Chemical Communications

Electronic Supporting Information for:

Sterically controlled self-assembly of tetrahedral $M_{6} L_{4}$ cages via cationic \mathbf{N}-donor ligands

Anssi Peuronen, ${ }^{a}$ Samu Forsblom ${ }^{a}$ and Manu Lahtinen ${ }^{a *}$
${ }^{\text {a Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014-JY, Finland. }}$

*manu.k.lahtinen@jyu.fi

Table of Contents

Experimental details 2
${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR studies 3
Single crystal X-ray measurements 4
Computational details 7
References 10

Chemical Communications

Experimental details

All starting materials were purchased from Sigma-Aldrich and were used without further purification. Ligands 1,3,5-tris(DABCO-N-methyl)benzene tri(hexafluorophosphate) (L1) and 2,4,6-tris(DABCO-Nmethyl)mesitylene tri(hexafluorophosphate) (L2), were synthesized following the procedure described by Garratt et al. ${ }^{1}$ Bis(trifluoromethylsulfonyl)imide $\left(\mathrm{NTf}_{2}{ }^{-}\right)$salt of $\mathbf{L} \mathbf{2}\left[\mathbf{L} 2\left(\mathrm{NTf}_{2}\right)_{3}\right]$ was prepared similarly to $\mathrm{PF}_{6}{ }^{-}$salt by a method described by Garratt et al. using lithium bis(trifluoromethylsulfonyl)imide instead of $\mathrm{NH}_{4} \mathrm{PF}_{6}$.

Self-assembly reactions were carried out at ambient conditions in 5 ml glass vials using HPLC grade acetonitrile with 6:4 metal-ligand ratios. Change in the metal-ligand stoichiometry did not affect the composition of the cage. Single crystals of $\mathbf{1 - 3}$ were grown by dissolving $\mathrm{Cu}(\mathrm{OTf})_{2}$ and corresponding ligand (in $6: 4$ ratio) into $1-2 \mathrm{ml}$ of acetonitrile ($4-5 \mathrm{ml}$ for 2 , in order to completely dissolve the sample) and allowing the solution to evaporate slowly (see Fig. S1 for pictures of the crystals). Respective bulk samples of $\mathbf{1}$ and $\mathbf{2}$ were prepared similarly except a stoichiometric amount of KPF_{6} was added to the reaction mixture in order to improve the yield. In case of compound $\mathbf{1}$, diethyl ether was used to afford a precipitate whereas compound 2 precipitated out immediately after mixing $\mathbf{L} 2$ with $\mathrm{Cu}(\mathrm{OTf})_{2}$. The obtained precipitates were separated by decantation and dried in air prior to elemental analyses (Vario EL III). All samples lose most of the solvent molecules after they are removed from their mother liquor.

Compound 1: $20 \mu \mathrm{~mol}(17.8 \mathrm{mg})$ of $\mathbf{L} \mathbf{1}\left(\mathrm{PF}_{6}\right)_{3}$ and a mixture of $30 \mu \mathrm{~mol}(10.9 \mathrm{mg})$ of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and $60 \mu \mathrm{~mol}$ $(11.1 \mathrm{mg})$ of KPF_{6} were dissolved separately in 0.5 ml of acetonitrile. Mixing the two solutions gave a green solution from which the product was precipitated by a slow addition of diethyl ether. The precipitate was separated by decantation and dried in air. Yield 19.2 mg , $\left(3.2 \mu \mathrm{~mol}\right.$ for $\left.\mathrm{Cu}_{6}(\mathbf{L} 1)_{4}\left(\mathrm{PF}_{6}\right)_{24} \cdot\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{8}\right), 66 \%$, based on Cu . Anal.calcd. (\%) C, 24.81; H, 3.42; N, 7.47. Found (\%): C, 24.74; H, 3.45; N, 7.61.

Compound 2: $20 \mu \mathrm{~mol}(18.6 \mathrm{mg})$ of $\mathbf{L 2}\left(\mathrm{PF}_{6}\right)_{3}$ and a mixture of $30 \mu \mathrm{~mol}(10.9 \mathrm{mg})$ of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and $60 \mu \mathrm{~mol}$ $(11.1 \mathrm{mg})$ of KPF_{6} were dissolved separately in 0.5 ml of acetonitrile. Mixing the two solutions led to a quick precipitation of the product as a green solid which was washed with small amount of MeCN , separated by decantation and dried in air. Yield 14.6 mg , $\left(2.4 \mu \mathrm{~mol}\right.$ for $\left.\mathrm{Cu}_{6}(\mathbf{L} 2)_{4}\left(\mathrm{PF}_{6}\right)_{24} \cdot\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right), 49 \%$, based on Cu. Anal.calcd. (\%) C, 25.36; H, 3.60; N, 6.34. Found (\%): C, 25.51; H, 3.66; N, 6.32.

