Supporting Information

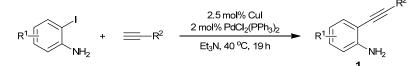
Silver-catalyzed one-pot cyclization/fluorination of 2-alkynylanilines: highly efficient synthesis of structurally diverse fluorinated indole derivatives

Lei Yang, Yuanhong Ma, Feijie Song* and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: fsong@scu.edu.cn; jsyou@scu.edu.cn

Table of Contents

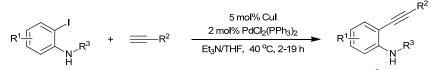
I. General remarks	
II. Synthesis and characterization of the starting material	s
III. Ag-catalyzed tandem cylization/difluorina	ation of <i>N</i> -unprotected
2-alkynylanilines	
IV. Ag-catalyzed one-pot synthesis of 3,3-difluoroindolir	n-2-ols
V. Ag-catalyzed one-pot synthesis of 2-alkoxy-3,3-difluo	roindolinesS24
VI. Ag-catalyzed one-pot synthesis of 3-fluoroindoles	
VII. References	
VIII. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	


I. General remarks

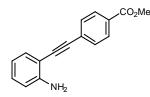
NMR spectra were obtained on a Bruker AV II-400 MHz spectrometer (¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, and ¹⁹F NMR at 376 MHz). The ¹H NMR chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: $\delta = 7.26$ ppm; DMSO-*d*₆: $\delta = 2.50$ ppm). The ¹³C NMR chemical shifts were given using CDCl₃ or DMSO-*d*₆ as the internal standard (CDCl₃: $\delta = 77.16$ ppm; DMSO-*d*₆: $\delta = 39.52$ ppm). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with Hanon MP300 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. AgNO₃ and Ag₂CO₃ were purchased from Chengdu Kelong Chemical Engineering Reagent (China) CO., Ltd and Tianjin Yingda Chemical Engineering Reagent (China) CO., Ltd, respectively. Selectfluor and NFSI were purchased from Beijing Innochem Science & Technology (China) CO., Ltd. 1,4-Dioxane (HPLC) was purchased from J & K Chemical Limited in China and used without further purification. CH₃CN was dried over CaH₂ and stored under N₂ over activated 4Å molecular sieves. Starting materials 1¹ and 3² were prepared according to the literature procedure. Starting materials 1a¹, 1b-1d³, 1e⁴, 1f⁵, 1h⁶, 1j⁷, 1k⁸, 1l-1m³, 1n⁹, 3a¹⁰, 3b¹¹, 3c¹², and 3j¹⁰ are known compounds and were identified by comparison of their spectral data with those reported in the literature.

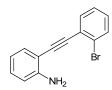
II. Synthesis and characterization of the starting materials


i. General procedure for the synthesis of N-unprotected 2-(1-alkynyl)anilines 1¹

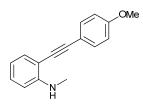
A mixture of 2-iodoaniline (2.0 mmol), terminal alkyne (2.4 mmol), CuI (9.6 mg, 2.5 mol%) and PdCl₂(PPh₃)₂ (28 mg, 2.0 mol%) in Et₃N (8 ml) was heated at 40 °C for 19 h under an nitrogen atmosphere. The volatile was then evaporated and the residue was partitioned between EtOAc (3 x 10 mL) and water (10 mL). The combined organic


phases were washed with water (10 mL) and dried over anhydrous Na_2SO_4 . The solvent was evaporated and the residue was purified by column chromatography on silica gel to afford the desired products.

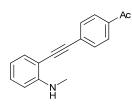
ii. General procedure for the synthesis of N-substituted-2-(1-alkynyl)anilines 3²


A mixture of *N*-substituted-2-iodoaniline (2.0 mmol), terminal alkyne (2.4 mmol), CuI (11 mg, 5.0 mol%) and PdCl₂(PPh₃)₂ (28 mg, 2.0 mol%) in Et₃N/THF (1:1, 10 ml) was heated at 40 °C under an nitrogen atmosphere for 2-19 h. The solvent was then evaporated and the residue was partitioned between EtOAc (3 x 10 mL) and water (10 mL). The combined organic phases were washed with water (10 mL) and dried over anhydrous Na₂SO₄. The volatile was evaporated and the residue was purified by column chromatography on neutral Al₂O₃ to afford the desired products.

iii. Characterization of the unknown starting materials

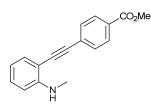

Methyl 4-((2-aminophenyl)ethynyl)benzoate (1g)

Compound **1g** was obtained as a white solid in 95% yield. M.p.: 97-99 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.93 (s, 3H), 4.26 (br. s, 2H), 6.71-6.74 (m, 2H), 7.16 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.37 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 8.02 (d, *J* = 8.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.3, 89.2, 94.1, 107.4, 114.6, 118.2, 128.2, 129.5, 129.7, 130.4, 131.4, 132.4, 148.1, 166.6 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃KNO₂ [M+K]⁺ 290.0583, found 290.0583.

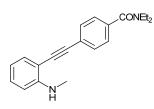

2-((2-Bromophenyl)ethynyl)aniline (1i)

Compound **1i** was obtained as a yellow solid in 82% yield. M.p.: 253-255 °C. ¹H NMR (400 MHz, CDCl₃): δ = 4.40 (br. s, 2H), 6.72-6.76 (m, 2H), 7.15-7.20 (m, 2H), 7.31 (td, *J* = 7.6 Hz, 0.8 Hz, 1H), 7.41 (dt, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.58 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.63 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 91.2, 93.5, 107.5, 114.5, 118.0, 125.2, 125.7, 127.3, 129.3, 130.3, 132.2, 132.5, 133.1, 148.5 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₀BrNNa [M+Na]⁺ 293.9894, found 293.9889.

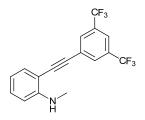
2-((4-Methoxyphenyl)ethynyl)-N-methylaniline (3d)


Compound **3d** was obtained as a white solid in 82% yield. M.p.: 103-104 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.94$ (s, 3H), 3.84 (s, 3H), 4.70 (br. s, 1H), 6.62 (d, J = 8.0 Hz, 1H), 6.68 (t, J = 7.6 Hz, 1H), 6.88-6.91 (m, 2H), 7.23-7.27 (m, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.5$, 55.4, 84.7, 95.0, 107.8, 109.1, 114.1, 115.6, 116.3, 129.9, 132.1, 133.0, 149.8, 159.7 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₅KNO [M+K]⁺ 276.0791, found 276.0782.

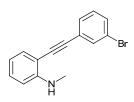
1-(4-((2-(Methylamino)phenyl)ethynyl)phenyl)ethanone (3e)


Compound **3e** was obtained as a yellow solid in 86% yield. M.p.: 103-105 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.60 (s, 3H), 2.94 (s, 3H), 4.70 (br. s, 1H), 6.63 (d, *J* =

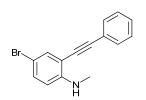
8.4 Hz, 1H), 6.68 (td, J = 7.6 Hz, 0.8 Hz, 1H), 7.25-7.29 (m, 1H), 7.38 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 26.7$, 30.4, 89.8, 94.4, 106.7, 109.3, 116.4, 128.36, 128.40, 130.8, 131.5, 132.4, 136.1, 150.1, 197.3 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆NO [M+H]⁺ 250.1232, found 250.1230.


Methyl 4-((2-(methylamino)phenyl)ethynyl)benzoate (3f)

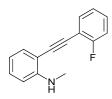
Compound **3f** was obtained as a yellow solid in 86% yield. M.p.: 179-181 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.94$ (d, J = 5.2 Hz, 3H), 3.93 (s, 3H), 4.69 (d, J = 4.8 Hz, 1H), 6.63 (d, J = 8.4 Hz, 1H), 6.68 (td, J = 7.6 Hz, 0.8 Hz, 1H), 7.25-7.29 (m, 1H), 7.38 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 7.58 (dd, J = 6.8 Hz, 2.0 Hz, 2H), 8.02 (dd, J = 6.8 Hz, 1.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.4$, 52.3, 89.4, 94.4, 106.7, 109.2, 116.4, 128.2, 129.4, 129.6, 130.7, 131.4, 132.4, 150.0, 166.6 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆NO₂ [M+H]⁺ 266.1181, found 266.1178.


N,*N*-Diethyl-4-((2-(methylamino)phenyl)ethynyl)benzamide (3g)

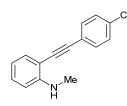
Compound **3g** was obtained as a white solid in 90% yield. M.p.: 116-118 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.12$ (s, 3H), 1.24 (s, 3H), 2.93 (s, 3H), 3.26 (s, 2H), 3.54 (s, 2H), 4.73 (br. s, 1H), 6.62 (d, J = 8.4 Hz, 1H), 6.66 (t, J = 7.6 Hz, 1H), 7.23-7.27 (m, 1H), 7.35-7.38 (m, 3H), 7.54 (d, J = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.0$, 14.3, 30.5, 39.5, 43.4, 87.4, 94.4, 107.1, 109.2, 116.4, 124.4, 126.6, 130.4, 131.5, 132.3, 136.8, 149.9, 170.7 ppm. HRMS (ESI⁺): calcd for C₂₀H₂₂N₂NaO [M+Na]⁺ 329.1630, found 329.1633.


2-((3,5-Bis(trifluoromethyl)phenyl)ethynyl)-N-methylaniline (3h)

Compound **3h** was obtained as a yellow solid in 80% yield. M.p.: 141-142 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.97$ (s, 3H), 4.67 (br. s, 1H), 6.66 (d, J = 8.4 Hz, 1H), 6.70 (t, J = 7.6 Hz, 1H), 7.29-7.33 (m, 1H), 7.40 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.82 (s, 1H), 7.95 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.4$, 90.1, 92.1, 105.9, 109.5, 116.6, 121.4-121.5 (m), 123.1 (q, J = 271.2 Hz), 125.9, 131.29, 131.33, 132.1 (q, J = 33.5 Hz), 132.7, 150.3 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.1$. HRMS (ESI⁺): calcd for C₁₇H₁₂F₆N [M+H]⁺ 344.0874, found 344.0872.

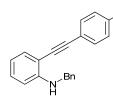

2-((3-Bromophenyl)ethynyl)-N-methylaniline (3i)

Compound **3i** was obtained as yellow liquid in 87% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.95$ (s, 3H), 4.66 (br. s, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.68 (td, J = 7.6 Hz, 0.8 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 7.25-7.29 (m, 1H), 7.37 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 7.45-7.48 (m, 2H), 7.69 (t, J = 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.5$, 87.6, 93.5, 106.8, 109.2, 116.4, 122.3, 125.5, 129.9, 130.1, 130.6, 131.3, 132.4, 134.2, 150.0 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃BrN [M+H]⁺ 286.0231, found 286.0230.


4-Bromo-N-methyl-2-(phenylethynyl)aniline (3k)

Compound **3k** was obtained as yellow liquid in 82% yield. ¹H NMR (400 MHz, CDCl₃): δ = 2.91 (s, 3H), 4.71 (br. s, 1H), 6.49 (d, *J* = 8.8 Hz, 1H), 7.32 (dd, *J* = 8.8 Hz, 2.4 Hz, 1H), 7.36-7.41 (m, 3H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.52-7.55 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 30.5, 84.7, 96.0, 107.4, 109.3, 110.6, 122.9, 128.5, 128.6, 131.6, 132.8, 134.2, 148.9 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃BrN [M+H]⁺ 286.0231, found 286.0231.

2-((2-Fluorophenyl)ethynyl)-N-methylaniline (3l)


Compound **31** was obtained as colorless liquid in 85% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.96$ (s, 3H), 4.86 (s, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.69 (t, J = 7.2 Hz, 1H), 7.11-7.17 (m, 2H), 7.26-7.35 (m, 2H), 7.41 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.53 (td, J = 7.6 Hz, 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.4$, 88.4, 91.7 (d, J = 3.3 Hz), 106.9, 109.1, 112.2 (d, J = 15.5 Hz), 115.5 (d, J = 20.9 Hz), 116.2, 124.2 (d, J = 3.6 Hz), 129.8 (d, J = 7.9 Hz), 130.5, 132.0, 132.9 (d, J = 0.9 Hz), 150.1, 162.4 (d, J = 248.8 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -110.3$. HRMS (ESI⁺): calcd for C₁₅H₁₃FN [M+H]⁺ 226.1032, found 226.1034.

2-((4-Chlorophenyl)ethynyl)-N-methylaniline (3m)

Compound **3m** was obtained as pale yellow liquid in 84% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.94$ (d, J = 1.6 Hz, 3H), 4.66 (br. s, 1H), 6.63 (d, J = 8.4 Hz, 1H), 6.68 (t, J = 7.6 Hz, 1H), 7.27 (td, J = 8.0 Hz, 1.6 Hz, 1H), 7.34 (td, J = 8.8 Hz, 2.0 Hz, 2H), 7.38 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.46 (dd, J = 8.4 Hz, 2.0 Hz, 2H) ppm. ¹³C NMR

(100 MHz, CDCl₃): δ = 30.5, 87.2, 93.9, 107.0, 109.2, 116.4, 122.0, 128.8, 130.4, 132.3, 132.8, 134.2, 149.9 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃ClN [M+H]⁺ 242.0737, found 242.0742.

N-Benzyl-2-((4-chlorophenyl)ethynyl)aniline (3n)

Compound **3n** was obtained as a pale yellow solid in 89% yield. M.p.: 64-66 °C. ¹H NMR (400 MHz, CDCl₃): δ = 4.48 (d, *J* = 4.8 Hz, 2H), 5.12 (br. s, 1H), 6.61 (d, *J* = 8.4 Hz, 1H), 6.70 (t, *J* = 7.6 Hz, 1H), 7.20 (td, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.29-7.34 (m, 3H), 7.36-7.43 (m, 7H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 47.8, 87.1, 94.3, 107.3, 110.1, 116.8, 121.9, 127.2, 127.4, 128.8, 130.4, 132.3, 132.7, 134.3, 139.2, 148.8 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₆CINNa [M+Na]⁺ 340.0869, found 340.0876.

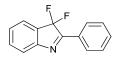
III. Ag-catalyzed tandem cyclization/difluorination of *N*-unprotected 2-alkynylanilines

i. Optimization of the aminofluorination of 2-(phenylethynyl)aniline 1a

The mixture of 2-(phenylethynyl)aniline **1a** (58 mg, 0.3 mmol), catalyst, fluorinating reagent (0.6 mmol) and solvent (3.0 mL) was stirred at the indicated temperature for 12 h under air. The reaction was then cooled to ambient temperature. The solvent was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) to provide the desired product **2a**.

