Rapid, High Yield, Directed Addition of Quantum Dots onto Surface Bound Linear DNA Origami Arrays

Masudur Rahman*, David Neff and Michael L. Norton
Department of Chemistry, Marshall University, West Virginia 25755, USA

Experimental Section

Materials: All staple strands and sticky-end strands were purchased from Integrated DNA Technologies Inc. Single-stranded M13mp18 DNA plasmid was purchased from Bayou Biolabs. Streptavidin (Thermo Scientific), Qdot ${ }^{\circledR} 525$ Streptavidin Conjugate (Invitrogen) and chemicals were purchased from Aldrich.

AFM: All AFM imaging studies were performed with a Bruker Multimode8 and NanoscopeVI controller using SCANASYST-AIR mode. Circular grade V1 mica discs (10 mm , Ted Pella, Inc.) served as substrates.

Fluorescence microscope (FM): Fluorescence images were taken with a Rolera-MGi EMCCD camera (QIMAGING), with acquisition parameters: gain 2, EM gain 3500, exp. Time $=100 \mathrm{msec}$. A Sapphire (Coherent) 488 nm laser (20 mW collimated) was used for excitation and launched into a Nikon TE200 inverted epifluorescence microscope. The characteristics of the filters employed were excitation 470/40 nm and emission 515/30 nm.

Preparation of DNA Origami:

Single Rectangular DO (srDO): The sequences of staple strands for srDO were designed using the Parabon inSèquio ${ }^{\mathrm{TM}}$ program. ${ }^{1}$, Biotin-labeled staples were used to direct the local binding of, or address, SA or SA-Qdot species. The mixture of staple strands, biotinlabeled staples and M13mp18 ssDNA plasmid was brought to a volume of 50μ using DO buffer ($1 \times$ TAE buffer solution containing 40 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,20 \mathrm{mM}$ Acetic acid, 2.5 mM EDTA, and 10.5 mM Magnesium chloride). The final concentration of M13mp18 ssDNA plasmid in the solution was 10 nM , and the molar ratio of the long viral ssDNA to the staple strands was $1: 5$. The sample was cooled from $90^{\circ} \mathrm{C}$ to $16^{\circ} \mathrm{C}$ over the course of 13 h in a thermocyling machine (Primus96, MWG Biotech). ${ }^{2}$ Staple sequences are listed at the end of the supporting information.

One Dimensional Rectangular DO (1DrDO): To prepare the one dimensional DO, designed sticky-ended strands were employed. The sequences are listed at the end of ESI. The mixture of staple strands, sticky-ended strands, biotin modified strands and M13mp18 ssDNA plasmid was brought to a volume of $50 \mu \mathrm{l}$ using DO buffer. The final concentration of ssDNA plasmid in the solution was 10 nM , and the molar ratio of the ssDNA plasmid to all the other strands was $1: 5$. The sample was annealed by cooling as described in the previous procedure.

Purification of DO: To remove the excess staple strands, the DO solutions were dialyzed using the drop dialysis method. ${ }^{3} 50 \mu \mathrm{l}$ of DO solution was purified using $0.25 \mu \mathrm{~m}$ pore size membrane (Millipore Inc.) by dialysis for 30 min against 10 ml of DO buffer.

Silanization of glass coverslip (AP-glass):

Indexed cover glass (Eppendrof CELLocate) surfaces were cleaned with 5 minutes of sonication, first in ethanol and then in acetone then dried in a N_{2} stream. The substrates were then exposed to a low pressure UV lamp at a distance of $\sim 2-3 \mathrm{~cm}$ (SEN light Co. UVL-20, Hg lamp, 20 watt with 254 nm power $=50 \mu \mathrm{~W} @ 1$ meter $)$ for 5 minutes and finally reacted in an O_{2} plasma ($100 \mathrm{mtorr} \sim 75 \% \mathrm{O}_{2}$) for 5 minutes. This cleaned coverslip was immersed in a freshly prepared 1\% 3-aminopropyl-trimethoxysilane (APTES) in dry ethanol solution for 10 minutes at room temperature, rinsed by dipping and agitation in an ethanol $(\sim 10-20 \mathrm{ml})$ bath, then annealed in an oven for 1 hr at $120^{\circ} \mathrm{C}$.

