀ONaS [M+Na]⁺ 189.0345; found 189.0344.

3-(1-Benzyl-1H-pyrrol-2-yl)-2-methyleneheptanal (2d'): Yellow oil; 84%; ($R_f = 0.5$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): $\delta 0.78-0.88$ (m, 3H), 1.11-1.33 (m, 4H), 1.62-

1.74 (m, 2H), 3.91 (t, J = 7.3 Hz, 1H), 4.97 (s, 2H), 5.95 (s, 1H), 6.1 (s, 1H), 6.12–6.18 (m, 1H), 6.20–6.27 (m, 1H), 6.67–6.74 (m, 1H), 7.1 (dd, J = 7.4, 1.7 Hz, 2H), 7.27–7.39 (m, 3H), 9.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 13.9 (q), 22.4 (t), 29.9 (t), 33.6 (d), 34.7 (t), 50.5 (t), 106.6 (d), 107.0 (d),

121.4 (d), 126.7 (d, 2C), 127.3 (d), 128.5 (d, 2C), 133.7 (s), 135.4 (t), 138.2 (s), 153.0 (s), 193.8 (d) ppm; HRMS (ESI+): calcd. For $C_{19}H_{24}ON [M+1]^+$ 282.1852; found 282.1851; $C_{19}H_2ONNa [M+Na]^+$ 304.1672; found 304.1671.

3-(Benzofuran-2-yl)-2-methylenebutanal (2e'): Yellow gum; 91%; ($R_f = 0.4$, 5% ethyl acetate/pet. ether); ¹H NMR (500 MHz, CDCl₃): δ 1.53 (d, J = 7.0 Hz, 3H), 4.28 (d, J = 7.0 Hz, 1H), 6.14 (s, 1H), 6.30 (s, 1H), 6.52 (s, 1H), 7.18–7.28 (m, 2H), 7.43 (d, J = 7.9 Hz, 1H), 7.53 (d, J = 7.3 Hz, 1H), 9.62 (s, 1H); ¹³C

NMR (125 MHz, CDCl₃): δ 18.0 (q), 31.5 (d), 102.6 (d), 110.9 (d), 120.5 (d), 122.5 (d), 123.6 (d), 128.4 (s), 134.8 (t), 151.5 (s), 154.7 (s), 159.6 (s), 193.1 (d) ppm; HRMS (ESI+): calcd. For C₁₃H₁₃O₂ [M+1]⁺ 201.0910; found 201.0910.

3-(Benzo[b]thiophen-2-yl)-2-methylenebutanal (2f'): Colorless gum; 92%; ($R_f = 0.4$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 1.6 (d, J = 7.1 Hz, 3H), 4.5 (d, J = 7.1 Hz, 1H), 6.01–6.15 (m, 2H), 7.27 (d,

J = 1.0 Hz, 1H), 7.32–7.42 (m, 2H), 7.53–7.62 (m, 1H), 7.84–7.96 (m, 1H), 9.70 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 19.5 (q), 30.9 (d), 121.8 (d), 122.0 (d), 122.8 (d), 123.9 (d), 124.4 (d), 134.8 (t), 137.9 (s), 138.5 (s), 140.5 (s), 153.5 (s), 193.7(d) ppm; HRMS (ESI+): calcd. For C₁₃H₁₂ONaS [M+Na]⁺ 239.0501; found 239.0500.

3-(1-Benzyl-1H-indol-3-yl)-2-methyleneheptanal (2g'): Yellow gum; 81%; ($R_f = 0.4$, 5% ethyl acetate/pet. ether); ¹H NMR (400 MHz, CDCl₃): $\delta 0.83-0.93$ (m, 3H), 1.29–1.42 (m, 4H), 1.84–2.02 (m, 2H), 4.22 (t, J = 7.6 Hz, 1H), 5.32 (s, 2H), 6.05 (s, 1H), 6.27 (s, 1H), 7.03 (s, 1H), 7.05–7.12 (m, 3H), 7.16

 $(ddd, J = 8.2, 6.9, 1.4 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 7.27-7.34 (m, 2H), 7.54 (dd, J = 8.9, 1.1 Hz, 1H), 9.63 (s, 1H); {}^{13}C NMR (100 MHz, CDCl_3): \delta 14.0 (q), 22.6 (t), 30.2 (t), 33.8(t), 34.3$