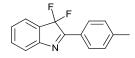
	$\begin{array}{c} & & \\$				
	1a			2a	
Entry	Catalyst (equiv)	"F"" Source	Solvent	Temp. (°C)	Yield $(\%)^b$
1	NiCl ₂ ·6H ₂ O (0.2)	NFSI	MeCN	80	0
2	CuCl (0.2)	NFSI	MeCN	80	0
3	$Cu(OAc)_2 \cdot H_2O(0.2)$	NFSI	MeCN	80	0

Table S1 Optimization of the aminofluorination of 2-(phenylethynyl)aniline $1a^{a,b}$

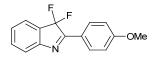

4	FeCl ₃ ·6H ₂ O (0.2)	NFSI	MeCN	80	0
5	$Ag_2CO_3(0.1)$	NFSI	MeCN	80	7
6	$Ag_2CO_3(0.1)$	NFSI	1,4-dioxane	80	81
7	$Ag_2CO_3(0.1)$	NFSI	THF	80	71
8	$Ag_2CO_3(0.1)$	NFSI	toluene	80	53
9	$Ag_2CO_3(0.1)$	NFSI	DCE	80	69
10	$Ag_2CO_3(0.1)$	NFSI	EtOH	80	30
11	$Ag_2CO_3(0.1)$	NFSI	DMF	80	trace
12	$Ag_2CO_3(0.1)$	NFSI	1,4-dioxane	60	81
13	$Ag_2CO_3(0.1)$	NFSI	1,4-dioxane	r. t.	41
14 ^c	$Ag_2CO_3(0.1)$	NFSI	1,4-dioxane	60	68
15	$Ag_2CO_3(0.1)$	Selectfluor	1,4-dioxane	60	N. D. ^{<i>d</i>}
16	$Ag_2CO_3(0.1)$	None	1,4-dioxane	60	N. D. ^{<i>e</i>}
17	Ag ₂ CO ₃ (0.05)	NFSI	1,4-dioxane	60	70
18	AgNO ₃ (0.1)	NFSI	1,4-dioxane	60	67
19	AgOAc (0.1)	NFSI	1,4-dioxane	60	63
20	AgOTs (0.1)	NFSI	1,4-dioxane	60	62
21 ^{<i>f</i>}	Ag ₂ CO ₃ (0.1)	NFSI	1,4-dioxane	60	89
~		-			

^{*a*} Reaction conditions: **1a** (0.3 mmol, 1.0 equiv), catalyst, fluorinating reagent (2.0 equiv), and solvent (3.0 mL) at the indicated temperature for 12 h under air. ^{*b*} Isolated yield. ^{*c*} NFSI (3.0 equiv) was used. ^{*d*} 2-Phenyl-1*H*-indole was obtained in 49% NMR yield. ^{*e*} 2-Phenyl-1*H*-indole was obtained in 71% NMR yield. ^{*f*} 1.0 equiv of 2,6-di-*tert*-butyl-4-methylphenol was added. N. D. = not detected, NFSI = *N*-fluorobenzenesulfonimide, AgOTs = silver *p*-toluenesulfonate, THF = tetrahydrofuran, DCE = 1,2-dichloroethane, DMF = *N*,*N*-dimethylformamide.

ii. General procedure for the Ag-catalyzed tandem cyclization/fluorination of *N*-unprotected 2-alkynylanilines 1

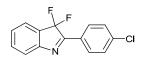

A tube with a magnetic stir bar was charged with Ag_2CO_3 (8.3 mg, 0.03 mmol), 2-(1-alkynyl)anilines 1 (0.3 mmol), NFSI (189 mg, 0.6 mmol) and 1,4-dioxane (3.0 mL) under air. The resulting solution was stirred at 60 °C until the reaction was complete as monitored by TLC. The solution was then cooled to ambient temperature and the solvent was evaporated. The residue was purified by column chromatography on silica gel to afford the desired product **2**.

iii. Characterization of 3,3-difluoroindoles 2

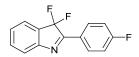

3,3-Difluoro-2-phenyl-3*H***-indole (2a)**¹³

The reaction time was 12 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) afforded **2a** as an orange solid (56 mg, 81% yield). M.p.: 52-53 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (t, *J* = 7.2 Hz, 1H), 7.49-7.60 (m, 6H), 8.23 (dd, *J* = 7.6 Hz, 0.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.1, 123.18, 123.22 (t, *J* = 254.7 Hz), 127.6 (t, *J* = 1.5 Hz), 128.7, 129.0, 129.1 (t, *J* = 24.0 Hz), 132.6, 133.4, 152.7 (t, *J* = 9.6 Hz), 169.3 (t, *J* = 24.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -116.4. HRMS (ESI⁺): calcd for C₁₄H₁₀F₂N [M+H]⁺ 230.0781, found 230.0779.

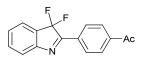
3,3-Difluoro-2-(*p*-tolyl)-**3***H*-indole (**2b**)⁶


The reaction time was 6 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 75/1, v/v) afforded **2b** as an orange solid (59 mg, 81% yield). M.p.: 84-85 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.45 (s, 3H), 7.29 (t, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.48-7.57 (m, 3H), 8.10 (d, *J* = 8.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.9, 121.9, 123.1, 123.3 (t, *J* = 254.6 Hz), 126.4 (t, *J* = 2.8 Hz), 127.4, 128.7, 129.1 (t, *J* = 24.1 Hz), 129.8, 133.4, 143.5, 152.9 (t, *J* = 9.7 Hz), 169.3 (t, *J* = 24.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -115.9. HRMS (ESI⁺): calcd for C₁₅H₁₂F₂N [M+H]⁺ 244.0938, found 244.0937.

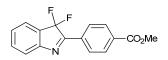
3,3-Difluoro-2-(4-methoxyphenyl)-3*H***-indole (2c)**⁶


The reaction time was 6 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1, v/v) afforded **2c** as an orange solid (47 mg, 60% yield). M.p.: 101-103 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.88 (s, 3H), 7.18 (d, *J* = 8.8 Hz, 2H), 7.36-7.39 (m, 1H), 7.57-7.64 (m, 2H), 7.74 (d, *J* = 6.8 Hz, 1H), 8.08 (d, *J* = 8.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.6, 115.0, 120.5 (t, *J* =

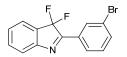
2.4 Hz), 121.6, 123.0 (t, J = 254.7 Hz), 123.4, 127.5, 127.6 (t, J = 23.6 Hz), 130.2, 134.0, 152.2 (t, J = 10.0 Hz), 163.1, 167.5 (t, J = 24.4 Hz) ppm. ¹⁹F NMR (376 MHz, DMSO): $\delta = -114.1$. HRMS (ESI⁺): calcd for C₁₅H₁₂F₂NO [M+H]⁺ 260.0887, found 260.0882.


2-(4-Chlorophenyl)-3,3-difluoro-3*H*-indole (2d)⁶

The reaction time was 12 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) afforded **2d** as an orange solid (59 mg, 75% yield). M.p.: 82-83 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.31 (td, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.49-7.53 (m, 4H), 7.57 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.2, 123.1 (t, *J* = 254.6 Hz), 123.3, 127.5 (t, *J* = 2.8 Hz), 127.8, 128.9 (t, *J* = 23.9 Hz), 129.4, 129.9, 133.5, 139.0, 152.6 (t, *J* = 9.6 Hz), 168.3 (t, *J* = 24.8 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -116.7. HRMS (ESI⁺): calcd for C₁₄H₉ClF₂N [M+H]⁺ 264.0392, found 264.0387.

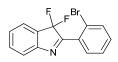

3,3-Difluoro-2-(4-fluorophenyl)-3*H*-indole (2e)

The reaction time was 12 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) afforded **2e** as an orange solid (50 mg, 67% yield). M.p.: 81-83 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.21 (t, *J* = 8.8 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.49-7.57 (m, 3H), 8.20-8.23 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 116.4 (d, *J* = 21.9 Hz), 122.1, 123.1 (t, *J* = 254.6 Hz), 123.2, 125.4 (q, *J* = 3.0 Hz), 127.6, 128.9 (t, *J* = 23.8 Hz), 131.1 (d, *J* = 8.9 Hz), 133.5, 152.7 (t, *J* = 9.7 Hz), 165.5 (d, *J* = 253.3 Hz), 168.2 (t, *J* = 25.0 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -105.4, -116.3. HRMS (ESI⁺): calcd for C₁₄H₉F₃N [M+H]⁺ 248.0687, found 248.0686.

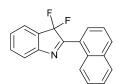

1-(4-(3,3-Difluoro-3*H*-indol-2-yl)phenyl)ethanone (2f)

The reaction time was 12 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **2f** as a pale yellow solid (61 mg, 75% yield). M.p.: 107-109 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.66 (s, 3H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 8.09 (d, *J* = 8.4 Hz, 2H), 8.28 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.9, 122.6, 123.0 (t, *J* = 254.6 Hz), 123.3, 128.3, 128.8, 129.0 (t, *J* = 24.0 Hz), 132.8 (t, *J* = 2.8 Hz), 133.6, 139.6, 152.4 (t, *J* = 9.4 Hz), 168.4 (t, *J* = 24.8 Hz), 197.5 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -117.3. HRMS (ESI⁺): calcd for C₁₆H₁₁F₂NNaO [M+Na]⁺ 294.0706, found 294.0712.

Methyl 4-(3,3-difluoro-3*H*-indol-2-yl)benzoate (2g)

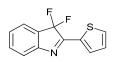

The reaction time was 12 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **2g** as an orange solid (60 mg, 70% yield). M.p.: 109-110 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.96 (s, 3H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.57-7.59 (m, 2H), 8.17 (d, *J* = 8.8 Hz, 2H), 8.26 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.6, 122.5, 123.0 (t, *J* = 254.8 Hz), 123.3, 128.2, 128.5, 129.0 (t, *J* = 23.9 Hz), 130.1, 132.8 (t, *J* = 2.6 Hz), 133.3, 133.6, 152.4 (t, *J* = 9.5 Hz), 166.4, 168.5 (t, *J* = 24.9 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -117.3. HRMS (ESI⁺): calcd for C₁₆H₁₁F₂NNaO₂ [M+Na]⁺ 310.0656, found 310.0664.

2-(3-Bromophenyl)-3,3-difluoro-3*H*-indole (2h)⁶

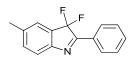

The reaction time was 12 h. Purification by column chromatography on silica gel

(petroleum ether/ethyl acetate = 80/1, v/v) afforded **2h** as a yellow solid (69 mg, 75% yield). M.p.: 157-158 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.32 (td, *J* = 7.2 Hz, 1.2 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.50-7.58 (m, 3H), 7.69 (dd, *J* = 8.0 Hz, 0.8 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.36 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.4, 122.9 (t, *J* = 254.8 Hz), 123.25, 123.29, 127.2 (t, *J* = 1.4 Hz), 128.1, 128.9 (t, *J* = 23.9 Hz), 130.5, 130.9 (t, *J* = 2.8 Hz), 131.3, 133.5, 135.4, 152.3 (t, *J* = 9.4 Hz), 168.0 (t, *J* = 24.9 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -117.0. HRMS (ESI⁺): calcd for C₁₄H₉BrF₂N [M+H]⁺ 307.9886, found 307.9882.

2-(2-Bromophenyl)-3,3-difluoro-3*H*-indole (2i)


The reaction time was 6 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) afforded **2i** as yellow liquid (58 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.33-7.38 (m, 2H), 7.45 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.52-7.58 (m, 2H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.7, 122.87, 122.92 (t, *J* = 255.6 Hz), 123.3, 127.4, 128.1, 128.3, 128.4, 130.5 (t, *J* = 3.1 Hz), 132.0, 133.5, 134.8, 152.2 (t, *J* = 9.4 Hz), 169.2 (t, *J* = 24.8 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -119.9. HRMS (ESI⁺): calcd for C₁₄H₉BrF₂N [M+H]⁺ 307.9886, found 307.9882.

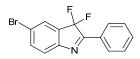
3,3-Difluoro-2-(naphthalen-1-yl)-3*H***-indole (2j)**⁶


The reaction time was 12 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) afforded **2j** as an orange solid (60 mg, 72% yield). M.p.: 111-112 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.35 (t, *J* = 7.6 Hz, 1H), 7.55-7.65 (m, 4H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.74 (dd, *J* = 7.2 Hz, 1.2 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 8.40 (d, *J* = 7.6 Hz, 1H), 9.66 (d, *J* = 8.8 Hz,

1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 122.3$, 123.0, 124.2 (t, J = 256.6 Hz), 124.9, 125.2 (t, J = 2.6 Hz), 126.6, 127.1, 127.7, 128.3 (t, J = 24.4 Hz), 128.4, 129.0, 130.7 (t, J = 4.9 Hz), 132.0, 133.4, 133.5, 134.4, 152.9 (t, J = 10.0 Hz), 169.6 (t, J = 23.2 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -112.7$. HRMS (ESI⁺): calcd for C₁₈H₁₂F₂N [M+H]⁺ 280.0938, found 280.0940.

3,3-Difluoro-2-(thiophen-2-yl)-3*H*-indole (2k)

The reaction time was 12 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) afforded **2k** as a yellow solid (61 mg, 86% yield). M.p.: 122-124 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.22-7.25 (m, 1H), 7.27-7.31 (m, 1H), 7.48-7.52 (m, 2H), 7.56 (d, *J* = 7.2 Hz, 1H), 7.67 (d, *J* = 5.2 Hz, 1H), 7.87-7.88 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 121.9, 122.5 (t, *J* = 254.8 Hz), 123.3, 127.3, 128.4 (t, *J* = 23.6 Hz), 128.8, 132.7, 133.0 (t, *J* = 1.8 Hz), 133.2 (t, *J* = 3.0 Hz), 133.6, 153.2 (t, *J* = 9.5 Hz), 164.7 (t, *J* = 25.7 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -115.0. HRMS (ESI⁺): calcd for C₁₂H₈F₂NS [M+H]⁺ 236.0346, found 236.0342.



3,3-Difluoro-5-methyl-2-phenyl-3*H*-indole (21)

The reaction time was 12 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 80/1, v/v) afforded **21** as a pink solid (55 mg, 75% yield). M.p.: 139-140 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.42 (s, 3H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.39 (s, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.50-7.58 (m, 3H), 8.19 (d, *J* = 7.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.5, 121.7, 123.3 (t, *J* = 254.7 Hz), 124.0, 128.5, 129.0, 129.18-129.24 (m), 132.4, 133.6, 138.0, 150.4 (t, *J* = 9.6 Hz), 168.6 (t, *J* = 24.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -116.1. HRMS (ESI⁺): calcd for C₁₅H₁₂F₂N [M+H]⁺ 244.0938, found 244.0935.