Assembly of SA and SA-Qdot on DO:

$10 \mu \mathrm{l}$ of 1 nM DO was used to cover $\sim 1 \mathrm{~cm}^{2}$ of freshly cleaved mica for 5 minutes, then the surface was washed with $400 \mu \mathrm{l}$ of MilliQ water and immediately blown dry with N_{2}. The number density and structural integrity of the immobilized origami were determined using AFM. Mica bound samples were then incubated at room temperature in 10 nM SA or SA-Qdot solutions and brought to a volume of $30 \mu \mathrm{l}$ using DO buffer. After one minute, the sample was washed with $400 \mu \mathrm{l}$ of DO buffer and then with $400 \mu \mathrm{l}$ of MilliQ water and immediately blown dry with N_{2}.

sQD-1DrDO alignment using the combing method:

To align then immobilize the sQD-1DrDO complex in one direction a moving interface combing technique has been employed. ${ }^{4}$ A small drop (typically $5 \mu \mathrm{l}$) of complex solution was deposited at the edge of an AP coated glass coverslip substrate. One flat edge of an untreated coverslip was then pressed/touched on top of the drop, forcing the drop to spread by capillary action along the untreated coverslip edge. This interface is slowly moved in one direction (as illustrated in Fig. 4a). After one minute incubation, the sample was wicked dry using an absorbent paper, then subjected to analysis by fluorescence microscopy and AFM analysis.

Figure S1: AFM images of single rectangular origami (srDO) platforms on mica

Figure S2: Directed assembly of streptavidin (SA) to addresses on srDO

Figure S3: Directed assembly of SA-QDs to addresses on srDO

Figure S4: AFM images of one-dimensional rectangular origami (1DrDO) on mica

Figure S5: Directed assembly of SA to addresses on 1DrDO

Figure S6: Directed assembly of SA-QDs to addresses on 1DrDO

Figure S7: a) Large area AFM image of combed 1DrDO on mica; arrow indicates the combing direction; b) NIH ImageJ software was used to analyze 1DrDOs to determine length distribution (mean and standard deviation value) for apparently single constructs. Black overlay lines indicate which 1DrDO were analyzed; c) different region of combed 1DrDO; d) inset shows high resolution AFM image of the combed 1DrDO construct.

Histogram

Figure S8: The bins at the center of this histogram show apparent normal distribution of the origami chain alignment dominated by combing while outliers at both extremes likely indicate other forces at work. $\mathrm{N}=58$ number of origami chains were analyzed. If we take ± 10 degree as successful chain alignment than we see that $77 \%(40 / 58)$ are aligned along flow direction.

Figure S9: a) Arrow indicates the combing direction on indexed AP-glass; Light microscope image was taken during AFM imaging in air; b) low magnification AFM image of combed 1DrDO; c) high resolution AFM image showing a single 1DrDO construct.

Figure S10: Fluorescence microscopy images of combed sQD-1DrDO construct on AP-glass; Scale bar $20 \mu \mathrm{~m}$

Figure S10. Wide range of Fluorescence microscopy and high resolution of AFM and of the same region of combed sQD-1DrDO construct on AP-glass.

Figure S11: Histogram chart of SA and SA-QDtd height (excluding origami height) on origami chain.

$$
\text { Rectangular origami sequence } \quad\left(B l a c k=m 13, \ddot{A}=5^{\prime} \text { end; } A=3^{\prime} \text { end }\right)
$$

Figure S12: Rectangular origami structure and staple strand positions.

