Supporting Information

Electron transporting unit linked multifunctional heteroleptic Ir(III) complex: A promising strategy to improve the performance of solution-processed phosphorescent organic light-emitting diodes Thota Giridhar,^a Chinnusamy Saravanan,^a Woosum Cho,^a Young Geun Park,^b Jin Yong Lee,^{*b} and Sung-Ho Jin^{*a} ^aDepartment of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan, 609-735, Republic of Korea

^bDepartment of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Experimental section

General Information

All chemicals and reagents were purchased from Aldrich Chemical Co., and it was used without further purification. The dimer (4) was synthesized using the procedure we have developed previously¹ and 4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenol (9) was synthesized by the reported procedure.² All reactions were systematically monitored by thin layer chromatography with Merck precoated aluminum plates. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury Plus 300 MHz spectrometer in CDCl₃ using tetramethylsilane as an internal standard. High resolution mass spectra were obtained from the Korea Basic Science and Institute, Daegu Center (HR-ESI Mass). TGA and DSC thermograms were obtained with Mettler Toledo TGA/SDTA 851e and DSC 822e analyzer under N2 atmosphere at a heating rate of 10 °C/min, respectively. The UV-visible absorption and the fluorescence spectra were recorded with a JASCO V-570 and Hitachi F-4500 fluorescence spectrophotometers at room temperature, respectively. Cyclic voltammetry (CV) measurements were performed with a CHI 600C potentiostat (CH Instruments), which is equipped with a platinum disc as the working electrode, a platinum wire as the counter electrode, and a Ag/AgCl as the reference electrode, at a scan rate of 100 mV/s using anhydrous methylene chloride (MC) and 0.1 M tetrabutylammonium tetrafluoroborate (TBABF₄) as the solvent and electrolyte, respectively. The potentials were referenced to the ferrocene/ferrocenium redox couple (Fc/Fc⁺). It was assumed that the redox potential of Fc/Fc⁺ had an absolute energy level of -4.8 eV under vacuum. All electrochemical experiments were carried out at room temperature.

Synthesis of (4-phenyl-2-(thiophen-2-yl)quinoline) (3)

A mixture of 1-(thiophen-2-yl)ethanone (3 g, 23.78 mmol), 2-aminobenzophenone (4.69 g, 23.78 mmol), diphenyl phosphate (5.95 g, 23.78 mmol), and *m*-cresol (30 mL) was flushed with N_2 while stirring at room temperature for 30 min and then refluxed for 12 hr at 140 °C. The reaction mixture was distilled to remove *m*-cresol, residue was diluted with MC and washed with 10% sodium hydroxide solution. The reaction mixture was washed with sodium chloride solution and the resulting organic layer was dried over anhydrous MgSO₄ and evaporated the solvent. The residue was then purified by column chromatography on silica gel (hexane:ethyl acetate (EA), 9:1 v/v) to furnish an off-white powder **3** (5.1 g, 74%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.19-8.16 (d, 1H), 8.06-8.05 (dd, 1H), 7.90-7.86 (m, 2H), 7.74-7.69 (m, 2H), 7.56-7.51 (m, 5H), 7.48-7.43 (m, 2H); ¹³C NMR (300 MHz, CDCl₃): δ (ppm) 152.11, 149.29, 148.88, 145.64, 138.42, 129.88, 129.74, 128.84, 128.78, 128.70, 128.30, 126.36, 126.11, 125.91, 118.14. HRESI-MS [M+H]⁺: m/z Found 288.08, Calcd for 287.38.

General procedure for the synthesis of cyclometalated Ir(III) μ -chloride bridged dimer (4) The general procedure for the synthesis of cyclometalated Ir(III) μ -chloride bridged dimer complexes is as follows: the compound **3** (5 g, 17.40 mmol) and IrCl₃·H₂O (2.08 g, 6.96 mmol) were added to a mixture of 2-ethoxyethanol and water (80 mL, 3:1 v/v). The resulting mixture was refluxed at 140 °C for 20 hr under an N₂ atmosphere and cooled to room temperature. The formed red solid was filtered, washed with water followed by methanol. Subsequently, the solid was dried under vacuum at 120 °C to afford cyclometalated Ir(III) μ -chloride bridged dimer (4) as a red solid (3.36 g, 60 %).