5-Chloro-3,3-difluoro-2-phenyl-3H-indole (2m)

The reaction was stirred at 100 °C for 2 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **2m** as an orange solid (52 mg, 66% yield). M.p.: 71-72 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.45-7.61 (m, 6H), 8.18 (d, *J* = 7.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.7 (t, *J* = 256.2 Hz), 123.0, 123.9, 128.7, 129.1, 130.6 (t, *J* = 24.2 Hz), 132.9, 133.3, 133.5 (t, *J* = 1.6 Hz), 151.2 (t, *J* = 9.4 Hz), 169.5 (t, *J* = 24.4 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -116.0. HRMS (ESI⁺): calcd for C₁₄H₉ClF₂N [M+H]⁺ 264.0392, found 264.0390.

5-Bromo-3,3-difluoro-2-phenyl-3*H*-indole (2n)

The reaction was stirred at 100 °C for 2 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 100/1, v/v) afforded **2n** as a yellow solid (65 mg, 70% yield). M.p.: 216-218 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.41 (d, *J* = 8.4 Hz, 1H), 7.53 (t, *J* = 7.2 Hz, 2H), 7.58-7.61 (m, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 1.6 Hz, 1H), 8.18 (d, *J* = 7.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 121.1 (t, *J* = 1.8 Hz), 122.7 (t, *J* = 256.3 Hz), 123.4, 126.7, 128.7, 128.8, 129.1, 130.9 (t, *J* = 24.2 Hz), 133.0, 136.3, 151.6 (t, *J* = 9.4 Hz), 169.4 (t, *J* = 24.3 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -115.9. HRMS (ESI⁺): calcd for C₁₄H₉BrF₂N [M+H]⁺ 307.9886, found 307.9889.

IV. Ag-catalyzed one-pot synthesis of 3,3-difluoroindolin-2-ols

i. Optimization of the Ag-catalyzed cycilzation of 2-alkynylanilines

A mixture of *N*-methyl-2-(phenylethynyl)aniline **3a** (41 mg, 0.2 mmol), catalyst, and solvent (1.0 mL) was stirred at the indicated temperature under an air atmosphere.

After the completion of the reaction as monitored by TLC, the solution was cooled to ambient temperature. The solvent was evaporated and the residue was analyzed by crude ¹H NMR with mesitylene as the internal standard.

	Ja Sa	Catalyst Solvent, Temp., ⊺	Fime 4	Ph	
Entry	Catalyst (equiv)	Solvent	Temp. (°C)	Time (h)	Yield $(\%)^b$
1	AgOTf (0.1)	toluene	110	2	67
2	$\operatorname{AgOTf}(0.1)$	1,4-dioxane	110	2	34
3	AgOTf(0.1)	THF	110	2	63
4	$\operatorname{AgOTf}(0.1)$	EtOH	110	2	68
5	$\operatorname{AgOTf}(0.1)$	DCE	110	2	84
6	$\operatorname{AgOTf}(0.1)$	MeCN	110	2	92
7	AgOAc (0.1)	MeCN	110	2	90
8	$Ag_2CO_3(0.05)$	MeCN	110	2	22
9	$AgSbF_{6}(0.1)$	MeCN	110	2	84
10	AgNO ₃ (0.1)	MeCN	110	2	$90(97)^{c}$
11	AgNO ₃ (0.1)	MeCN	80	8	90 (99) ^c

Table S2 Optimization of the Ag-catalyzed cycilzation of N-methyl-2-(phenylethynyl)aniline $3a^{a}$

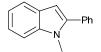
∠Ph

^{*a*} Reaction conditions: **3a** (0.2 mmol), catalyst, and solvent (1.0 mL) under air. ^{*b*} NMR yield with mesitylene as the internal standard. ^{*c*} Isolated yields are given in the parentheses. AgOTf = silver trifluoromethanesulfonate, AgSbF₆ = silver hexafluoroantimonate, THF = tetrahydrofuran, DCE = 1,2-dichloroethane.

ii. Optimization of the Ag-catalyzed one-pot synthesis of 3,3-difluoroindolin-2-ols

A mixture of *N*-methyl-2-(phenylethynyl)aniline **3a** (62 mg, 0.3 mmol), AgNO₃ (5.1 mg, 0.03 mmol), and MeCN (1.5 mL) was stirred at 80 °C for 8 h under an air atmosphere. The reaction solution was then cooled to 0 °C, and successively added base (0.3 mmol), Selectfluor (212 mg, 0.6 mmol) and H₂O (16.2 μ L, 0.9 mmol). After being stirred at 0 °C for 1 h, the reaction mixture was added Et₃N (0.5 mL). The solvent was then evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 10/1/0.03, v/v/v) to afford the desired products **4a**.

 Table S3 Optimization of the Ag-catalyzed one-pot cyclization/difluorohydroxylation of N

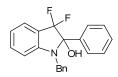

 methyl-2-(1-alkynyl)anilines 3a

//	Ph			F	
	1) 10 mo	1) 10 mol% AgNO ₃ , MeCN, 80 °C, 8 h			
N N	2) Select	2) Selectfluor, Base, H ₂ O, 0 °C, 1 h			
3a ^H				4a [\]	
	Entry Ba	Daga	Isolated		
		Dase	Yield (%)		
	1	NaHCO ₃	79		
	2	Na ₂ CO ₃	73		
	3	K_2CO_3	52		
	4	K ₃ PO ₄	61		
	5	None	91		

iii. General procedure for the Ag-catalyzed one-pot synthesis of 3,3-difluoroindolin-2-ols

A mixture of *N*-substituted-2-(1-alkynyl)aniline **3** (0.3 mmol), AgNO₃ (5.1 mg, 0.03 mmol), and MeCN (1.5 mL) was stirred at 80 °C under an air atmosphere. After the completion of the reaction as monitored by TLC, the reaction solution was cooled to 0 °C, and successively added Selectfluor (212 mg, 0.6 mmol) and H₂O (16.2 μ L, 0.9 mmol) under air. After being stirred at 0 °C for 0.5-2 h, the reaction mixture was added Et₃N (0.5 mL). The solvent was evaporated and the residue was purified by column chromatography on silica gel to afford the desired product **4**.

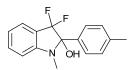
iv. Characterization of products 4' and 4



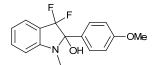
1-Methyl-2-phenyl-1*H*-indole (4')

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 50/1, v/v) afforded **4'** as a white solid in 99% yield. M.p.: 99-100 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.79 (s, 3H), 6.63 (t, *J* = 0.8 Hz, 1H), 7.19-7.23 (m, 1H), 7.31 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 6.4 Hz, 1H), 7.50-7.58 (m, 4H), 7.70 (dd, *J* = 7.6 Hz, 0.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.3, 101.8, 109.7, 120.0, 120.6, 121.8, 128.0, 128.1, 128.6, 129.5, 133.0, 138.5, 141.7 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₄N [M+H]⁺ 208.1126, found 208.1125.

3,3-Difluoro-1-methyl-2-phenylindolin-2-ol (4a)¹³

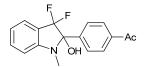

The reaction time of the cyclization and difluorohydroxylation was 8 h and 1 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 10/1/0.03, v/v/v) afforded **4a** as a yellow solid (71 mg, 91% yield). M.p.: >110 °C (dec.). ¹H NMR (400 MHz, CDCl₃): δ = 2.72 (s, 3H), 3.15 (s, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 6.88 (t, *J* = 7.6 Hz, 1H), 7.40-7.46 (m, 5H), 7.55-7.56 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.4, 96.3 (dd, *J* = 31.0 Hz, 22.2 Hz), 107.9, 119.0, 119.8 (t, *J* = 25.1 Hz), 123.2 (t, *J* = 250.5 Hz), 124.6, 127.7, 128.4, 129.2, 133.7, 134.6 (d, *J* = 2.0 Hz), 151.4 (t, *J* = 6.8 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -111.0 (d, *J* = 250.0 Hz), -98.5 (d, *J* = 250.0 Hz). HRMS (ESI⁺): calcd for C₁₅H₁₄F₂NO [M+H]⁺ 262.1043, found 262.1042.

1-Benzyl-3,3-difluoro-2-phenylindolin-2-ol (4b)¹³

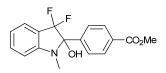

The reaction time of the cyclization and difluorohydroxylation was 12 h and 0.5 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 10/1/0.03, v/v/v) afforded **4b** as a yellow solid (81 mg, 80% yield). M.p.: 102-104 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.39 (s, 1H), 4.28 (d, *J* = 3.6 Hz, 2H), 6.46 (d, *J* = 8.0 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 7.29-7.42 (m, 9H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.61-7.63 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 48.1, 97.0 (dd, *J* = 30.0 Hz, 22.3 Hz), 109.0, 119.4, 120.2 (t, *J* = 25.0 Hz), 123.1 (dd, *J* = 251.9 Hz, 249.2 Hz), 124.5, 126.8, 127.2, 127.6, 128.4, 128.8, 129.2, 133.5, 134.9 (d, *J* = 2.6 Hz), 138.1, 150.9 (t, *J* = 6.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -107.3 (dd, *J* = 248.9 Hz, 6.8 Hz), -101.9 (dd, *J* = 248.9 Hz, 13.9 Hz). HRMS (ESI⁺):

calcd for $C_{21}H_{18}F_2NO [M+H]^+$ 338.1356, found 338.1350.

3,3-Difluoro-1-methyl-2-(*p***-tolyl)indolin-2-ol** (**4c**)¹³

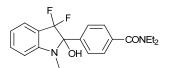

The reaction time of the cyclization and difluorohydroxylation was 8 h and 1 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 10/1/0.03, v/v/v) afforded **4c** as a yellow solid (69 mg, 84% yield). M.p.: 103-104 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.40 (s, 3H), 2.72 (s, 3H), 3.14 (s, 1H), 6.67 (d, *J* = 7.6 Hz, 1H), 6.88 (t, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.41-7.46 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.3, 28.4, 96.3 (dd, *J* = 31.2 Hz, 22.1 Hz), 107.8, 118.9, 119.9 (t, *J* = 25.0 Hz), 123.2 (t, *J* = 250.4 Hz), 124.5, 127.6, 129.2, 131.6 (d, *J* = 2.5 Hz), 133.6, 139.0, 151.4 (t, *J* = 6.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -111.6 (d, *J* = 249.7 Hz), -98.4 (d, *J* = 249.7 Hz). HRMS (ESI⁺): calcd for C₁₆H₁₅F₂NNaO [M+Na]⁺ 298.1019, found 298.1019.

3,3-Difluoro-2-(4-methoxyphenyl)-1-methylindolin-2-ol (4d)¹³

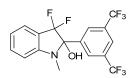

The reaction time of the cyclization and difluorohydroxylation was 8 h and 0.5 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 8/1/0.03, v/v/v) afforded **4d** as yellow liquid (67 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.70 (s, 3H), 3.13 (s, 1H), 3.82 (s, 3H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.86 (t, *J* = 7.6 Hz, 1H), 6.90-6.94 (m, 2H), 7.39-7.46 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.3, 55.4, 96.2 (dd, *J* = 31.2 Hz, 22.0 Hz), 107.9, 113.8, 119.0 (d, *J* = 1.7 Hz), 119.9 (t, *J* = 25.0 Hz), 123.2 (t, *J* = 250.2 Hz), 124.6, 126.5 (d, *J* = 2.6 Hz), 129.0 (d, *J* = 1.0 Hz), 133.6, 151.4 (dd, *J* = 7.2 Hz, 5.9 Hz), 160.3 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -112.3 (d, *J* = 249.3 Hz), -98.1 (d,

J = 249.7 Hz). HRMS (ESI⁺): calcd for $C_{16}H_{16}F_2NO_2$ [M+H]⁺ 292.1149, found 292.1143.

1-(4-(3,3-Difluoro-2-hydroxy-1-methylindolin-2-yl)phenyl)ethanone (4e)

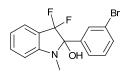

The reaction time of the cyclization and difluorohydroxylation was 16 h and 1 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 4/1/0.03, v/v/v) afforded **4e** as a pale yellow solid (71 mg, 78% yield). M.p.: >138 °C (dec.). ¹H NMR (400 MHz, CDCl₃): δ = 2.59 (s, 3H), 2.69 (s, 3H), 3.44 (s, 1H), 6.66 (d, *J* = 8.0 Hz, 1H), 6.87 (t, *J* = 7.6 Hz, 1H), 7.40-7.44 (m, 2H), 7. 64 (d, *J* = 8.4 Hz, 2H), 7.95 (d, *J* = 8.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.8, 28.4, 96.0 (dd, *J* = 31.2 Hz, 22.2 Hz), 108.0, 119.3 (t, *J* = 1.7 Hz), 119.5 (t, *J* = 25.0 Hz), 123.2 (t, *J* = 251.2 Hz), 124.6, 128.1 (d, *J* = 1.4 Hz), 128.4, 133.8, 137.7, 140.0 (d, *J* = 2.6 Hz), 151.2 (dd, *J* = 7.3 Hz, 6.0 Hz), 198.1 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -109.9 (d, *J* = 250.8 Hz), -98.1 (d, *J* = 250.8 Hz). HRMS (ESI⁺): calcd for C₁₇H₁₅F₂NNaO₂ [M+Na]⁺ 326.0969, found 326.0969.

Methyl 4-(3,3-difluoro-2-hydroxy-1-methylindolin-2-yl)benzoate (4f)

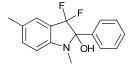

The reaction time of the cyclization and difluorohydroxylation was 12 h and 1 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 5/1/0.03, v/v/v) afforded **4f** as a pale yellow solid (79 mg, 82% yield). M.p.: >140 °C (dec.). ¹H NMR (400 MHz, CDCl₃): δ = 2.69 (s, 3H), 3.42 (s, 1H), 3.90 (s, 3H), 6.66 (d, *J* = 8.0 Hz, 1H), 6.87 (t, *J* = 7.6 Hz, 1H), 7.40-7.44 (m, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 8.04 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.4, 52.3, 96.0 (dd, *J* = 31.2 Hz, 22.2 Hz), 108.0, 119.2 (d, *J* = 1.7 Hz),

119.5 (t, J = 25.0 Hz), 123.2 (t, J = 251.2 Hz), 124.6, 127.8 (d, J = 1.3 Hz), 129.6, 130.8, 133.8, 139.8 (d, J = 2.8 Hz), 151.2 (dd, J = 7.2 Hz, 6.2 Hz), 166.9 ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -110.3$ (d, J = 250.4 Hz), -97.7 (d, J = 250.8 Hz). HRMS (ESI⁺): calcd for C₁₇H₁₅F₂NNaO₃ [M+Na]⁺ 342.0918, found 342.0915.