Compound 3: $13 \mu \mathrm{~mol}(17.8 \mathrm{mg})$ of $\mathbf{L 2}\left(\mathrm{NTf}_{2}\right)_{3}$ and $20 \mu \mathrm{~mol}(7.3 \mathrm{mg})$ of $\mathrm{Cu}(\mathrm{OTf})_{2}$ were dissolved separately into 0.5 ml of acetonitrile. Mixing the two solutions gave a green/yellowish solution which was left to evaporate slowly. After two days, a small batch of single crystals of $\mathbf{3}$ was separated and dried in air. Yield 3.5 mg , $\left(0.45 \mu \mathrm{~mol}\right.$ for $\left.\left(\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}(\mathbf{L 2})_{4}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{12}\left(\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{~N}\right)_{12} \cdot\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right), 14 \%$, based on Cu . Anion composition was deduced from the single crystal structure. Anal.calcd. (\%) C, 25.12; H, 2.93; N, 7.05. Found (\%): C, 25.21; H, 3.01; N, 7.36.

Chemical Communications

Fig. S1. Pictures of crystal of compounds $\mathbf{1}$ (left), $\mathbf{2}$ (middle) and $\mathbf{3}$ (right). Average crystal sizes vary between 100 and $300 \mu \mathrm{~m}$.

${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR studies

Tetrakis(acetonitrile)palladium(II) tetrafluoroborate $\left(\mathrm{Pd}_{(}\left(\mathrm{BF}_{4}\right)_{2}\right)$ was used to study the self-assembly of $\mathrm{M}_{6} \mathrm{~L}_{4}$ species with $\mathbf{L 1}$ and $\mathbf{L 2}$ in solution. These reactions were carried out by mixing $10 \mu \mathrm{~mol}$ of $\mathrm{Pd}\left(\mathrm{BF}_{4}\right)_{2}$ and 6.7 $\mu \mathrm{mol}$ of $\mathbf{L 1}$ and $\mathbf{L 2}$, respectively, in 0.6 ml of $\mathrm{CD}_{3} \mathrm{CN}$. The respective ${ }^{1} \mathrm{H}$ NMR spectra, recorded with Bruker Avance 300 spectrometer, show quantitative formation of $\mathrm{Pd}_{6}(\mathbf{L} 1)_{4}$ and $\mathrm{Pd}_{6}(\mathbf{L} \mathbf{2})_{4}$ species in solution: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, 300 \mathrm{~K}), \mathrm{Pd}_{6}(\mathbf{L} 1)_{4}: \delta=3.61\left(\mathrm{~s}, 36 \mathrm{H} ; \mathrm{N}^{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 4.53\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 7.69(\mathrm{~s}$, $3 \mathrm{H} ; \mathrm{H}-\mathrm{Ar}) ; \mathrm{Pd}_{6}(\mathbf{L 2})_{4}: \delta=2.55\left(\mathrm{~s}, 9 \mathrm{H} ;-\mathrm{CH}_{3}\right), 3.63\left(\mathrm{~s}, 36 \mathrm{H} ; \mathrm{N}^{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 4.80\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{Ar}\right)$.

We also investigated the solution state anion binding by monitoring the ${ }^{19} \mathrm{~F}$ NMR shifts of $\mathrm{PF}_{6}{ }^{-}$and $\mathrm{BF}_{4}{ }^{-}$ anions while cooling the samples from room temperature to 238 K . There was however no indication of encapsulation of either of the two anions by NMR (Fig. S2). This is probably due to the rapid exchange of anions from exo- to endohedral surrounding in solution. ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, 300 \mathrm{~K}$), $\mathrm{Pd}_{6}(\mathbf{L 2})_{4}: \delta=-$ $153.86\left(\mathrm{~s} ;{ }^{11} \mathrm{BF}_{4}-\right), \delta=-153.81\left(\mathrm{~s} ;{ }^{10} \mathrm{BF}_{4}^{-}\right)$(total of $\left.12 \mathrm{BF}_{4}{ }^{-}\right), \delta=-75.33\left(\mathrm{~d},{ }^{1} J=708 \mathrm{~Hz} ; 12 \mathrm{PF}_{6}{ }^{-}\right.$). Aqueous KF $(-125.3 \mathrm{ppm})$ was used as an external standard.