Synthesis of bis[4-phenyl-2-(thiophen-2-yl)quinoline]iridium picolinate (TPQIr)

The compound **4** (1 g, 0.62 mmol), picolinic acid (0.23 g, 1.87 mmol), and K_2CO_3 (0.86 g, 6.2 mmol) in 2-ethoxyethanol (20 mL) was stirred at room tempereture for 8 hr under a N_2

atmosphere. After completing the reaction, the mixture was poured into water and extracted with MC. The organic layer was dried over anhydrous MgSO₄, filtered, and removed the solvent under reduced pressure. The crude product was purified by silica gel column chromatography using ethylacetate (EA):MC:hexane (2:4:4, v/v/v) as an eluent to furnish a red powder **TPQIr** (0.3 g, 54%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.80-8.77 (d, 1H), 7.98-7.95 (m, 2H), 7.76-7.68 (m, 4H), 7.63 (s, 1H), 7.59-7.57 (m, 11H), 7.42-7.30 (m, 4H), 7.20-7.12 (q, 3H), 6.86 (t, 1H), 6.67-6.66 (d, 1H), 6.20-6.18 (d, 1H); ¹³C NMR (300 MHz, CDCl₃): δ (ppm) 172.53, 166.72, 165.35, 153.67, 153.59, 153.04, 151.39, 151.35, 149.93, 149.02, 147.03, 141.58, 139.31, 137.95, 137.48, 137.44,134.84, 133.61, 132.09, 130.90, 130.03, 129.88, 129.21,129.08, 128.95, 127.97, 127.70, 127.55, 126.48, 126.38, 125.76, 125.64, 124.85, 124.64, 124.14, 117.97, 116.99. IR (NaCl cell, cm⁻¹): 3057, 2355, 1663, 1593, 1541, 1496, 1450, 1427, 1335, 1243, 1145, 1070, 887, 772, 726, 698, 588. Calcd for C₄₄H₂₈IrN₃O₂S₂: C, 59.58; H, 3.18; N, 4.74. Found: C, 59.54; H, 3.12; N, 4.72. HRESI-MS [M+H]⁺: m/z Found 887.1254, Calcd for 887.1251.

Synthesis of bis[4-phenyl-2-(thiophen-2-yl)quinoline]iridium-4-Cl-picolinate (5)

The compound **4** (2.3 g, 1.44 mmol), 4-chloropicolinic acid (0.68 g, 4.31 mmol), and K₂CO₃ (1.99 g, 14.4 mmol) in 2-ethoxyethanol (20 mL) was stirred at room tempereture for 8 hr under a N₂ atmosphere. After completing the reaction, the mixture was poured into water and extracted with MC. The organic layer was dried over anhydrous MgSO₄, filtered, and removed the solvent under reduced pressure. The crude product was purified by silica gel column chromatography using EA:MC:hexane (1:5:4, v/v/v) as an eluent to afford a red powder **5** (0.84 g, 63%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.73-8.70 (d, 1H), 7.96 (s, 1H), 7.85-7.83 (d, 1H), 7.75-7.72 (d, 2H), 7.67-7.63 (m, 3H), 7.61-7.55 (m, 10H), 7.39-7.33 (m, 3H), 7.22-7.15 (m, 3H), 6.96-

6.95 (m, 1H), 6.66-6.64 (m, 1H), 6.19-6.17 (m,1H); ¹³C NMR (300 MHz, CDCl₃): δ (ppm) 171.8, 166.6, 165.2, 154.38, 152.91, 152.82, 151.57, 149.80, 148.96, 147.64, 146.51, 141.52, 139.29, 137.40, 137.36, 134.79,133.5, 132.20, 130.99, 130.09, 130.01, 129.87, 129.27, 129.13, 128.98, 128.34, 128.27, 126.52, 126.36, 125.88, 125.68, 124.94, 124.79, 117.98, 116.9. Calcd for C₄₄H₂₇ClIrN₃O₂S₂: C, 57.35; H, 2.95; N, 4.56. Found: C, 57.24; H, 2.82; N, 4.52. HRESI-MS [M+H]⁺: m/z Found 921.4926, Calcd for 921.4922.