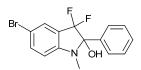
4-(3,3-Difluoro-2-hydroxy-1-methylindolin-2-yl)-N,N-diethylbenzamide (4g)


The reaction time of the cyclization and difluorohydroxylation was 12 h and 1 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 2/1/0.03, v/v/v) afforded **4g** as a pale yellow solid (79 mg, 73% yield). M.p.: >145 °C (dec.). ¹H NMR (400 MHz, CDCl₃): δ = 1.08 (s, 3H), 1.20 (s, 3H), 2.61 (s, 3H), 3.23 (s, 2H), 3.50 (s, 2H), 4.25 (s, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 6.83 (t, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.36-7.40 (m, 2H), 7.53 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 12.8, 14.2, 28.2, 39.3, 43.3, 95.9 (dd, *J* = 31.5 Hz, 21.8 Hz), 107.9, 118.8, 119.8 (t, *J* = 24.9 Hz), 123.1 (dd, *J* = 251.6 Hz, 250.2 Hz), 124.3, 126.2, 127.8, 133.4, 136.2 (d, *J* = 2.4 Hz), 137.4, 151.4 (t, *J* = 6.6 Hz), 171.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -111.4 (d, *J* = 249.7 Hz), -97.5 (d, *J* = 249.7 Hz). HRMS (ESI⁺): calcd for C₂₀H₂₃F₂N₂O₂ [M+H]⁺ 361.1728, found 361.1724.

2-(3,5-Bis(trifluoromethyl)phenyl)-3,3-difluoro-1-methylindolin-2-ol (4h)


The reaction time of the cyclization and difluorohydroxylation was 16 h and 2 h, respectively. NaHCO₃ (25 mg, 0.3 mmol) was added to the reaction mixture after the cyzlization reaction. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 10/1/0.03, v/v/v) afforded **4h** as yellow liquid (93 mg, 78%)

yield). Product **4h** was obtained in 57% yield in the absence of NaHCO₃. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.72$ (s, 3H), 3.47 (br. s, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 7.47-7.50 (m, 2H), 7.96 (s, 1H), 8.09 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 28.4$, 95.7 (dd, J = 31.6 Hz, 22.4 Hz), 108.7, 119.1 (t, J = 24.9 Hz), 120.0, 122.1, 123.1 (t, J = 251.8 Hz), 123.3-123.5 (m), 124.8, 128.5, 132.0 (q, J = 33.3 Hz), 134.2, 138.0 (d, J = 2.6 Hz), 151.1 (dd, J = 7.6 Hz, 5.8 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -113.5$ (d, J = 251.5 Hz), -94.3 (d, J = 251.9 Hz), -62.9. HRMS (ESI⁺): calcd for C₁₇H₁₂F₈NO [M+H]⁺ 398.0791, found 398.0787.


2-(3-Bromophenyl)-3,3-difluoro-1-methylindolin-2-ol (4i)

The reaction time of the cyclization and difluorohydroxylation was 8 h and 1.5 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 10/1/0.03, v/v/v) afforded **4i** as yellow liquid (84 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.73 (s, 3H), 3.19 (br. s, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 6.91 (t, *J* = 7.6 Hz, 1H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.44-7.48 (m, 3H), 7.54-7.57 (m, 1H), 7.78 (t, *J* = 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.4, 95.7 (dd, *J* = 31.1 Hz, 22.2 Hz), 108.1, 119.3 (t, *J* = 1.6 Hz), 119.4 (t, *J* = 25.0 Hz), 122.7, 123.1 (t, *J* = 251.2 Hz), 124.7, 126.4 (d, *J* = 1.6 Hz), 129.9, 131.0 (d, *J* = 1.3 Hz), 132.3, 133.8 (t, *J* = 1.6 Hz), 137.1 (d, *J* = 2.7 Hz), 151.2 (dd, *J* = 7.4 Hz, 6.0 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -111.1 (d, *J* = 250.8 Hz), -97.3 (d, *J* = 250.8 Hz). HRMS (ESI⁺): calcd for C₁₅H₁₃BrF₂NO [M+H]⁺ 340.0149, found 340.0150.

3,3-Difluoro-1,5-dimethyl-2-phenylindolin-2-ol (4j)

The reaction time of the cyclization and difluorohydroxylation was 8 h and 0.5 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 10/1/0.03, v/v/v) afforded **4j** as yellow liquid (56 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.35$ (s, 3H), 2.70 (s, 3H), 3.19 (br. s, 1H), 6.61 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.30 (s, 1H), 7.42 (t, J = 3.2 Hz, 3H), 7.57-7.59 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.7$, 28.5, 96.5 (dd, J = 31.4 Hz, 22.0 Hz), 107.9, 119.9 (t, J = 24.8 Hz), 123.3 (t, J = 250.7 Hz), 124.8, 127.7, 128.3, 128.6 (t, J = 1.8 Hz), 129.1, 134.1 (t, J = 1.6 Hz), 134.7 (d, J = 2.1 Hz), 149.4 (t, J = 6.8 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -111.8$ (d, J = 249.7 Hz), -98.0 (dd, J = 249.7 Hz, 5.6 Hz). HRMS (ESI⁺): calcd for C₁₆H₁₆F₂NO [M+H]⁺ 276.1200, found 276.1197.

5-Bromo-3,3-difluoro-1-methyl-2-phenylindolin-2-ol (4k)¹³

The reaction time of the cyclization and difluorohydroxylation was 12 h and 0.5 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 10/1/0.03, v/v/v) afforded **4k** as a yellow solid (65 mg, 64% yield). M.p.: 100-101 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.69 (s, 3H), 3.19 (br. s, 1H), 6.54 (d, *J* = 8.4 Hz, 1H), 7.39-7.42 (m, 3H), 7.48-7.54 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.4, 96.4 (dd, *J* = 30.8 Hz, 21.8 Hz), 109.4, 110.2 (t, *J* = 2.0 Hz), 121.7 (t, *J* = 25.2 Hz), 122.3 (t, *J* = 251.7 Hz), 127.5 (t, *J* = 1.3 Hz), 128.5, 129.4, 134.1 (d, *J* = 2.7 Hz), 136.3, 150.4 (dd, *J* = 6.9 Hz, 5.9 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -110.6 (d, *J* = 250.4 Hz), -99.0 (d, *J* = 250.4 Hz). HRMS (ESI⁺): calcd for C₁₅H₁₃BrF₂NO [M+H]⁺ 340.0149, found 340.0151.

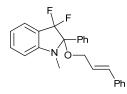
V. Ag-catalyzed one-pot synthesis of 2-alkoxy-3,3-difluoroindolines

i. General procedure for the Ag-catalyzed one-pot cyclization/ difluoroalkoxylation of 3a A flame-dried pressure tube with a magnetic stir bar was charged with AgNO₃ (5.1 mg, 0.03 mmol), *N*-methyl-2-(phenylethynyl)aniline **3a** (62 mg, 0.3 mmol) and MeCN (1.5 mL) under N₂. After being stirred at 80 °C for 8 h, the reaction solution was cooled to 0 °C. 4Å MS (150 mg), Selectfluor (212 mg, 0.6 mmol), and alcohol (1.5 mmol) were then added successively under N₂. The resulting mixture was stirred at 0 °C for 0.5-1 h and then added Et₃N (0.5 mL). The solution was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic phases were concentrated and the residue was purified by column chromatography on silica gel to afford the desired products **5**.

ii. Characterization of products 5

3,3-Difluoro-2-methoxy-1-methyl-2-phenylindoline (5a)¹³

The reaction time of the cyclization and difluoroalkoxylation was 8 h and 1 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 100/1/0.03, v/v/v) afforded **5a** as a white solid (61 mg, 74% yield). M.p.: 113-114 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.79 (s, 3H), 3.23 (s, 3H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.84 (t, *J* = 7.2 Hz, 1H), 7.39-7.44 (m, 5H), 7.53-7.56 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.8, 52.8 (d, *J* = 5.0 Hz), 98.8 (dd, *J* = 32.1 Hz, 21.4 Hz), 105.8, 118.4 (t, *J* = 1.6 Hz), 120.3 (t, *J* = 24.6 Hz), 122.9 (dd, *J* = 255.8 Hz, 248.4 Hz), 123.7, 127.9 (d, *J* = 2.2 Hz), 128.2, 128.9, 133.7 (d, *J* = 1.5 Hz), 135.5 (d, *J* = 3.4 Hz), 151.8 (dd, *J* = 7.6 Hz, 5.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -115.3 (d, *J* = 256.1 Hz), -83.8 (d, *J* = 255.7 Hz). HRMS (ESI⁺): calcd for C₁₆H₁₅F₂NNaO [M+Na]⁺ 298.1019, found 298.1020.

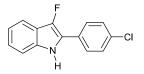

2-Ethoxy-3,3-difluoro-1-methyl-2-phenylindoline (5b)¹³

The reaction time of the cyclization and difluoroalkoxylation was 8 h and 1 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 100/1/0.03, v/v/v) afforded **5b** as a white solid (65 mg, 75% yield). M.p.: 122-124 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.24 (t, *J* = 6.8 Hz, 3H), 2.78 (s, 3H), 3.23-3.30 (m, 1H), 3.45-3.52 (m, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 7.36-7.44 (m, 5H), 7.57-7.60 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.4, 28.8, 60.4 (d, *J* = 5.0 Hz), 98.6 (dd, *J* = 32.0 Hz, 21.3 Hz), 105.8, 118.3 (d, *J* = 1.4 Hz), 120.3 (t, *J* = 24.6 Hz), 122.9 (dd, *J* = 255.8 Hz, 248.1 Hz), 123.6, 127.9 (d, *J* = 2.1 Hz), 128.2, 128.8, 133.6 (d, *J* = 1.6 Hz), 135.8 (d, *J* = 3.4 Hz), 151.8 (dd, *J* = 7.7 Hz, 5.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -115.2 (d, *J* = 254.9 Hz), -83.9 (d, *J* = 255.3 Hz). HRMS (ESI⁺): calcd for C₁₇H₁₇F₂NNaO [M+Na]⁺ 312.1176, found 312.1178.

2-(Benzyloxy)-3,3-difluoro-1-methyl-2-phenylindoline (5c)¹³

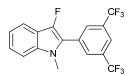
The reaction time of the cyclization and difluoroalkoxylation was 8 h and 1 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 100/1/0.03, v/v/v) afforded **5c** as a white solid (67 mg, 64% yield). M.p.: 111-113 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.81 (s, 3H), 4.33 (d, *J* = 11.6 Hz, 1H), 4.62 (d, *J* = 11.6 Hz, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 6.90 (t, *J* = 7.2 Hz, 1H), 7.29-7.50 (m, 10H), 7.63-7.64 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 29.0, 66.7 (d, *J* = 5.3 Hz), 98.9 (dd, *J* = 32.0 Hz, 21.3 Hz), 106.0, 118.6, 120.3 (t, *J* = 24.4 Hz), 123.0 (dd, *J* = 255.5 Hz, 248.9 Hz), 123.9, 127.4, 127.6, 128.0 (d, *J* = 1.9 Hz), 128.2, 128.4, 128.9, 133.8, 135.5 (d, *J* = 3.4 Hz), 138.2, 151.7 (dd, *J* = 7.4 Hz, 5.6 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -113.9 (d, *J* = 255.3 Hz), -83.9 (d, *J* = 255.7 Hz). HRMS (ESI⁺): calcd for C₂₂H₁₉F₂NNaO [M+Na]⁺ 374.1332, found 374.1332.

2-(Cinnamyloxy)-3,3-difluoro-1-methyl-2-phenylindoline (5d)¹³


The reaction time of the cyclization and difluoroalkoxylation was 8 h and 0.5 h, respectively. NaHCO₃ (25 mg, 0.3 mmol) was added to the reaction mixture after the cyzlization reaction. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/Et₃N = 100/1/0.03, v/v/v) afforded **5d** as a white solid (70 mg, 62% yield). M.p.: 98-100 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.82 (s, 3H), 3.97 (dd, *J* = 12.4 Hz, 6.0 Hz, 1H), 4.20 (dd, *J* = 12.4 Hz, 5.6 Hz, 1H), 6.30 (dt, *J* = 15.6 Hz, 5.6 Hz, 1H), 6.60 (d, *J* = 16.0 Hz, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 6.87 (t, *J* = 7.6 Hz, 1H), 7.23-7.26 (m, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.38-7.47 (m, 7H), 7.61-7.63 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 29.0, 65.5 (d, *J* = 5.2 Hz), 98.8 (dd, *J* = 32.1 Hz, 21.4 Hz), 106.0, 118.5, 120.2 (t, *J* = 24.6 Hz), 123.0 (dd, *J* = 255.5 Hz, 248.6 Hz), 123.9, 125.7, 126.6, 127.7, 127.9 (d, *J* = 2.0 Hz), 128.2, 128.7, 128.9, 131.7, 133.8 (d, *J* = 1.3 Hz), 135.5 (d, *J* = 3.5 Hz), 136.9, 151.7 (dd, *J* = 7.6 Hz, 5.7 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -113.4 (d, *J* = 255.3 Hz), -84.1 (d, *J* = 255.7 Hz). HRMS (ESI⁺): calcd for C₂₄H₂₁F₂NNaO [M+Na]⁺ 400.1489, found 400.1496.

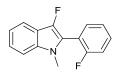
VI. Ag-catalyzed one-pot synthesis of 3-fluoroindoles

i. General procedure for the Ag-catalyzed one-pot synthesis of 3-fluoroindoles

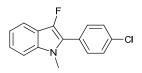

A mixture of 2-alkynylanilines **1** or **3** (0.3 mmol), AgNO₃ (5.1 mg, 0.03 mmol), and MeCN (1.5 mL) was stirred at 80 °C under an nitrogen atmosphere until the reaction was complete as monitored by TLC. The reaction solution was then cooled to room temperature, and added Selectfluor (127 mg, 0.36 mmol). After being stirred at room temperature for 6-15 h, the reaction mixture was added Et₃N (0.5 mL). The solvent was evaporated and the residue was purified by column chromatography on silica gel to afford the desired products **6**.

ii. Characterization of products 6

2-(4-Chlorophenyl)-3-fluoro-1*H*-indole (6a)⁶

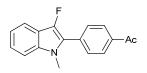

The reaction time of the cyclization and monofluorination was 30 h and 15 h, respectively. Selectfluor (138.2 mg, 0.39 mmol) was used. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 25/1, v/v) afforded **6a** as a yellow solid (42 mg, 57% yield). The difluorinated product **2d** was also obtained in 25% yield (20 mg). M.p.: 133-135 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.16 (td, *J* = 7.2 Hz, 0.8 Hz, 1H), 7. 23 (dd, *J* = 8.4 Hz, 1.2 Hz, 1H), 7.32 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 7.44 (dt, *J* = 9.2 Hz, 2.4 Hz, 2H), 7.63-7.66 (m, 3H), 7.74 (br. s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 111.5 (d, *J* = 1.4 Hz), 117.2 (d, *J* = 2.6 Hz), 118.6 (d, *J* = 2.1 Hz), 118.7, 120.7, 123.9, 126.6 (d, *J* = 5.3 Hz), 128.6 (d, *J* = 4.7 Hz), 129.4, 132.7 (d, *J* = 6.5 Hz), 133.3 (d, *J* = 1.9 Hz), 142.8 (d, *J* = 247.8 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -169.5. HRMS (ESI⁻): calcd for C₁₄H₈CIFN [M-H]⁻ 244.0329, found 244.0320.