Chemical Communications

Fig. S2. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathrm{Pd}_{6}(\mathbf{L 2})_{4}\left(\mathrm{BF}_{4}\right)_{12}\left(\mathrm{PF}_{6}\right)_{12}$ measured in $\mathrm{CD}_{3} \mathrm{CN}$ at various temperatures.

Single crystal X-ray measurements

All single crystal X-ray data were collected with Agilent SuperNova, equipped with multilayer optics monochromated dual source (Cu and Mo) and Atlas detector, using $\mathrm{Cu} \mathrm{K} \alpha(1.54184 \AA$) radiation at temperature 123 K (Table S1). Data acquisitions, reductions and analytical face-index based absorption corrections were made using program CrysAlisPRO. ${ }^{2}$ The structures were solved with either ShelXS ${ }^{3}$ or Superflip ${ }^{4}$ programs and refined on F^{2} by full matrix least squares techniques with ShelXL ${ }^{3}$ program in Olex ${ }^{2}$ (v.1.2) program package. ${ }^{5}$ Anisotropical displacement parameters were applied for all atoms except hydrogens which were calculated into their ideal positions using isotropic displacement parameters 1.2-1.5 times of the host atom. Solvent mask, as implemented in Olex ${ }^{2}$ (similar to PLATON/SQUEEZE), was used to treat the unresolved electron density corresponding to disordered anions and solvent molecules in the crystal lattices. For 1, 1902 electrons (void of $4684 \AA^{3}$) per unit cell were treated with solvent masking, corresponding to 40 MeCN molecules and $16 \mathrm{PF}_{6}$ - anions. In case of 2, in which the main part of disorder arises from the two-fold symmetry-imposed disorder of the cage assembly which partially overlaps with some of the solvent atoms, a total of 1264 electrons (void of $5374 \AA^{3}$) per unit cell corresponding to 56 MeCN molecules and $16 \mathrm{PF}_{6}{ }^{-}$were treated. The exohedral environment in structure 3 ($9551 \AA^{3}$ and 6539 electrons / unit cell) is severely disordered and could not be resolved from the residual electron density. We deduced the most probable anion composition as $12 \mathrm{OTf}^{-}$and $12 \mathrm{NTf}_{2}{ }^{-}$anions per cage (including the four encapsulated OTf) which also agrees with the results of elemental analysis. Consequently, 16 OTf- and 24 $\mathrm{NTf}_{2}{ }^{-}$anions were omitted from the data together with 10 MeCN molecules which occupy the remaining space in the lattice.

Details of refinement of structure 2: In crystal structure of 2, all atoms, except two of the CH_{2}-groups, lie in special positions of the asymmetric unit. When the site specific symmetry operations are applied to all atoms a caged structure is generated where each $\mathrm{Cu}(\mathrm{II})$ is coordinated to four distinct ligands. This would mean a formation of an octahedral $\mathrm{Cu}_{6}(\mathbf{L 2})_{8}$ species. Close inspection of the structure reveals suspiciously short inter-ligand distances around the $\mathrm{Cu}(\mathrm{II})$ coordination environment $\left[d\left(\mathrm{C} 1 \cdots \mathrm{C} 1^{\prime}\right)=2.002(19) \AA\right.$, $\left.d\left(\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{H} 1 \mathrm{~A}^{\prime}\right)=0.384(1) \AA ;\left(^{\prime}\right)=(\mathrm{x}, \mathrm{y},-\mathrm{z})\right]$. A better agreement of the overall R -value in the structure

Chemical Communications

refinement is achieved by halving the site occupancy of atoms belonging to the ligand. In so doing, $\mathrm{Cu}-$ coordinated MeCN , disordered together with the ligand, can be identified from the electron density map. Hence, $\mathbf{2}$ is best described by two tetrahedral $\mathrm{Cu}_{6}(\mathbf{L} \mathbf{2})_{4}$ cages disordered in 0.5:0.5 ratio.