Synthesis of bis[4-phenyl-2-(thiophen-2-yl)quinoline]iridium-4-(4-(5-phenyl-1,3,4oxadiazol-2-yl)phenoxy)picolinate (TPQIr-ET)

The compound **5** (1 g, 0.57 mmol), 4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenol **(6)** (1 g, 0.57 mmol), and K_2CO_3 (0.60 g, 5.7 mmol) in DMF (10 mL) was stirred at 80 °C over night under a N_2 atmosphere. After completing the reaction, the mixture was cooled, poured into water and extracted with MC. The organic layer was dried over anhydrous MgSO₄, filtered, and removed the solvent under reduced pressure. The crude product was purified by silica gel column chromatography using EA:MC:hexane (3:5:2, v/v/v) as an eluent to furnish a red powder **TPQIr-ET** (0.36 g, 59%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.80-8.77 (d, 1H), 8.17-8.15 (m, 4H), 7.87-7.85 (d, 1H), 7.81-7.77 (m, 3H), 7.71 (s, 1H), 7.65-7.57 (m, 16H), 7.41-7.36 (m, 3H), 7.19-7.17 (m, 3H), 7.07-7.02 (m, 2H), 6.70-6.69 (d, 1H), 6.21-6.19 (d,1H); ¹³C NMR (300 MHz, CDCl₃): δ (ppm) 171.81, 166.86, 165.55, 155.96, 153.57, 151.40, 150.04, 149.05, 139.25, 137.49, 133.62, 132.11, 130.94, 129.88, 129.55, 129.36, 129.03, 128.98, 127.24, 126.63, 126.41, 125.76, 124.93, 124.02, 122.12, 121.69, 115.24. IR (NaCl cell, cm⁻¹): 3057, 2355, 1652, 1596, 1539, 1495, 1452, 1425, 1325, 1290, 1242, 1203, 885, 846, 767, 732, 702, 584. Calcd for C₅₈H₃₆IrN₅O₄S₂: C, 62.02; H,

3.23; N, 6.23. Found: C, 62.01; H, 3.21; N, 6.20. HRESI-MS [M+H]⁺: m/z Found 1123.2761, Calcd for 1123.2760.

Scheme S1. Synthesis of TPQIr and TPQIr-ET.

Fig. S1. TGA thermograms of TPQIr and TPQIr-ET measured at 10 °C/min under N₂.

Fig. S2. DSC thermograms of TPQIr and TPQIr-ET measured at 10 $^{\circ}$ C/min under N₂.

Fig. S3. Cyclic voltammograms of **TPQIr** and **TPQIr-ET** measured in MC at a scan rate of 100 mV/s.

Fig. S4. Calculated HOMOs and LUMOs of TPQIr and TPQIr-ET.

Fig. S5. Schematic illustration of solution-processed deep-red PhOLEDs.

Fig. S6. Device configuration of a) hole [ITO/MoO₃/TPQIr or TPQIr-ET/MoO₃/Al (100 nm)] and b) electron [ITO/LiF/TPQIr or TPQIr-ET/LiF/Al (100 nm)] only devices.

Fig S7. J-V characteristics of hole and electron only devices of TPQIr or TPQIr-ET.

 Table S1. Mobility data for TPQIr or TPQIr-ET

Mobility (µ)	TPQIr	TPQIr-ET
hole $(\mu_{\rm h},{\rm cm^2/Vs})^{\rm a}$	1.3 X 10 ⁻⁴	4.4 X 10 ⁻⁵
electron (μ_e , cm ² /Vs) ^a	4.2 X 10 ⁻⁶	3.5 X 10 ⁻⁴

^athe mobility was calculated from the space charge limited current (SCLC).