(d), 49.9 (t), 109.7 (d), 116.6 (s), 119.0 (d), 119.5 (d), 121.8 (d), 126.1 (d), 126.5 (d, 2C), 127.4 (d), 127.5 (d), 128.7 (d, 2C), 134.4 (t), 136.8 (s), 137.7 (s), 153.5 (s, 2C), 194.3 (d) ppm; HRMS (ESI+): calcd. For $C_{23}H_{26}ON [M+1]^+$ 332.2009; found 232.2008; $C_{23}H_{25}ONNa [M+Na]^+$ 354.1828; found 354.1828;

General Procedure C: At 0 °C, a solution of allenylether1c(100 mg, 567 μ mol) and 3 equivalents of nucleophile (MeOH) in dichloromethane (5 mL) was treated with the catalyst Stock solution (1 mol % catalyst) and stirred for 3 h at room temperature. The reaction mixture was concentrated under reduced pressure and the resulting crude was purified by silica gel column chromatography to afford 3(71 mg, 81% yield) as a colorless liquid.

1-Methoxy-4-(methoxy(phenyl)methyl)benzene (**4**):¹ Yield: 85%; ¹H NMR (200 MHz, CDCl₃): δ 3.41 (s, 3H), 3.78 (s, 3H), 5.26 (s, 1H), 6.84–6.97 (m, 2H), 7.23–7.46 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 55.0 (q),

56.7 (q), 84.8 (d), 113.6 (d, 2C), 126.7 (d, 2C), 127.2 (d), 128.1 (d, 2C), 128.2 (d, 2C), 134.2 (s), 142.3 (s), 158.8 (s) ppm;

1-Methoxy-4-(1-(pent-4-yn-1-yloxy)pentyl)benzene (5): Yellow oil; 72%; ($R_f = 0.5$, 10% ethyl acetate/pet. ether); IR (neat) *v*: 3296, 2999, 2954, 2931, 1658, 1510, 1462, 1244, 1171, 1097, 1035, 830, 634 cm⁻¹; ¹H

NMR (200 MHz, CDCl₃): δ 0.88 (t, J = 6.8, 3H), 1.24–1.37 (m, 5H), 1.76 (t, J = 6.4 Hz, 3H), 1.91 (t, J = 2.6 Hz, 1H), 2.23–2.35 (m, 2H), 3.25–3.44 (m, 2H), 3.82 (s, 3H), 4.13 (dd, J = 6.3, 7.1 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 7.20 (d, J = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 14.0 (q), 15.4 (t), 22.6 (t), 28.1 (t), 28.8 (t), 38.0 (t), 55.2 (q), 66.8 (t), 68.3 (s), 82.0 (d), 84.1 (d), 113.6 (d, 2C), 127.7 (d, 2C), 135.1 (s), 158.8 (s) ppm; HRMS (ESI+): calcd. For C₁₇H₂₄O₂Na [M+Na]⁺ 283.1668; found 283.1669.

References:

[1] a) K. W. C. Poon and G. B. Dudley, *J. Org. Chem.*, 2006, **71**, 3923; b) E. O. Nwoye and G. B. Dudley, *Chem. Commun.*, 2007, 1436.

((**Propa-1,2-dien-1-yloxy)methyl)benzene** (**1b**): Light yellowish oily liquid; 82%; ($R_f = 0.7$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 4.60 (s, 2H), 5.46 (d, J = 5.9 Hz, 2H), 6.83 (t, J = 5.9 Hz, 1H), 7.22–7.43 (m, 5H) ppm.

1-Methoxy-4-((propa-1,2-dien-1-yloxy)methyl)benzene (1c): colorless syrup; 83%; ($R_f = 0.5$,

5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 3.79 (s, 1H), 4.53 (s, 1H), 5.46 (d, *J* = 5.9 Hz, 2H), 6.80 (t, *J* = 5.9 Hz, 1H), 6.85–6.91 (m, 2H), 7.27 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 55.2

(q), 70.3 (d), 90.9 (d), 113.8 (d, 2C), 121.4 (d), 129.3 (s), 129.4 (d), 129.5 (d), 159.3 (s), 201.3 (s) ppm.