2-(3,5-Bis(trifluoromethyl)phenyl)-3-fluoro-1-methyl-1*H*-indole (6b)

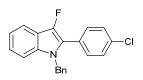

The reaction time of the cyclization and monofluorination was 16 h and 6 h, respectively. Purification by column chromatography on silica gel (petroleum ether) afforded **6b** as a white solid (62 mg, 57% yield). M.p.: 90-91 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.71$ (s, 3H), 7.21 (td, J = 8.0 Hz, 1.6 Hz, 1H), 7.33-7.39 (m, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.91 (s, 1H), 7.98 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 31.4$, 110.1 (d, J = 1.6 Hz), 116.7 (d, J = 15.7 Hz), 117.5 (d, J = 2.6 Hz), 120.5, 120.7, 121.4-121.6 (m), 123.3 (q, J = 271.2 Hz), 124.3, 129.4 (d, J = 2.1 Hz), 131.3 (d, J = 1.6 Hz) (d, J = 1.2 Hz), 124.3, 129.4 (d, J = 2.1 Hz), 131.3 (d, J = 1.6 Hz) (d, J = 1.2 Hz), 124.3, 129.4 (d, J = 2.1 Hz), 131.3 (d, J = 1.2 Hz) (d, J = 1.2 Hz), 131.3 (d, J = 1.2 Hz) (d, J = 2.1 Hz), 131.3 (d, J = 1.2 Hz) (d, J = 2.1 Hz), 131.3 (d, J = 1.2 Hz) (d, J = 2.1 Hz), 131.3 (d, J = 1.2 Hz) (d, J = 2.1 Hz), 131.3 (d, J = 1.2 Hz) (d, J = 2.1 Hz), 131.3 (d, J = 1.2 Hz) (d, J = 2.1 Hz), 131.3 (d, J = 1.2 Hz) (d, J = 2.1 Hz

3.6 Hz), 132.4 (q, J = 33.3 Hz), 135.1 (d, J = 5.8 Hz), 143.1 (d, J = 248.3 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.0$, -172.5. HRMS (ESI⁺): calcd for C₁₇H₁₁F₇N [M+H]⁺ 362.0780, found 362.0781.

3-Fluoro-2-(2-fluorophenyl)-1-methyl-1*H*-indole (6c)


The reaction time of the cyclization and monofluorination was 16 h and 6 h, respectively. Purification by column chromatography on silica gel (petroleum ether) afforded **6c** as colorless liquid (38 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.62 (s, 3H), 7.17-7.21 (m, 1H), 7.23-7.38 (m, 4H), 7.44-7.52 (m, 2H), 7.69 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 30.8 (d, *J* = 3.6 Hz), 109.7 (d, *J* = 1.6 Hz), 116.3 (d, *J* = 21.8 Hz), 116.6 (d, *J* = 15.7 Hz), 116.9 (d, *J* = 3.3 Hz), 117.0 (d, *J* = 2.6 Hz), 117.9 (d, *J* = 22.0 Hz), 119.8, 123.0, 124.5 (d, *J* = 3.6 Hz), 130.9 (d, *J* = 8.1 Hz), 132.8 (t, *J* = 2.2 Hz), 134.0 (d, *J* = 5.6 Hz), 142.3 (d, *J* = 244.0 Hz), 160.3 (d, *J* = 247.7 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -112.6 (d, *J* = 1.6 Hz), -173.4 (d, *J* = 1.6 Hz). HRMS (ESI⁺): calcd for C₁₅H₁₂F₂N [M+H]⁺ 244.0938, found 244.0940.

2-(4-Chlorophenyl)-3-fluoro-1-methyl-1*H*-indole (6d)

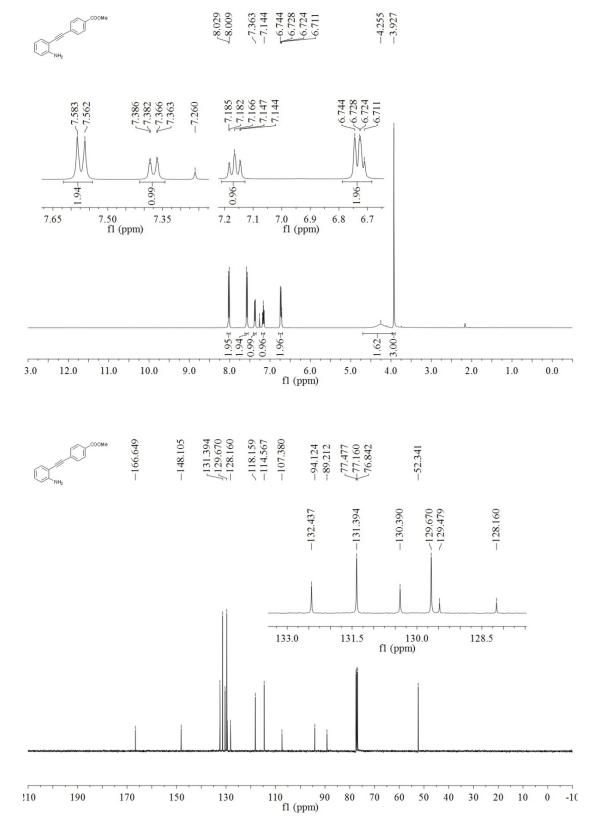

The reaction time of the cyclization and monofluorination was 12 h and 4 h, respectively. Purification by column chromatography on silica gel (petroleum ether) afforded **6d** as a white solid (45 mg, 58% yield). M.p.: 110-111 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.67 (s, 3H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.2, 109.8 (d, *J* = 1.5 Hz), 116.8 (d, *J* = 15.9 Hz), 117.0 (d, *J* = 2.5 Hz), 120.1, 122.5 (d, *J* = 20.3 Hz), 123.2, 127.5 (d, *J* =

3.4 Hz), 129.1, 131.0 (d, J = 2.0 Hz), 134.2 (d, J = 4.3 Hz), 142.0 (d, J = 244.2 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -174.8$. HRMS (ESI⁺): calcd for C₁₅H₁₂ClFN [M+H]⁺ 260.0642, found 260.0641.

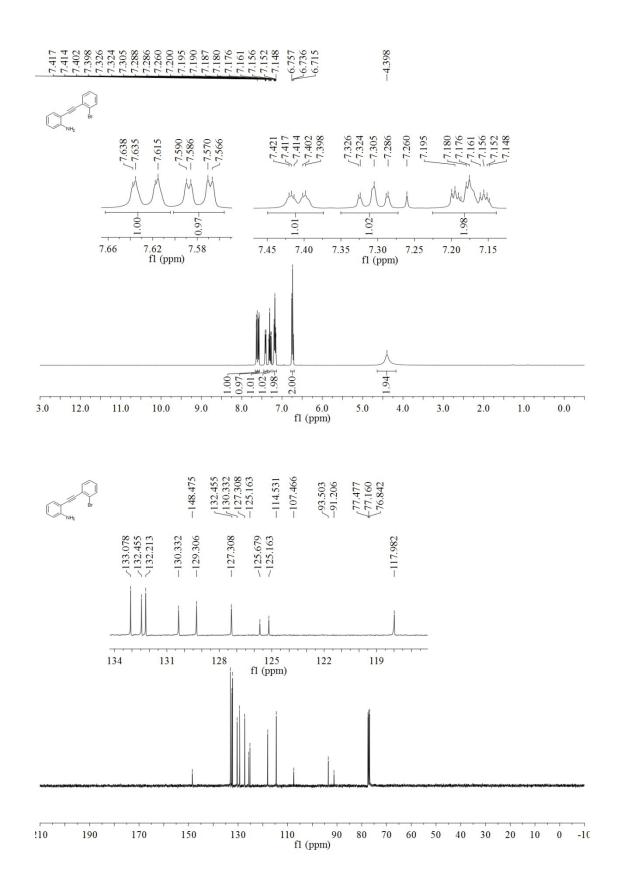
1-(4-(3-Fluoro-1-methyl-1*H*-indol-2-yl)phenyl)ethanone (6e)

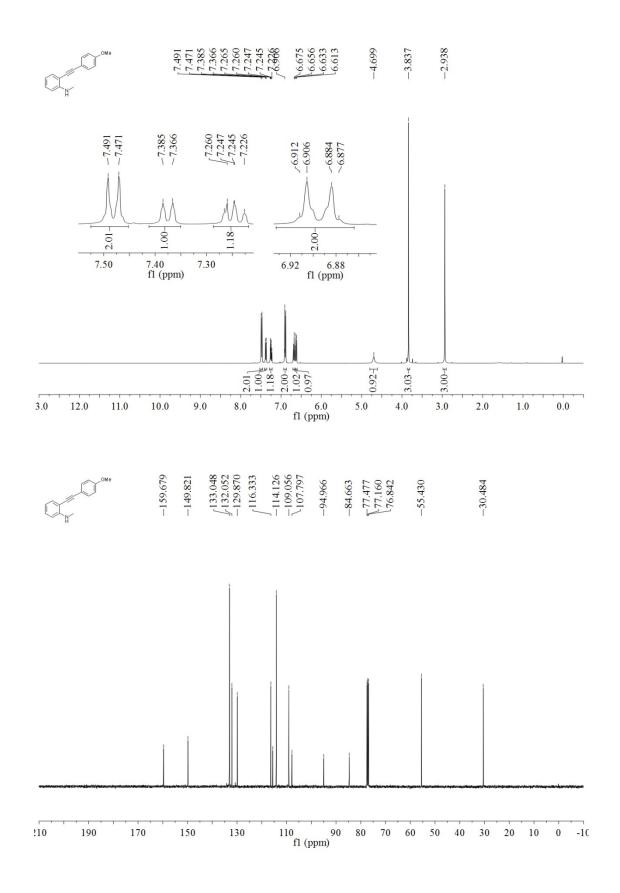
The reaction time of the cyclization and monofluorination was 16 h and 4 h, respectively. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1, v/v) afforded **6e** as a pale yellow solid (24 mg, 30% yield). M.p.: 144-145 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.66 (s, 3H), 3.71 (s, 3H), 7.19 (t, J = 7.2 Hz, 1H), 7.29-7.37 (m, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.8 Hz, 1H), 8.09 (d, J = 8.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.8, 31.5, 109.9 (d, J = 1.5 Hz), 116.8 (d, J = 15.9 Hz), 117.2 (d, J = 2.5 Hz), 120.3, 122.6 (d, J = 19.6 Hz), 123.6, 128.8, 129.6 (d, J = 2.3 Hz), 133.8 (d, J = 3.6 Hz), 134.8 (d, J = 5.8 Hz), 136.1, 142.7 (d, J = 246.7 Hz), 197.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -172.9. HRMS (ESI⁺): calcd for C₁₇H₁₄FNNaO [M+Na]⁺ 290.0957, found 290.0961.

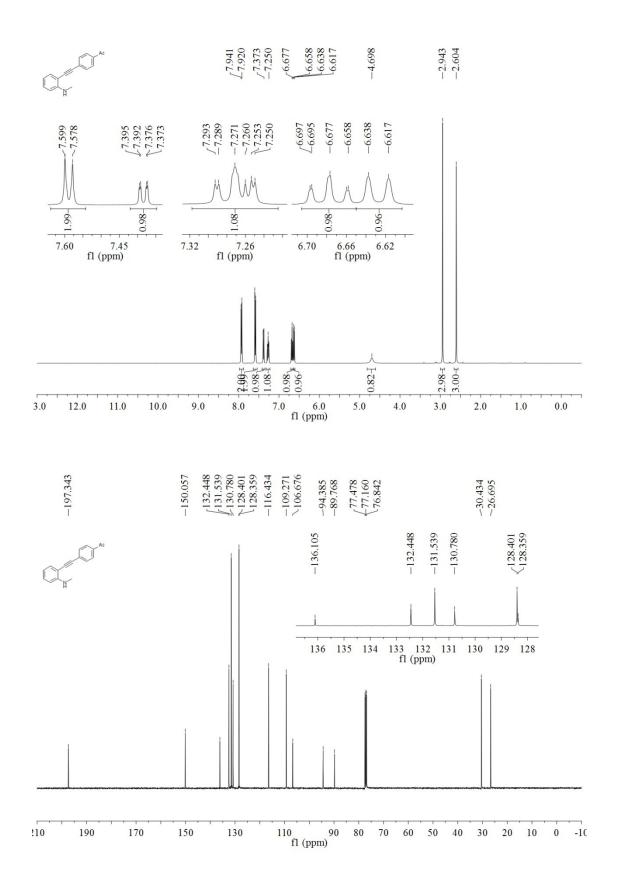
1-Benzyl-2-(4-chlorophenyl)-3-fluoro-1*H*-indole (6f)

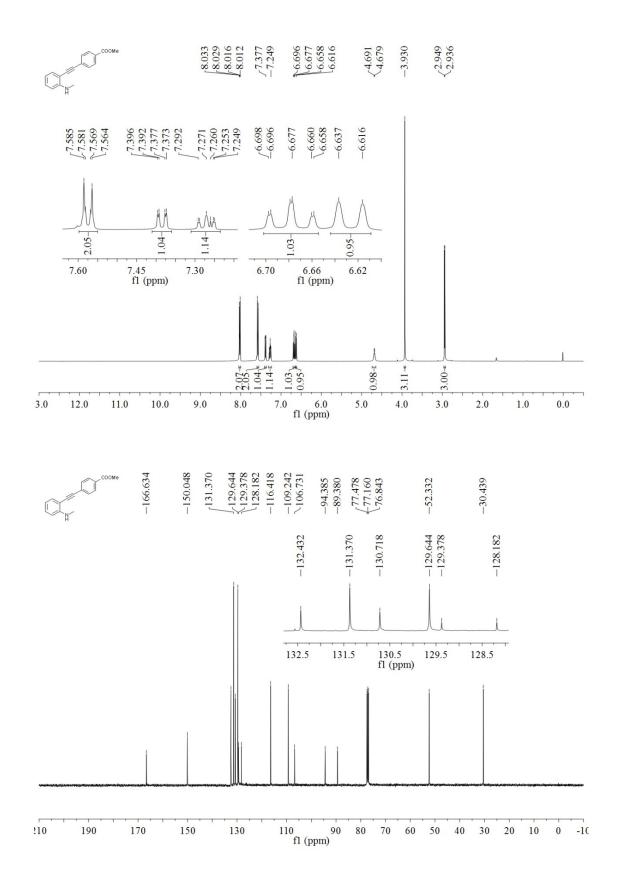

The reaction time of the cyclization and monofluorination was 16 h and 10 h, respectively. Purification by column chromatography on silica gel (petroleum ether) afforded **6f** as pale yellow liquid (45 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃): δ = 5.28 (s, 2H), 7.01 (dd, J = 8.4 Hz, 1.6 Hz, 2H), 7.17-7.22 (m, 3H), 7.27-7.32 (m, 3H), 7.37-7.42 (m, 4H), 7.69-7.71 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 47.7, 110.6 (d, J = 1.5 Hz), 117.1 (d, J = 2.5 Hz), 117.4 (d, J = 16.1 Hz), 120.5, 122.6 (d, J = 20.3 Hz), 123.4, 126.0, 127.4 (d, J = 3.5 Hz), 127.6, 129.0, 129.1, 130.9 (d, J =