Staple strand sequences	
seam-01	CAGTGCCTTGAGTAACAGTGCCCGTATAAACA
seam-02	TACCGTAATAGCAAGCCCAATAGGACCGGAAC
seam-03	CGCCTCCCCGGAACCAGAGCCACCAACCCATG
seam- 04	GAGGTGAAGTATCGGTTTATCAGCAGGTAAAT
seam-05	ATTGACGGCCGATTGAGGGAGGGATTGCTTTC
seam-06	ACACTAAACTAAAACGAAAGAGGCTACCGAAG
seam-07	CCCTTTTTATAGCAATAGCTATCTAAAAGAAT
seam-08	AAAAGGTGTATTTTCATTTGGGGCCTATTAAT
seam- 09	TAATTTTCCTTCTGTAAATCGTCGGCGAGCTG
seam-10	TATGATATCGGAGACAGTCAAATCAATTGCGT
seam-11	AGATTTTCAAAACAGAAATAAAGAACCATCAA
seam-12	AACGCCATTCAGCTCATTTTTTAACAATAGAT
seam-13	AATACATTAATAGATTAGAGCCGTCCAATAGG
seam-14	CCATTCGCCATTCAGGTCTTTAATGCGCGAAC
x01-y01	TGATATAAGCGGATAAGTGCCGTC
x01-y02	AACAACTTAATTTTCTGTATGGGAGAGAGGGT
x01-y03	AAAGACAGGCGGGATCGTCACCCTTTTTGCTA
x01-y04	CAATCATATAGCCGGAACGAGGCGCAGCAGCG
x01-y05	ACTTTAATTGGGCTTGAGATGGTTCAGACGGT
x01-y06	CCCTCGTTATAGTAAGAGCAACACTAATTTCA
x01-y07	AGCAAAGCTTTACCCTGACTATTATATCATAA
x01-y08	CTAAAGTAGCTCAACATGTTTTAATAGTCAGA
x01-y09	ATACTTTTTACCAAAAACATTATGATATGCAA
x01-y10	CAATCATAACGGTAATCGTAAAACACCCTGTA
x01-y11	GTGTAGATGGGCGCATGGGATAGGTCACGTTGTAGCATGT
x02-y01	TTTTGCTCAGTACCAGGTATAGCC
x02-y02	CGGAATAGCAGACGTTAGTAAATGTCAACAGT
x02-y03	TTCAGCGGGTTAAAGGCCGCTTTTCATCGGAA
x02-y04	CGAGGGTACCTGCTCCATGTTACTAGGGAACC
x02-y05	GAACTGACAGAACGAGTAGTAAATCATTGTGA
x02-y06	ATTACCTTAAAGGAATTACGAGGCTACCAGAC
x02-y07	GACGATAAAATCAAAAATCAGGTCGGATTGCA
x02-y08	TCAAAAAGTGAATATAATGCTGTACGGTGTCT
x02-y09	GGAAGTTTAAAGCTAAATCGGTTGGCGGGAGA
x02-y10	AGCCTTTAACAAGAGAATCGATGATGTACCCC