1-Methoxy-4-(phenyl(propa-1,2-dien-1-yloxy)methyl)benzene (1d):

Yellow color oil; 85%; ($R_f = 0.7$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 3.82 (s, 3H), 5.34 (s, 1H), 5.35–5.42 (m, 1H), 5.78 (s, 1H), 6.83 (t, J = 5.9 Hz, 1H), 6.87–6.96 (m, 2H), 7.26–7.35 (m, 3H), 7.35–7.43 (m, 4H); ¹³C NMR (50 MHz, CDCl₃): δ 55.1 (q), 81.5 (d),

90.6 (t), 113.7 (d, 2C), 120.4 (d), 126.8 (d, 2C), 127.4 (d), 128.3 (d, 2C), 128.4 (d, 2C), 133.5 (s), 141.5 (s), 159.0 (s), 202.0 (s) ppm.

1-Methoxy-4-(1-(propa-1,2-dien-1-yloxy)pentyl)benzene (1f): Yellow color syrup; 85%; (R_f =

0.7, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 0.82–0.95 (m, 3H), 1.19–1.46 (m, 5H), 1.59–1.83 (m, 1H), 1.83–2.07 (m, 1H), 3.82 (s, 3H), 4.57 (t, *J* = 6.7 Hz, 1H), 5.15–5.40 (m, 2H), 6.61 (t, *J* = 5.9 Hz, 1H), 6.84–6.96 (m, 2H), 7.18–7.28 (m, 2H); ¹³C NMR (50 MHz,

CDCl₃): δ13.9 (q), 22.5 (t), 27.8 (t), 37.2 (t), 55.1 (q), 80.7 (d), 89.8 (t), 113.6 (d, 2C), 120.2 (d), 127.8 (d, 2C), 134.2 (s), 158.9 (s), 202.2 (s) ppm.

2,4-Dimethoxy-1-(phenyl(propa-1,2-dien-1-yloxy)methyl)benzene (**1h**): Yellow color gum; 79%; ($R_f = 0.5$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 3.83 (d, J = 1.3 Hz, 6H), 5.30 (d, J = 1.5 Hz, 1H), 5.33 (d, J = 1.5 Hz, 1H), 6.16 (s, 1H), 6.46–6.60 (m, 2H), 6.75–6.86 (m, 1H), 7.28–7.48 (m, 6H);

MeO OMe 1h

1c

MeO.

1,2-Dimethoxy-4-(phenyl(propa-1,2-dien-1-yloxy)methyl)benzene (1j): Yellow color gum;

78%; ($R_f = 0.6$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 3.83 (d, J = 2.0 Hz, 6H), 5.29 (dd, J = 6.0, 0.9 Hz, 2H), 5.69 (s, 1H), 6.75 (t, J = 6.0 Hz, 1H), 6.79–6.88 (m, 3H), 7.21–7.34 (m, 5H); ¹³C NMR (50 MHz, CDCl₃): δ 55.8 (q, 2C), 81.7 (d), 90.6 (t), 110.2 (d),

110.8 (d), 119.7 (d), 120.4 (d), 126.9 (d, 2C), 127.5 (d), 128.3 (d, 2C), 133.8 (s), 141.4 (s), 148.5 (s), 148.9 (s), 202.0 (s) ppm.

1,2,3-Trimethoxy-5-(phenyl(propa-1,2-dien-1-yloxy)methyl)benzene (1m): Yellow colr gum;

82%; ($R_f = 0.4$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 3.80–3.86 (m, 9H), 5.26–5.41 (m, 2H), 5.69 (s, 1H), 6.59 (s, 2H), 6.80 (t, J = 6.0 Hz, 1H), 7.24–7.40 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 55.9 (q, 2C), 60.7 (q), 81.8 (d), 90.7 (t), 103.9 (d, 2C), 120.3 (d), 126.8 (d, 2C), 127.6 (d), 128.2 (d, 2C), 136.8 (s), 137.1 (s), 141.0 (s), 153.0 (s, 2C), 201.8 (s) ppm.