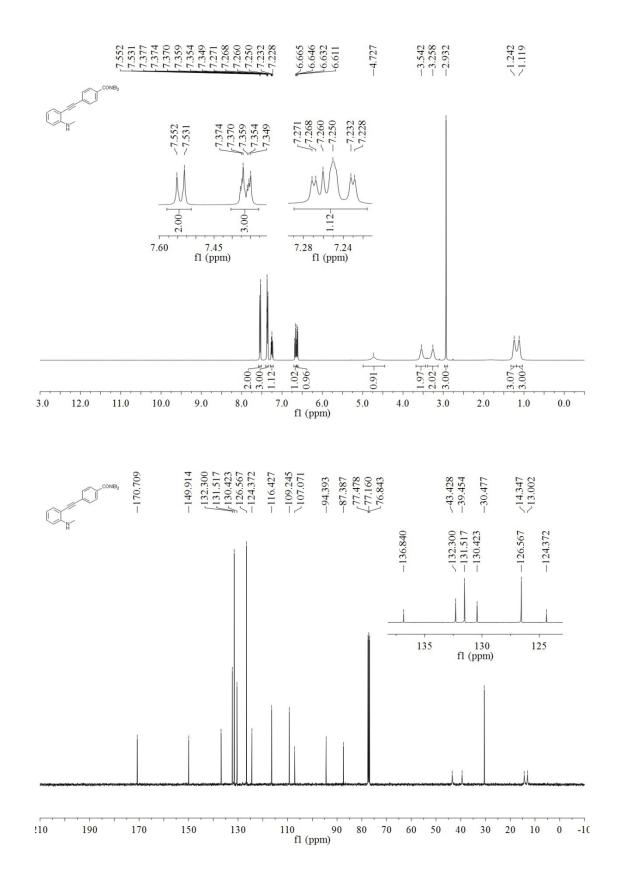
2.0 Hz), 134.0 (d, J = 5.8 Hz), 134.4, 137.8, 142.3 (d, J = 244.9 Hz) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -174.0$. HRMS (ESI⁺): calcd for C₂₁H₁₅ClFNNa [M+Na]⁺ 358.0775, found 358.0772.


VII. References

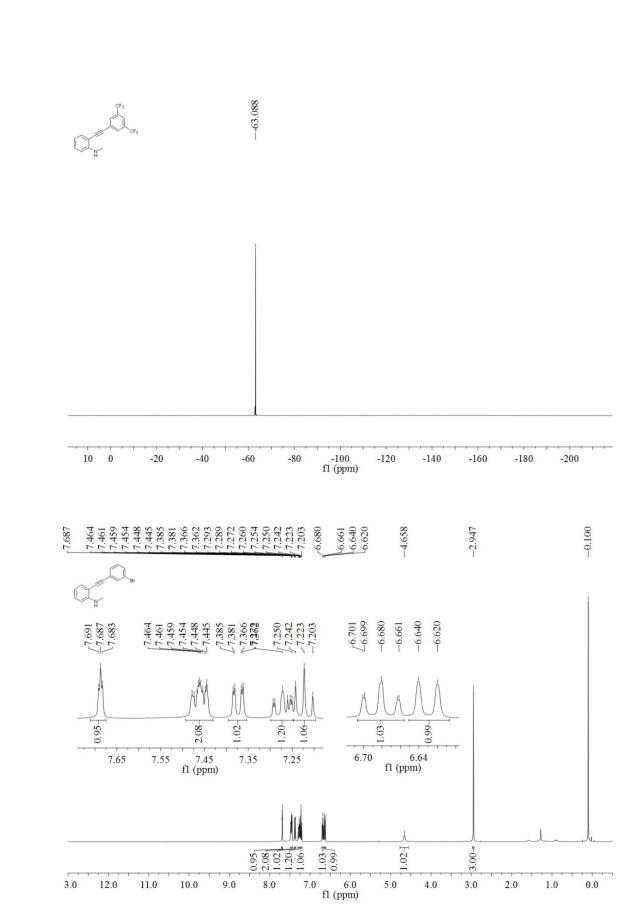

- (1) P. D. Woodgate and H. S. Sutherland, J. Organomet. Chem., 2001, 629, 131.
- (2) B.-X. Tang, R.-J. Song, C.-Y. Wu, Z.-Q. Wang, Y. Liu, X.-C. Huang, Y.-X. Xie and J.-H. Li, *Chem. Sci.*, 2011, **2**, 2131.
- (3) C. Peng, Y. Wang, L. Liu, H. Wang, J. Zhao and Q. Zhu, *Eur. J. Org. Chem.*, 2010, 818.
- (4) N. K. Swamy, A. Yazici and S. G. Pyne, J. Org. Chem., 2010, 75, 3412.
- (5) M. Alajarin, C. Lopez-Leonardo, P. Llamas-Lorente, R. Raja, D. Bautista and R.-A. Orenes, *Dalton Trans.*, 2012, **41**, 12259.
- (6) A. Arcadi, E. Pietropaolo, A. Alvino and V. Michelet, Org. Lett., 2013, 15, 2766.
- (7) T. Ishida, S. Kikuchi and T. Yamada, Org. Lett., 2013, 15, 3710.
- (8) C. Koradin, W. Dohle, A. L. Rodriguez, B. Schmid and P. Knochel, *Tetrahedron*, 2003, **59**, 1571.
- (9) K. Hiroya, S. Itoh and T. Sakamoto, J. Org. Chem., 2004, 69, 1126.
- (10) T. Ishida, S. Kikuchi, T. Tsubo and T. Yamada, Org. Lett., 2013, 15, 848.
- (11) M. Nakamura, L. Ilies, S. Otsubo and E. Nakamura, *Angew. Chem. Int. Ed.*, 2006, **45**, 944.
- (12) R. Álvarez, C. Martínez, Y. Madich, J. G. Denis, J. M. Aurrecoechea and Á. R. de Lera, *Chem.-Eur. J.*, 2010, **16**, 12746.
- (13) R. Lin, S. Ding, Z. Shi and N. Jiao, Org. Lett., 2011, 13, 4498.