x02-y11 GGTTGATAGCGGATTGACCGTAATCGTAACCGTGCATCTG
$x 03-\mathrm{y} 01 \quad$ CCGTACTCATTAGGATTAGCGGGG
x03-y02
x03-y03
x03-y04
TAGAAAGGAGTTTTGTCGTCTTTCGTGTATCA
TACAGAGGCTGAGGCTTGCAGGGAAGTGAGAA
AAAGAGGAGTGTCGAAATCCGCGAGCAACGGC
x03-y05
TTAAGAACCCTGACGAGAAACACCCAACTTTG
x03-y06
x03-y07
x03-y08
x03-y09
x03-y10
$x 03-\mathrm{y} 11$
$\mathrm{x} 04-\mathrm{y} 01$
x04-y02
ATAGCGAGCAGATACATAACGCCAATGCGATT
GAAGCCCGAACGAGAATGACCATAAAACCAAA
ATAACAGTCTTAGAGCTTAATTGCATTAAGAG
CAAGGATATAAAGCCTCAGAGCATCATTCCAT
AGCCCCAATGAGAGTCTGGAGCAATTTCAACG
CCAGTTTGAGGGGACGTCCGTGGGAACAAACGATCAGAAA
ACTCCTCAAGAGAAGGAGGAGGTT
TAGTACCGTAGCGTAACGATCTAAAACAACTA
AAGGAATTCCGATATATTCGGTCGCTTTGAGG
ACTAAAGACATCGCCTGATAAATTCAGATGAA
CGGTGTACAGTGAATAAGGCTTGCTGGCTCAT
TATACCAGCCACATTCAACTAATGAGGCTTTT
GCAAAAGATTTAAACAGTTCAGAAAAAGACTT
CAAATATCTCATTTTTGCGGATGGTGATTCCC
AATTCTGCTAGCAAAATTAAGCAAAAAATTTT
TAGAACCCCTATCAGGTCATTGCCAAACAGGA
AGATTGTAACAACCCGTCGGATTCACGACAGTATCGGCCT
AGAACCGCGTATTAAGAGGCTGAG
TAATTTTTAGACAGCCCTCATAGTCCACCCTC
TGAGGAAGCATCGCCCACGCATAAGCGAATAA
CGCATAGGCAACGGAGATTTGTATCTTTTTTCA
TTGGGAAGACAAAGCTGCTCATTCAGACCAGG
CAGAGGGGTTGAGATTTAGGAATATCAGGACG
ATTCGAGCAATCCCCCTCAAATGCAGTTTTGC
AGATTTAGTCCTTTTGATAAGAGGGCGTTTTA
TTTAAATGAGGCAAGGCAAAGAATGAACGAGT
TATTTAAAGAGAGATCTACAAAGGTCATATAT
CAGGAAGATCGCACTCTAAATGTGAGCGAGTATAAGCAAA
ATTCTGAAACATGAAACACCCTCA
GAACCGCCGCCTGTAGCATTCCACTCACGTTG
AAAATCTCCGACAATGACAACAACTTTCCATT
AAACGGGTAGCGCGAAACAAAGTACTGGCTGA
AAAATGTTTCATAAATATTCATTGTTCAAAGC
GAACCAGAGAGTACCTTTAATTGCTTTGACCA
TTAGATACATCCAATAAATCATACCAATGCCT
GAGTAATGGAGGGTAGCTATTTTTTTGTAAAC GTTAATATCAGCTTTCATCAACATCAGCCAGCTTTCCGGC AGCCACCATATTTCGGAACCTATT
AGGCTCCACAGTACAAACTACAACACCCTCAG TAATGCCAATACCGATAGTTGCGCCAAAAAAA TCTTGACACCCAGCGATTATACCAAAAATACG CTAACGGAAGAACCGGATATTCATAAGAGTAA AAACTCCACAATACTGCGGAATCGTAGACTGG AATGGTCAACAGGTCAGGATTAGACCGGAAGC AAGATTCATAGTAGTAGCATTAACATTTCGCA AATTCGCAATAAATTAATGCCGGATGTAGGTA ACCGCTTCTGGTGCCGCTGGCCTTCCTGTAGCTTTGTTAA GTTAATGCCCCCTGCCCCCTCATT
TTCAGGGACACTGAGTTTCGTCACAAAGGAGC
CTTTAATTTTTCTTAAACAGCTTGCTACGAAG
GCACCAACACACTCATCTTTGACC
ATAACCTGTTTAGCTAGCATCAATTCTACTAAAAAGGGTG
AGAAAGGCTCAACCGTTCTAGCTGTTAAATTT
x08-y11
x09-y01
x09-y02
x09-y03
x09-y04
x09-y09
x09-y10
x09-y11
$\mathrm{x} 10-\mathrm{y} 01$
$\mathrm{x} 10-\mathrm{y} 02$
x10-y03
x10-y04
$\mathrm{x} 10-\mathrm{y} 05$
x10-y06
x10-y07
x10-y08
x10-y09
x10-y10
$\mathrm{x} 10-\mathrm{y} 11$
x11-y01
$\mathrm{x} 11-\mathrm{y} 02$
x11-y03
x11-y04
x11-y05
x11-y07
x11-y08
x11-y09
x11-y10
x11-y11
x 12 - y 01
$\mathrm{x} 12-\mathrm{y} 02$
$\mathrm{x} 12-\mathrm{y} 03$
x 12 -y04
x12-y07
x12-y08
x $12-\mathrm{y} 09$
x12-y10
$\mathrm{x} 12-\mathrm{y} 11$
x13-y01
x13-y02
x13-y03
x13-y04
$\mathrm{x} 13-\mathrm{y} 05$
x13-y06
x13-y07
x13-y08
x13-y09
x13-y10
x13-y11
$\mathrm{x} 14-\mathrm{y} 01$
$\mathrm{x} 14-\mathrm{y} 02$
x14-y03
x14-y04
x14-y05
x14-y06
x14-y07
x14-y08
x14-y09
$\mathrm{x} 14-\mathrm{y} 10$