1,3-Dimethoxy-5-(phenyl(propa-1,2-dien-1-yloxy)methyl)benzene (1q): Yellow color gel; 84%; ($R_f = 0.5$, 5% ethyl acetate/pet. ether); ¹H NMR (200 MHz, CDCl₃): δ 3.80 (s, 6H), 5.37 (d, J = 6.0 Hz, 2H), 5.74 (s, 1H), 6.42 (t, J = 2.3 Hz, 1H), 6.59 (d, J = 2.3 Hz, 2H), 6.85 (t,

J = 5.9Hz, 1H), 7.28–7.45 (m, 5H); ¹³C NMR (50 MHz, CDCl₃): δ 55.2 (q, 2C), 81.8 (d), 90.8 (t), 99.3 d), 105.0 (d, 2C), 120.4 (d), 126.9 (d, 2C), 127.6(d), 128.3 (d, 2C), 141.1 (s), 143.7 (s), 160.7 (s, 2C), 201.9 (s) ppm;

2-(Octa-1,2-dien-4-yl)pyridine (1h'): Black color oil; 72%; ($R_f = 0.5, 5\%$ ethyl acetate/pet. ether);

¹H NMR (200 MHz, CDCl₃): δ 0.79–0.92 (m, 3H), 1.21–1.47 (m, 4H), 1.76–1.94 (m, 2H), 4.73 (t, *J* = 6.4 Hz, 1H), 5.10 (dd, *J* = 8.3, 5.9 Hz, 1H), 5.3 (dd, *J* = 8.3, 6.0 Hz, 1H), 6.70 (t, *J* = 5.9 Hz, 1H), 7.1 (ddd, *J* = 7.5, 4.9, 1.1Hz, 1H), 7.3 (d, *J* = 7.8 Hz, 1H), 7.60–7.70 (m, 1H), 8.5–8.6 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ

13.9 (q), 22.5 (t), 27.5 (t), 36.0 (t), 81.5 (d), 90.5 (t), 120.4 (d), 120.5 (d), 122.0 (d), 136.4 (d), 148.9 (d), 161.7 (s), 201.7 (s) ppm.

6/10/2013 3:59:36 PM

KCN-PMB-S_130610155936 #940 RT: 4.19 AV: 1 NL: 3.06E8 T: FTMS + p_ESI Full ms [100.00-700.00]

ESI 24

6/10/2013 3:03:41 PM

6/11/2013 1:52:22 PM

KCN-PMB-BU_130611135222 #1244 RT: 5.54 AV: 1 NL: 1.08E9 T: FTMS + p ESI Full ms [100.00-700.00]

6/10/2013 4:10:48 PM

₽°

6/10/2013 3:48:26 PM

z/m

373.1015 R=57807

370

6/11/2013 2:03:32 PM

KCN-34-BN_130611140332 #969 RT: 4.32 AV: 1 NL: 4.93E9 T: FTMS + p ESI Full ms [100.00-700.00]

6/10/2013 2:52:31 PM

KCN-TB-BN_130610145231 #930 RT: 4.14 AV: 1 NL: 3.66E9 T: FTMS + p ESI Full ms [100.00-700.00]

6/10/2013 3:26:03 PM

KCN-NME2-S_130610152603 #888 RT: 3.95 AV: 1 NL: 1.32E10 T: FTMS + p ESI Full ms [100.00-700.00]

240

6/11/2013 12:34:09 PM

ESI 68

310

300

290

280

270

260 m/z

250

240

230

220

210

240.2632 R=62600

226.9514 R=69202

217.1046 R=54800

2

300.1931 R=61907

288.9213 R=64202

-1.9730 ppm

6/10/2013 4:21:58 PM

D:\Data\KCN-PhPh-Acr

8/20/2013 6:59:20 PM

ESI 88

12/13/2013 4:13:17 PM

KCN-24-PMB-Ph_131213161317 #1260 RT: 5.62 AV: 1 NL: 7.33E8 T: FTMS + p ESI Full ms [100.00-700.00]

m/z

12/13/2013 4:35:42 PM

ESI 108

 Relative Abundance

z/m

Wed1av500#001.002.001.1r.esp

-134.80

500 MHz, CDCl₃

D:\Data\KCN-BenzThpn

12/13/2013 3:17:15 PM

12/13/2013 3:39:39 PM

400.1767 R=30300 400

395