Details of refinement of structure 3: Compound $\mathbf{3}$ crystallizes in non-centrosymmetric cubic space group I 43 m . As in $\mathbf{2}$, the asymmetric unit consists of $1 / 24$ of the $\mathrm{Cu}_{6}(\mathbf{L} 2)_{4}$ cage and OTf anion $\left(\mathrm{Z}^{\prime}=0.04167\right)$. The endohedral coordination environment of the Cu -atom deviates from the ones found in structures $\mathbf{1}$ and $\mathbf{2}$ as only a single endohedral Q-peak is found within $2.36 \AA$ of the Cu -atom. Best fit was achieved by refining an oxygen atom to this position corresponding to a Cu-coordinated water molecule. Statistical analysis of representative crystal structures in Cambridge Crystallographic Database also show similar Cu-O distances between $\mathrm{H}_{2} \mathrm{O}$ and Cu . Furthermore, a good agreement between measured and calculated CHN values is reached when the water molecules are taken into account.

Chemical Communications

Table S1. Crystallographic data for structures of 1-3.

	1	2	3
Empirical formula	$\mathrm{C}_{208} \mathrm{H}_{330} \mathrm{~N}_{74} \mathrm{~F}_{144} \mathrm{P}_{24} \mathrm{Cu}_{6}$	$\mathrm{C}_{208} \mathrm{H}_{336} \mathrm{~N}_{68} \mathrm{~F}_{144} \mathrm{P}_{24} \mathrm{Cu}_{6}$	$\mathrm{C}_{190} \mathrm{H}_{267} \mathrm{~N}_{53} \mathrm{~F}_{108} \mathrm{O}_{90} \mathrm{~S}_{36} \mathrm{Cu}_{6}$
Formula weight	7727.96	7649.95	8320.95
Temperature/K	123.0(1)	123.0(1)	123.0(1)
Crystal system	tetragonal	cubic	cubic
Space group	$P 4_{2} / \mathrm{nnm}$	Fm-3m	I-43m
a/Å	22.4999 (5)	31.8441(2)	25.2831(2)
b/Å	22.4999 (5)	31.8441(2)	25.2831(2)
c/Å	31.3098(12)	31.8441(2)	25.2831(2)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	90	90	90
γ°	90	90	90
Volume/ \AA^{3}	15850.4(9)	32291.5(7)	16161.8(4)
Z	2	4	2
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.619	1.574	1.71
$\mathrm{m} / \mathrm{mm}^{-1}$	2.894	2.828	3.951
F(000)	7852	15560	8440
Crystal size $/ \mathrm{mm}^{3}$	$0.153 \times 0.069 \times 0.054$	$0.176 \times 0.148 \times 0.036$	$0.147 \times 0.114 \times 0.050$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54184)$	$\operatorname{CuK} \alpha(\lambda=1.54184)$	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection	6.232 to 133.972°	7.852 to 133.838°	8.566 to 124.448°
Index ranges	$\begin{gathered} -26 \leq \mathrm{h} \leq 20,-19 \leq \mathrm{k} \leq 27, \\ -38 \leq 1 \leq 33 \end{gathered}$	$\begin{gathered} -27 \leq \mathrm{h} \leq 38,-27 \leq \mathrm{k} \leq 37, \\ -16 \leq 1 \leq 25 \end{gathered}$	$\begin{gathered} -6 \leq h \leq 20,-5 \leq \mathrm{k} \leq 28, \\ -27 \leq 1 \leq 18 \end{gathered}$
Reflections collected	45580	13856	5126
Independent reflections	$\begin{gathered} 7301\left[\mathrm{R}_{\text {int }}=0.1033, \mathrm{R}_{\text {sigma }}=\right. \\ 0.0476] \end{gathered}$	$\begin{gathered} 1474\left[\mathrm{R}_{\text {int }}=0.0259, \mathrm{R}_{\text {sigma }}=\right. \\ 0.0113] \end{gathered}$	$\begin{gathered} 1889\left[\mathrm{R}_{\text {int }}=0.0251, \mathrm{R}_{\text {sigma }}=\right. \\ 0.0243] \end{gathered}$
Data/restraints/ parameters	7301/60/496	1474/169/196	1889/71/114
Goodness-of-fit on F^{2}	1.021	1.842	0.994
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0939, \mathrm{wR}_{2}=0.2699$	$\mathrm{R}_{1}=0.1338, \mathrm{wR}_{2}=0.3689$	$\mathrm{R}_{1}=0.0564, \mathrm{wR}_{2}=0.1542$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1186, \mathrm{wR}_{2}=0.2989$	$\mathrm{R}_{1}=0.1413, \mathrm{wR}_{2}=0.3827$	$\mathrm{R}_{1}=0.0638, \mathrm{wR}_{2}=0.1632$
Largest diff. peak/hole / e \AA^{-3}	0.61/-0.59	1.50/-1.47	0.37/-0.27
Flack parameter			0.10(5)

Chemical Communications

Fig. S3. Packing schemes of structure 1 viewed along crystallographic c-axis (left) and (110) lattice plane (right). Hydrogen atoms and solvent molecules are omitted from the figure. Atom colors (in figures S3-S6): C, grey; N, blue; F, green; P , orange; Cu , brown.