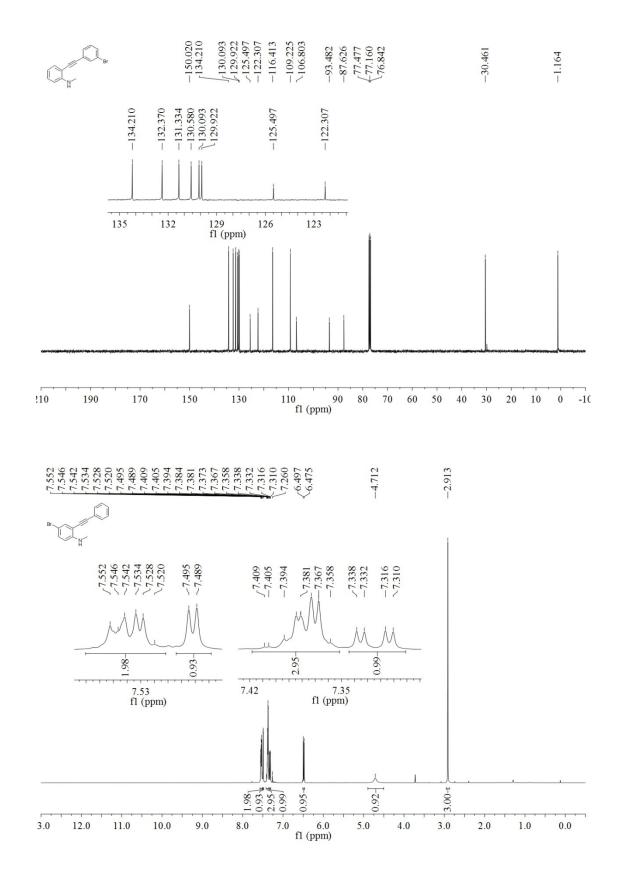

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

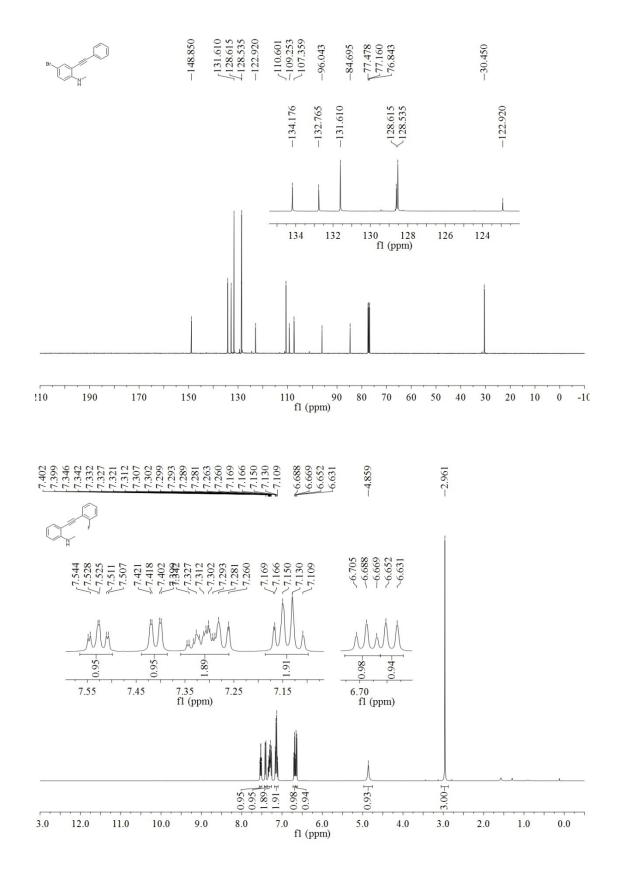


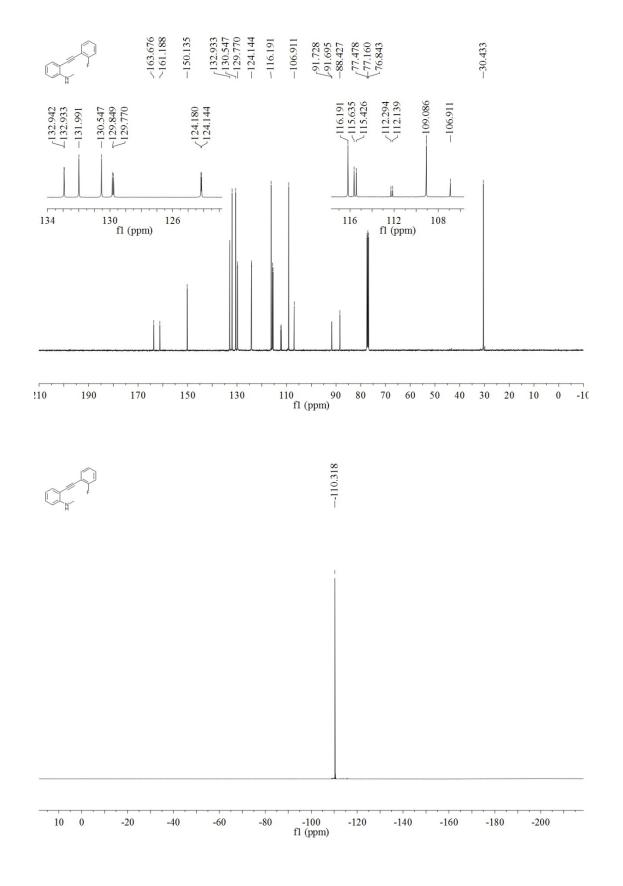

VIII. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

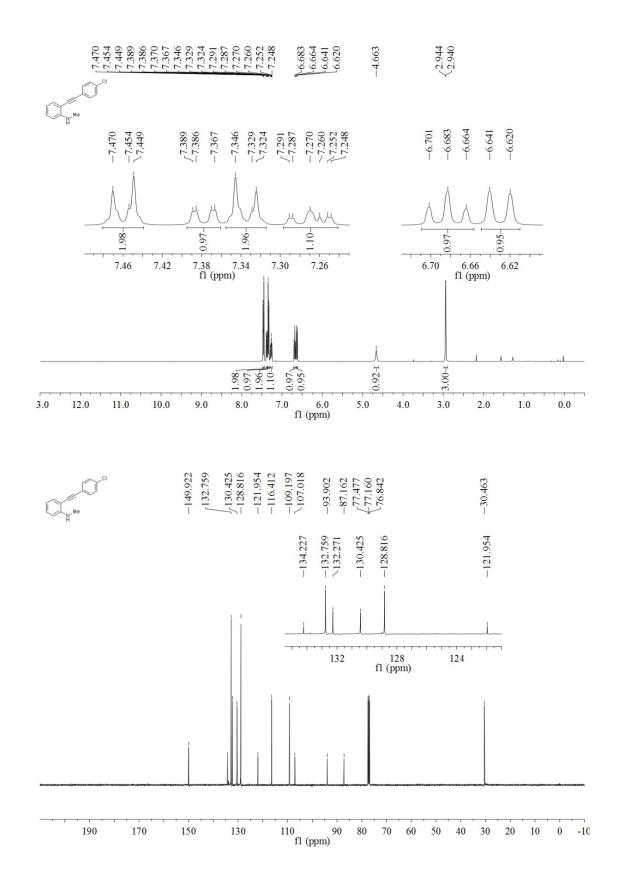


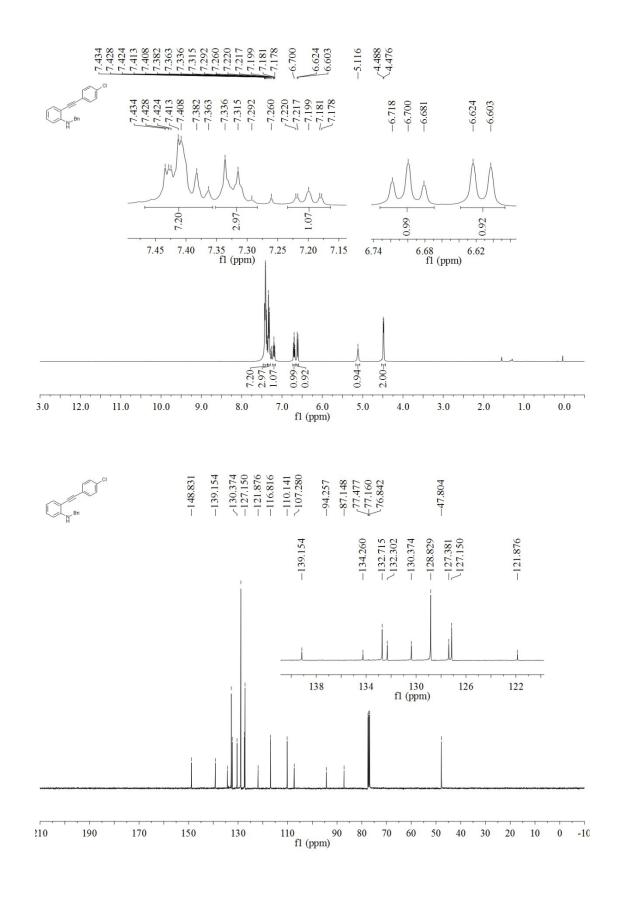


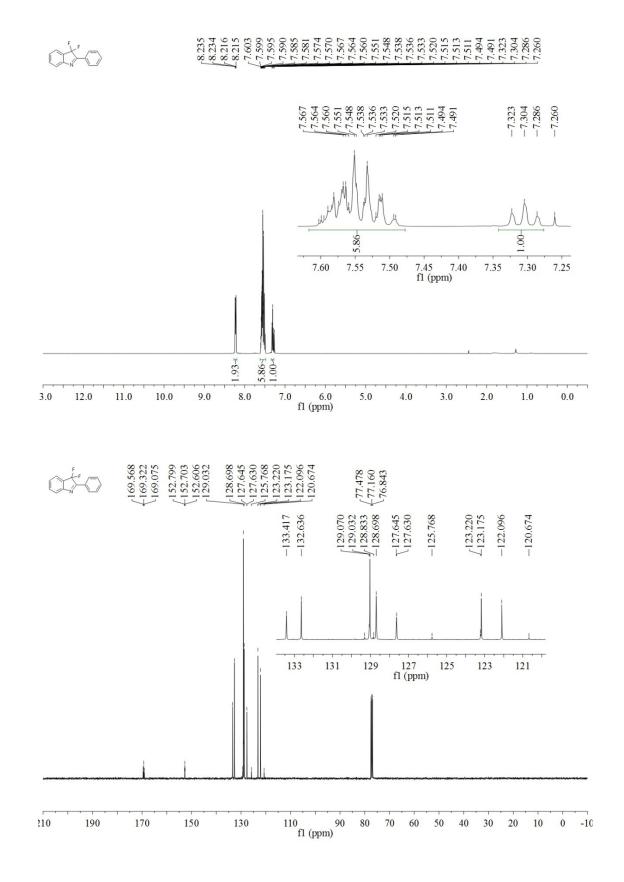


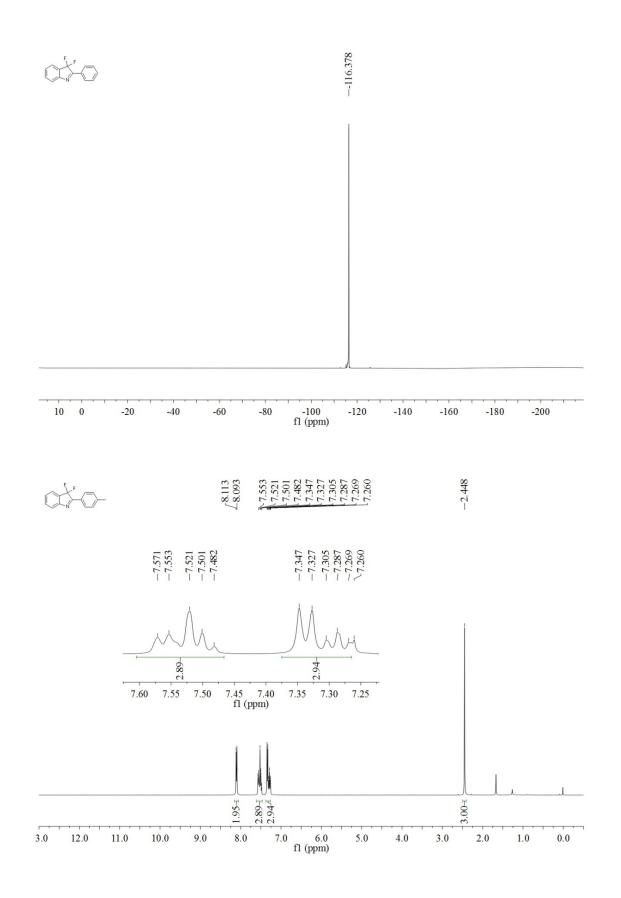


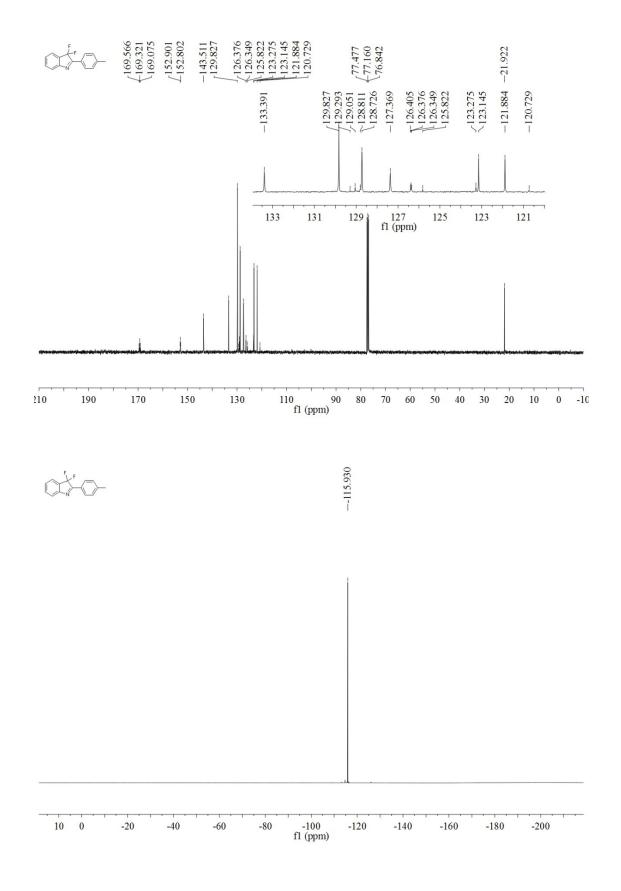


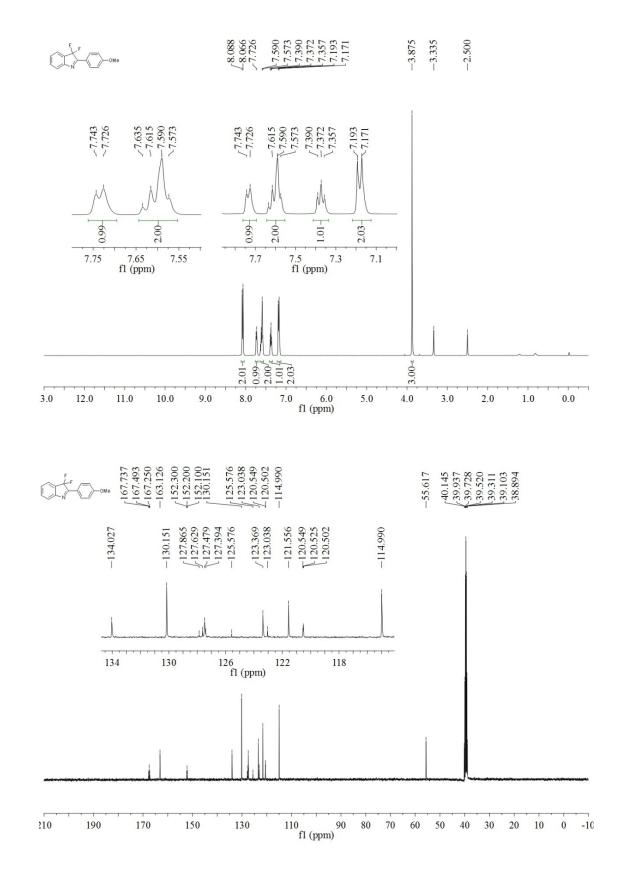