TTGTTAAACAAAAATAATTCGCGTGAAACCAGGCAAAGCG
GCCACCCTTAAGTTTTAACGGGGT
CATTAAAGTCATAATCAAAATCACTCAGAGCC
TAAGCAGAAAAGGGCGACATTCAAAAATTATT
AGCAAGAAACAATGAAAAGAAAAG CGTCAGATTGAGTGAATAACCTTGCCTTAGAATCCTTGAA TAGAAGTAAAAATTATTTGCACGTAGGTTTAA TGATAGCCCTAAAACAAGGAGCACTAACAACTTGAGGATT AGGAGTGTACTGGTAACAGAACCG
CCACCCTCAGCGTTTGCCATCTTTGTGAATTA
TCACCGTCACCAGCGCCAAAGACATAGCCGAA CAAAGTTATAAGCCCAATAATAAGTTACAAAA TAAACAGCGAGCCTAATTTGCCAGTTTATTTT CATCGTAGGAACAAGCAAGCCGTTAAAGGTAA AGTAATTCATATAAAGTACCGACAACCGACCG TGTGATAATTTAATGGTTTGAAATAACATAGC GATAGCTTCATAAATCAATATATGGAATATAC AGTAACAGTAGAACCTACCATATCTTAGACTT TACAAACATATCTAAAATATCTTTTCGCCATTAAAAATAC CACCCTCATGGCTTTTGATGATAC GAGCCATTTCATAGCCCCCTTATTAGAGCCAC AAACCGAGAAAATTCATATGGTTTACCGACTT TTATCCCACCCACAAGAATTGAGTCCAGAAGG ACCGCGCCAACGAGCGTCTTTCCACATATTAT TTAAATAAAGCCAGTAATAAGAGATGTCCAGA ACGCTGAGCATCTTCTGACCTAAAATAAGGCG ACATCGGGTTTAATGGAAACAGTAAGATTAAG ACTCGTATTGAATAATGGAAGGGTTACCTTTT CGAACGAACCACCAGCAGGAATTGAGGAAGGTATTCGACA CAGTAAGCGTCATACAGAGCCGCC ACCAGAACTCATCGGCATTTTCGGTGGGAATT AGAGCCAGTTGTCACAATCAATAGGAAACGCA ATAATAACAATATCAGAGAGATAAATCCAAAT CATGTTCAGGCAGAGGCATTTTCGGAATAAAC ACCGGAATATATTTTAGTTAATTTAAGAGTCA ATAGTGAACATTTGAATTACCTTTAGAAACAA TAACGGATGTTTGGATTATACTTCTAAATCCT TTGCCCGACAAATCAACAGTTGAAAGAAGATAAAACAGAG GAGCCGCCTCTGAATTTACCGTTC CCAGTAGCAGACTGTAGCGCGTTTCACCACCA CAAAAGAAACGGAATAAGTTTATTCAAAATCA TTTAACGTAGGGTAATTGAGCGCTGGAATACC AAGGCTTAGCTACAATTTTATCCTATTTTTTG AGAACGCGCCTTATCATTCCAAGAAGATATAG CTAGAAAAGCCAACATGTAATTTAGCTAATGC AATCATAGGAAAACTTTTTCAAATCATAATTA TTGCTTTGTTACATTTAACAATTTTTTTATCAA AATTTTAACAATATAATCCTGATTTCGCCTGA GTGAGGCGGTCAGTATATATCTGGTCAGTTGGACGTTATT AATGGAAAGCGCAGTCGCCAGCAT TGACAGGAGTTTGCCTTTAGCGTCACCATTAC CATTAGCAGAAACGCAAAGACACCCTGGCATG ATTAAGACCCCTGAACAAAGTCAGCAAAAATG AAAATAGCTGCTATTTTGCACCCATCCGGTAT TCTAAGAAATAATCGGCTGTCTTTCCTGTTTA TCAACAATCGCCATATTTAACAACAGCCTGTT TAGTATCAAAGACAAAGAACGCGAGTCTGAGA GACTACCTAAGAAAACAAAATTAAAATACCAA GTTACAAAGATGATGGCAATTCATAAGTTTGA

$\mathrm{x} 14-\mathrm{y} 11$	GTAACATTATCAAACCCTCAATCATAACACCGCCTGCAAC
x15-y01	CAGGTCAGTCCTCATTAAAGCCAG
x15-y02	AACGTCACGTAGCGACAGAATCAAGGTTGAGG
x15-y03	ACGCAGTAGTGGCAACATATAAAAAGGCCGGA
x15-y04	CAGAGAGAGAGAATTAACTGAACATCCTTATT
x15-y05	GTTTTAGCTTAAATCAAGATTAGTAGCCTTTA
x15-y06	CCTGAACAATGTAGAAACCAATCACGCGAGGC
x15-y07	ATACAAATGGGCTTAATTGAGAATAGATAAGT
x15-y08	TCCGGCTTATGCAAATCCAATCGCTATGCGTT
x15-y09	GAGGCGAATGATGAAACAAACATCTTTTAACC
x15-y10	GCGGAACAATATTCCTGATTATCAATCGCGCA
x15-y11	AGTGCCACGCTGAGAGTTGCTGAACCTCAAATATCATTTT
x16-y01	TTCACAAACAAATAAAACGATTGG
x16-y02	CCTTGATAAGCAGCACCGTAATCACAATGAAA
x16-y03	CCATCGATAAATACATACATAAAGTGTTAGCA
x16-y04	AACGTAGAGAAGCGCATTAGACGGATAACATA
x16-y05	AAAACAGGGGGAGGTTTTGAAGCCGAACCTCC
x16-y06	CGACTTGCATCCTAATTTACGAGCAGAAAAAT
x16-y07	AATATCCCCCAACGCTCAACAGTATCTTACCA
x16-y08	GTATAAAGCTATATGTAAATGCTGAGGTTGGG
x16-y09	TTATATAACCTGAGCAAAAGAAGATTATTCAT
x16-y10	TTCAATTAGAGCGGAATTATCATCAAGAAACC
x16-y11	ACCAGAAGAATCTAAAGCATCACCCCAGCAGCAAATGAAA