Fig. S4. Packing scheme of structure 2 viewed along crystallographic a-axis. Hydrogen atoms and solvent molecules are omitted from the figure.

Chemical Communications

Fig. S5. Left: packing scheme of structure 3 viewed along the diagonal of the unit cell. Right: detailed view of the endohedral environment of structure 3. Distances (\AA) : $\mathrm{Cu} 1-\mathrm{O} 1=2.363(5), \mathrm{O} 1 \cdots \mathrm{~F} 1=2.934(12) \AA$. Ellipsoids are drawn at the 20% probability level.

Fig. S6. Space-filling models of cages $\mathrm{Cu}_{6}(\mathbf{L} 1)_{4}$ (left) and $\mathrm{Cu}_{6}(\mathbf{L} \mathbf{2})_{4}$ (right) in $\mathbf{1}$ and $\mathbf{3}$, respectively.

Chemical Communications

Computational details

In order to estimate the effect of mono-alkylation of DABCO to its capability to act as an nucleophile toward d-block elements, we conducted a brief computational analysis of copper(I)chloride complex N -methylated DABCO (complex I), made charge neutral by adding a chloride counterion, and compared it with its neutral counterpart (complex II). Furthermore, these results were compared with corresponding pyridine complex (complex III) in order to evaluate the difference in bonding strength of the new introduced ligand species to a more commonly used coordinating group.

Geometries of the three complexes (Fig. S7, Table S3) were optimized with Gaussian 09^{6} using DFT (PBEPBE functional ${ }^{7}$) with high quality triple- ζ basis sets (def2-TZVPP) and the subsequent geometries were verified as minima in the potential energy surface by vibrational analysis. We then evaluated the bonding interactions between the metal and ligand using energy decomposition analysis (EDA) as implemented in the program ADF 2012.1 (Table S2). ${ }^{8}$ This method allows the decomposition of interaction energy ($\Delta E_{\text {int }}$) between preselected (non-relaxed) fragments into three terms: Pauli repulsion ($\Delta E_{\text {Pauli }}$), electrostatic interaction ($\Delta E_{\text {elstata }}$) and orbital interaction ($\Delta E_{\text {orb }}$). The $\Delta E_{\text {orb }}$ term can be furthermore broken down according to irreducible representations of the molecular point group. $\Delta E_{\text {Pauli }}$ is the source of destabilizing interactions between the molecular fragments whereas $\Delta E_{\text {elstat }}$ and $\Delta E_{\text {orb }}$ are both stabilizing.

The optimized geometries of I and II show only minor differences in regards to metal-ligand distances (Fig. S7). In respect of total bonding interactions ($\Delta E_{\text {int }}$) the mono-alkylation of DABCO weakens the bond between the metal and ligand by roughly $25 \mathrm{~kJ} / \mathrm{mol}$ (13 \%) (Table S2). The main contribution to the difference in bonding between I and II arises from $\Delta E_{\text {elstat }}$ (ca. $30 \mathrm{~kJ} / \mathrm{mol}, 8 \%$) whereas $\Delta E_{\text {Pauli }}$ and $\Delta E_{\text {orb }}$ exhibit substantially smaller changes (3% each). Thus according to EDA, the mono-alkylation of DABCO weakens the electrostatic interaction ($\Delta E_{\text {elstat }}$) of the metal-ligand bond, whereas the covalent character of the bond ($\Delta E_{\text {orb }}$) remains virtually unchanged. $\Delta E_{\text {int }}$ value of $-201.5 \mathrm{~kJ} / \mathrm{mol}$ for the metal-ligand bond in III means that, according to our simplified model, a single Cu-pyridine bond is roughly 20% stronger compared to mono-alkylated DABCO.

Fig. S7. Optimized geometries of copper(I)chloride complexes of N -methyl-DABCO chloride (I), DABCO (II) and pyridine (III). Distances are reported in Ångströms. Color coding: Cu (brown), Cl (green), N (blue), C (grey) and H (white).