Year	Previous	CIE coordinates	Luminous/Power	FOF	
	Literature	(CIEx, CIEy)	Efficiency	EQE	
2007	Ref. 3	(0.65, 0.34)	3 lm/W	6.3%	
2007	Ref. 4	-	6.4 cd/A /3.2 lm/W	-	
2007	Ref. 5	(0.61, 0.38)	12.62 cd/A	8.60 %	
2007	Ref. 6	(0.65, 0.33)	12.7 cd/A,	15.1%	
2008	Ref. 7	(0.60, 0.29)	1.95 cd/A	-	
2008	Ref. 8	(0.64, 0.36)	4.6 cd/A /0.67 lm/W	-	
2009	Ref. 9	(0.61, 0.32)	1.66 cd/A	-	
2010	Ref. 10	(0.61, 0.38)	4.2 cd/A	3.2%	
2010	Ref. 11	(0.62, 0.36)	7.2 cd/A /2.3 lm/W	-	
2010	Ref. 12	(0.59, 0.39)	21 cd/A /11 lm/W	14.2%	
2011	Ref. 13	(0.64, 0.36)	13.3 cd/A /8.6 lm/W	10.2%	
2011	Ref. 14	-	17 cd/A /10 lm/W	8.8%	
2012	Ref. 15	(0.65, 0.35)	12 cd/A /7.9 lm/W	10.8%	
2013	Ref. 16	(0.65, 0.34)	7.8 cd/A /5.4 lm/W	6.9%	
2012	Ref. 17	(0.61, 0.39)	~12.2 cd/A /~5.1 lm/W	~15.3%	
2014	Our work	(0.67, 0.32)	~17.20 cd/A /~6.72 lm/W	~20.59%	

 Table S2. Comparison of our work with previous literature.

References

- 1. M. Nonoyama, J. Organomet. Chem., 1975, 86, 263.
- 2. Y.-H. Chiuv and J.-H. Liu, J. Polym. Sci. A. Polym. Chem., 2010, 48, 3368.
- 3. Y. Ohmori, H. Kajii and Y. Hino, J. Disp. Technol., 2007, 3, 238-244.
- T. J. Park, S. H. Jeong, W. S. Jeon, J.-J. Park, Y. K. Lee, J. H. Kwon and J. Jang, SID DIGEST, 2007, 892-895.
- Y. Byun, Y.-Y. Lyu, R. R. Das, O. Kwon, T.-W. Lee and Y. J. Park, *Appl. Phys. Lett.*, 2007, **91**, 211106.
- H. Kim, Y. Byun, R. R. Das, B.-K. Choi and P.-S. Ahn, *Appl. Phys. Lett.*, 2007, 91, 093512.
- Y. Zhou, Q. He, Y. Yang, H. Zhong, C. He, G. Sang, W. Liu, C. Yang, F. Bai and Y. Li, *Adv. Funct. Mater.*, 2008, 18, 3299-3306.
- Y. Tao, Q. Wang, C. Yang, K. Zhang, Q. Wang, T. Zou, J. Qin and D. Ma, *J. Mater. Chem.*, 2008, 18, 4091-4096.
- Y. Yang, Y. Zhou, Q. He, C. He, C. Yang, F. Bai and Y. Li, J. Phys. Chem., B 2009, 113, 7745-7752.
- L. He, L. Duan, J. Qiao, D. Zhang, L. Wang and Y. Qiu, Org. Elect., 2010, 11, 1185-1191.
- M. Zhang, S. Xue, W. Dong, Q. Wang, T. Fei, C. Gu and Y. Ma, *Chem. Commun.*, 2010, 46, 3923-3925.
- 12. H.-Y. Oh, C. Kulshreshtha, J. H. Kwon and S. Lee, Org. Elect., 2010, 11, 1624-1630.
- M. Zhu, T. Ye, X. He, X. Cao, C. Zhong, D. Ma, J. Qin and C. Yang, *J. Mater. Chem.*, 2011, **21**, 9326-9331.

- 14. Y.-C. Chao, S.-Y. Huang, C.-Y. Chena, Y.-F. Chang, H.-F. Menga, F.-W. Yend, I.-F. Lind, H.-W. Zane and S.-F. Horng, Synthetic Metals, 2011, 161, 148-152.
- J. Chen, C. Shi, Q. Fu, F. Zhao, Y. Hu, Y. Feng and D. Ma, J. Mater. Chem., 2012, 22, 5164-5170.
- 16. C.-F. Wang, W.-Y. Hung, M.-H. Cheng, J.-S. Hwang, M.-K. Leung and K.-T. Wong, Org. Elect., 2013, 14, 1958-1965.
- 17. M. Zhu, Y. Li, S. Hu, C. Li, C. Yang, H. Wu, J. Qina and Y. Cao, *Chem. Commun.*, 2012, 48, 2695–2697.