Sticky End staples
MR-X1-Y1 ATAGAGAGGGTTGATATAAGCGGATAAGTGCC
MR-X1-Y2 GATTTTTGCTAAACAACTTAATTTTCTGTATG
MR-X1-Y3 AGACAGCAGCGAAAGACAGGCGGGATCGTCAC
MR-X1-Y4 AGGCAGACGGTCAATCATATAGCCGGAACGAG
MR-X1-Y5 TGCTAATTTCAACTTTAATTGGGCTTGAGATG
MR-X1-Y6 CCCTATCATAACCCTCGTTATAGTAAGAGCAA
MR-X1-Y7 AAGGAGTCAGAAGCAAAGCTTTACCCTGACTA
MR-X1-Y8 TAAATATGCAACTAAAGTAGCTCAACATGTTT
MR-X1-Y9 TTAACCCTGTAATACTTTTTACCAAAAACATT
MR-X1-Y10 AAGTAGCATGTCAATCATAACGGTAATCGTAA
MR-X1-Y11 AAAGTGTAGATGGGCGCATGGGATAGGTCACG
MR-X16-Y1 GTCTTCACAAACAAATAAAACGATTGGCCTTG
MR-X16-Y2 GGAAGCAGCACCGTAATCACAATGAAACCATC
MR-X16-Y3 CCTAAATACATACATAAAGTGTTAGCAAACGT
MR-X16-Y4 GCGGAAGCGCATTAGACGGATAACATAAAAAC
MR-X16-Y5 GTTGGGAGGTTTTGAAGCCGAACCTCCCGACT
MR-X16-Y6 CACATCCTAATTTACGAGCAGAAAAATAATAT
MR-X16-Y7 TTACCAACGCTCAACAGTATCTTACCAGTATA
MR-X16-Y8 TAACTATATGTAAATGCTGAGGTTGGGTTATA
MR-X16-Y9 ATGCCTGAGCAAAAGAAGATTATTCATTTCAA
MR-X16-Y10 AACGAGCGGAATTATCATCAAGAAACCACCAG
MR-X16-Y11 TTGAATCTAAAGCATCACCCCAGCAGCAAATG

Biotin labeled staple strands

Biotin-X6-y5	CCTTCATCTACCCAAATCAACGTAAAAAATCT TT/3BioTEG/
Biotin-X6-y6	ACGTTAATTAGAAAGATTCATCAGGTAATAGT TT/3BioTEG/
Biotin-X7-y6	ATAGCGTCACAACATTA CTTTTT/3BioTEG/
Short-X7-y6	TTACAGGAAAACGAA
Biotin-X12-y5	AAGAAACGGAATCTTACCAACGCTCAATAGCA TT/3BioTEG/
Biotin-X12-y6	AGCAAATCACGGGTATTAAACCAAATAAACAA TT/3BioTEG/
Biotin-X11-y6	CGACGACAGTACCGCAC CTTTTT/3BioTEG/
Short-X11-y6	TCATCGAGAATCATT

References:

(1) Parabon Computation Inc.
(2) Liu, W.; Zhong, H.; Wang, R.; Seeman, N. C. Angew Chem Int Ed Engl 2011, 50, 264.
(3) Marusyk, R.; Sergeant, A. Anal Biochem 1980, 105, 403.
(4) Bensimon, A.; Simon, A.; Chiffaudel, A.; Croquette, V.; Heslot, F.; Bensimon, D. Science 1994, 265, 2096.