Table S2. Results of energy decomposition
analysis (PBE/TZ2P).

	I	II	III
$\Delta E_{\text {pauli }}$	289.7	298.4	336.9
$\Delta E_{\text {elstat }}$	-324.5	-353.8	-384.9
$\Delta E_{\text {orb }}$	-127.3	-131.4	-153.6
$\Delta E_{\text {int }}$	-162.2	-186.8	-201.5

Chemical Communications

Table S3. xyz-coordinates and electronic energies (in parenthesis in Hartrees) for optimized structures of complexes I, II and III.

I (-2945.29255369)				II (-2445.41247462)				III (-2348.47322811)			
C	-0.45456	-0.00202	-1.55700	C	0.68496	1.18638	1.16611	Cu	-0.00043	-2.79645	0.00000
N	-0.07455	-0.95511	-0.48494	N	0.00000	0.00000	1.65747	Cl	-0.00075	-4.87473	0.00000
C	-1.02811	-0.78969	0.66245	C	0.68496	-1.18638	1.16611	N	-0.00014	-0.91077	0.00000
C	-1.08788	0.69108	1.04967	C	0.69498	-1.20374	-0.38028	C	-1.16106	-0.21032	0.00000
N	0.01349	1.43881	0.40619	N	0.00000	0.00000	-0.89664	C	-1.19834	1.17900	0.00000
C	-0.20356	1.42907	-1.05316	C	0.69498	1.20374	-0.38028	C	0.00029	1.89333	0.00000
C	1.27618	0.72264	0.70105	C	-1.38995	0.00000	-0.38028	C	1.19871	1.17863	0.00000
C	1.31525	-0.61993	-0.02463	C	-1.36992	0.00000	1.16611	C	1.16099	-0.21068	0.00000
C	-0.10858	-2.36441	-0.94874	Cu	0.00000	0.00000	-2.85774	H	-2.07535	-0.80269	0.00000
Cu	0.06759	3.30144	1.03093	Cl	0.00000	0.00000	-4.93759	H	-2.16177	1.68759	0.00000
Cl	0.09295	5.29761	1.59257	H	0.18471	-2.07893	-0.78454	H	0.00046	2.98343	0.00000
H	-0.98988	0.79590	2.12917	H	1.70805	-1.19943	-0.78454	H	2.16229	1.68693	0.00000
H	-2.02679	1.15889	0.75191	H	1.70186	-1.18791	1.56405	H	2.07511	-0.80333	0.00000
H	-1.99406	-1.16422	0.32469	H	0.17783	-2.06781	1.56405				
H	-0.62854	-1.44023	1.45850	H	-1.89276	-0.87951	-0.78454				
H	1.32648	0.56520	1.77867	H	-1.89276	0.87951	-0.78454				
H	2.11714	1.34892	0.40689	H	-1.87969	-0.87990	1.56405				
H	1.60978	-1.43045	0.66146	H	-1.87969	0.87990	1.56405				
H	1.93603	-0.60247	-0.92125	H	1.70805	1.19943	-0.78454				
H	-1.05203	2.06992	-1.28844	H	0.18471	2.07893	-0.78454				
H	0.67778	1.86386	-1.52331	H	0.17783	2.06781	1.56405				
H	0.14190	-0.23128	-2.43959	H	1.70186	1.18791	1.56405				
H	-1.50414	-0.18132	-1.79129								
H	0.15069	-2.98456	-0.08132								
H	0.62269	-2.48276	-1.74701								
H	-1.10903	-2.58547	-1.31781								
Cl	0.91377	-2.84942	2.22435								

Chemical Communications

References

1 P. J. Garratt, A. J. Ibbett, J. E. Ladbury, R. O'Brien, M. B. Hursthouse and K. M. Abdul Malik, Tetrahedron, 1998, 54, 949-968.

2 CrysAlis ${ }^{\text {Pro }}$ program, version 1.171.36.21, Agilent Technologies, Oxford, 2012.
3 G.M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122.
4 L. Palatinus and G. Chapuis, J. Appl. Cryst. 2007, 40, 786-790.
5 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. J. Puschmann, Appl. Cryst., 2009, 42, 339341.

6 Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

7 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
8 G. te Velde, F.M. Bickelhaupt, S.J.A. van Gisbergen, C. Fonseca Guerra, E.J. Baerends, J.G. Snijders and T. Ziegler, J. Comput. Chem. 2001, 22, 931-967.