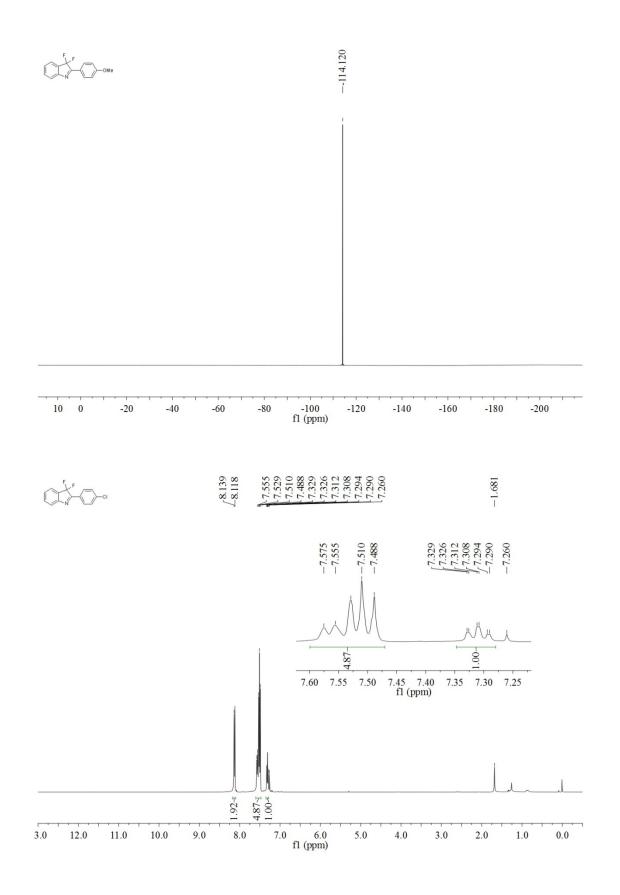


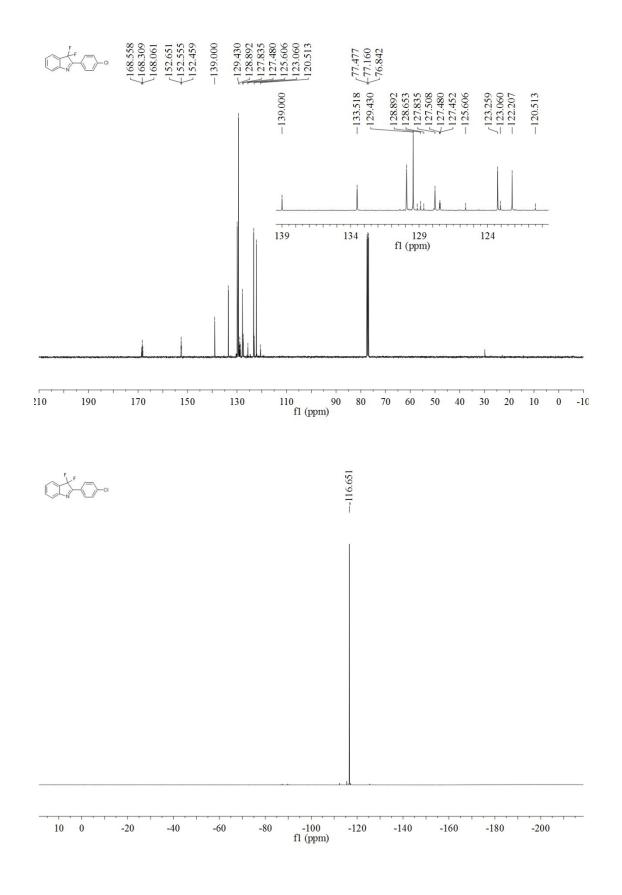


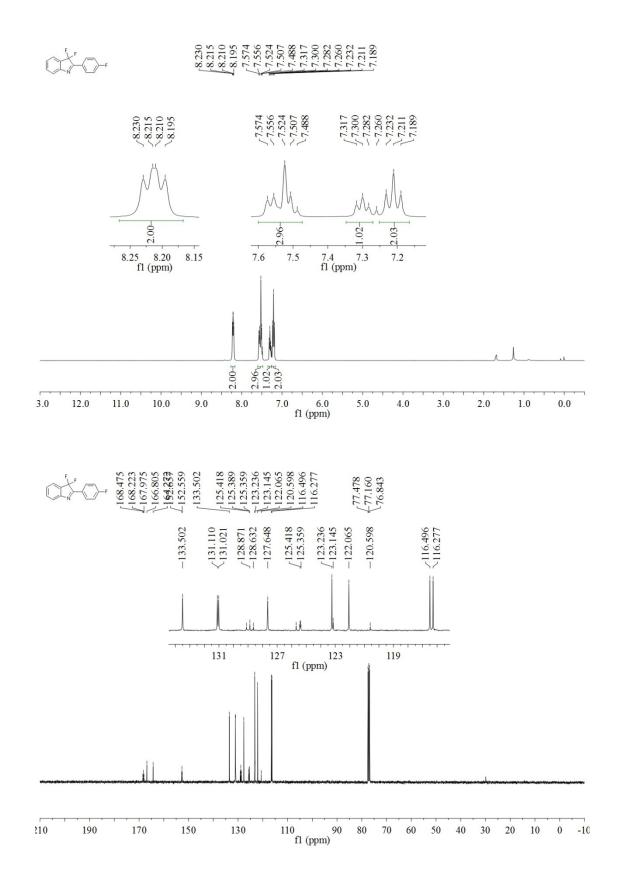


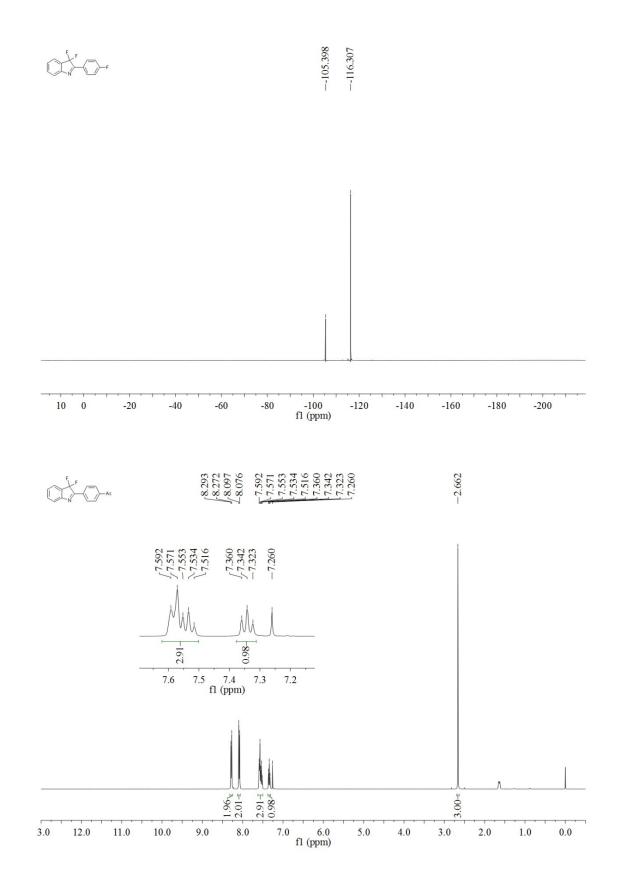


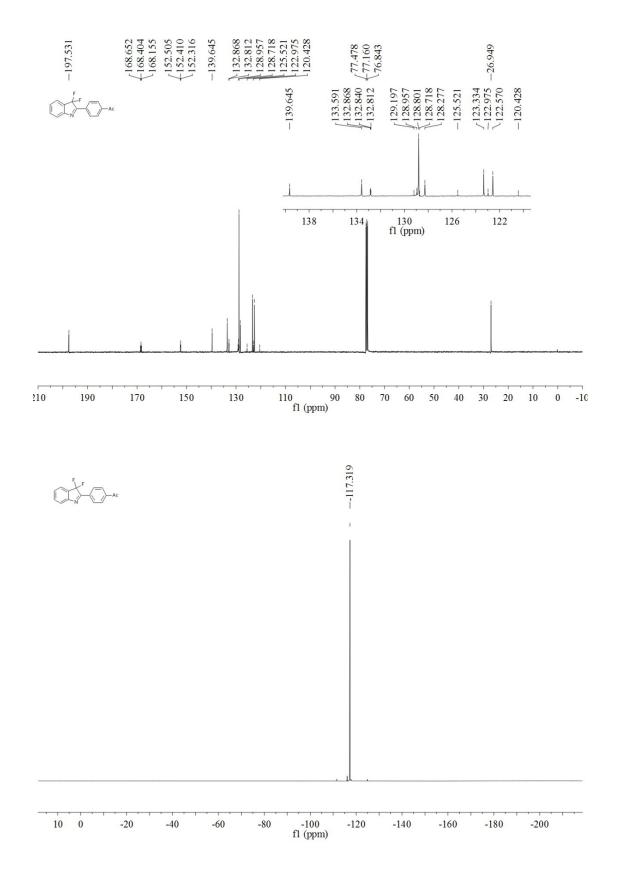


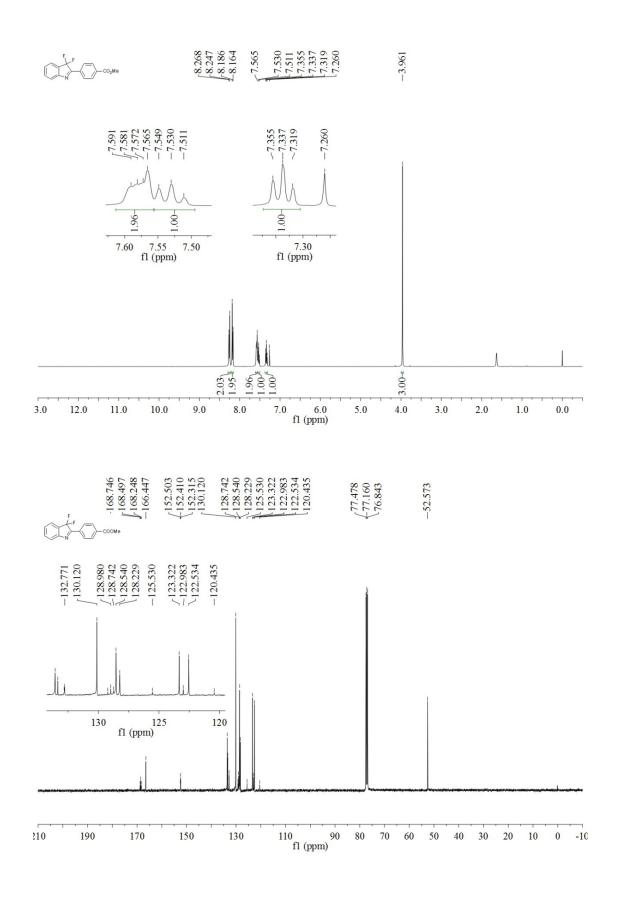


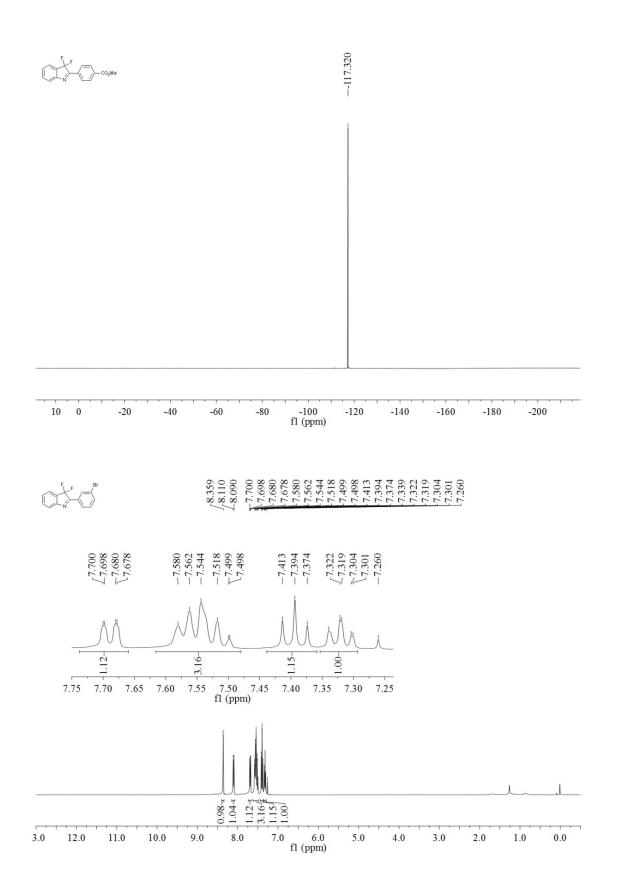


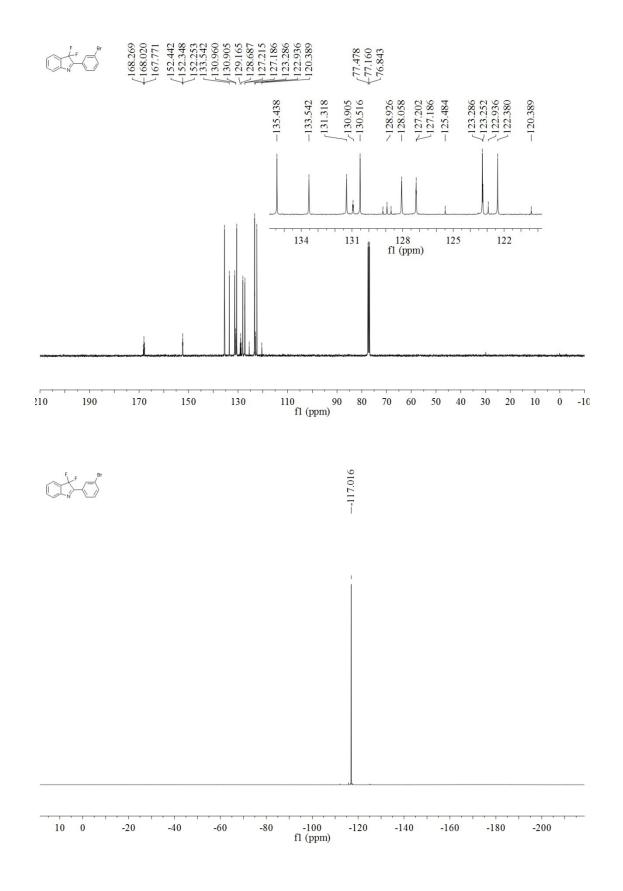


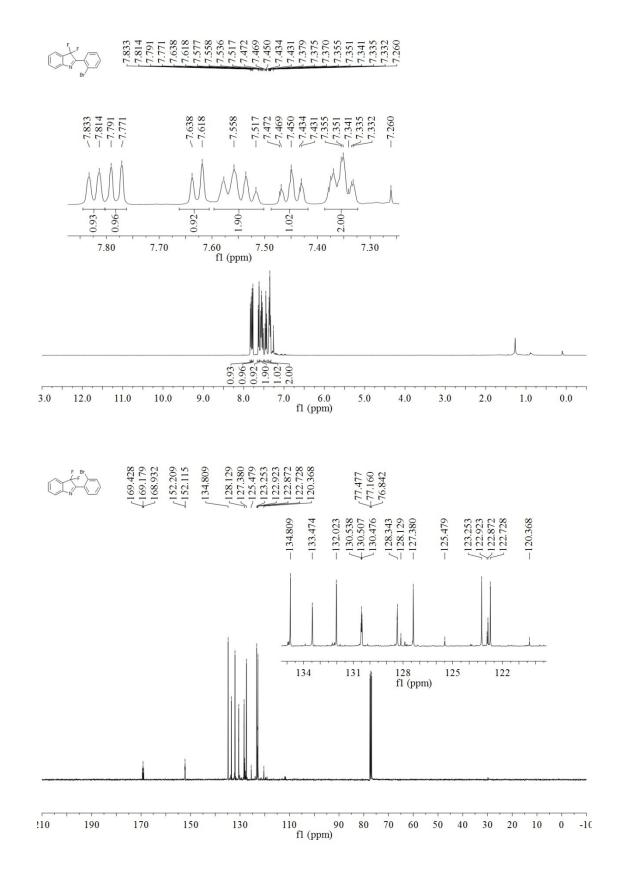


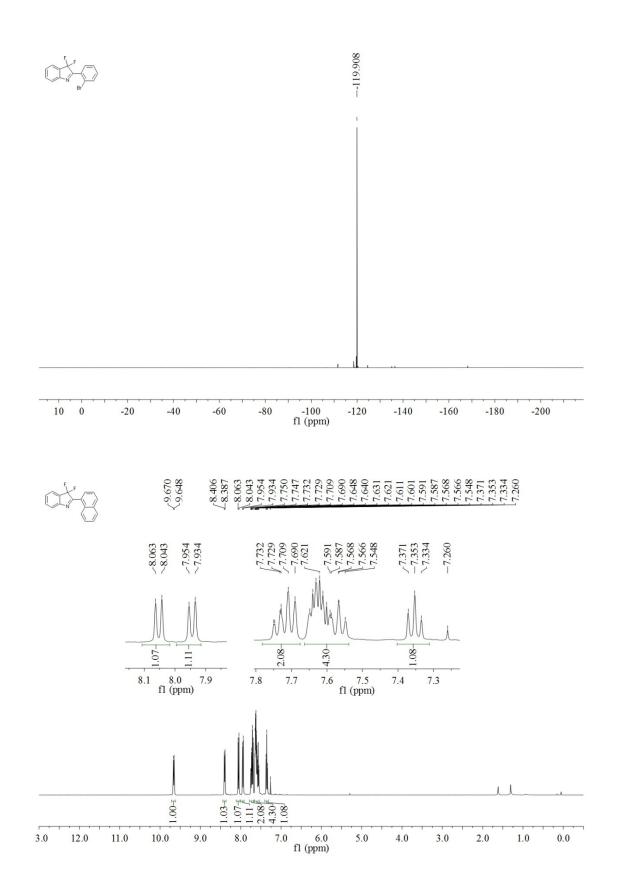


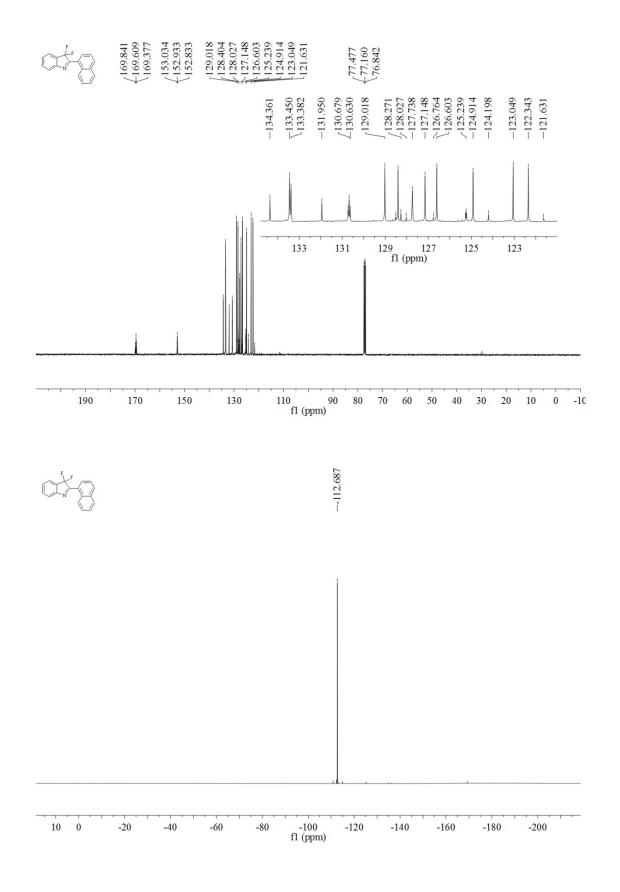


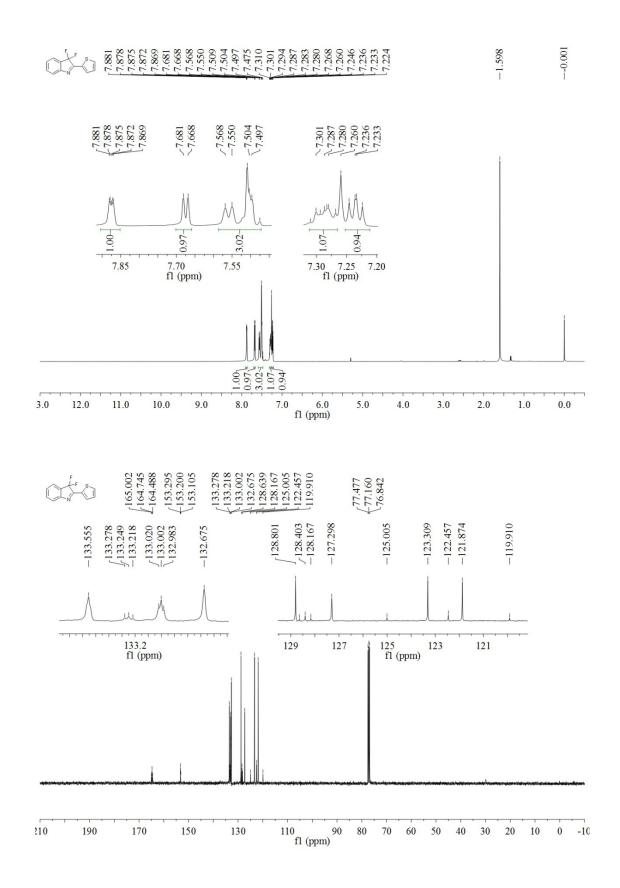


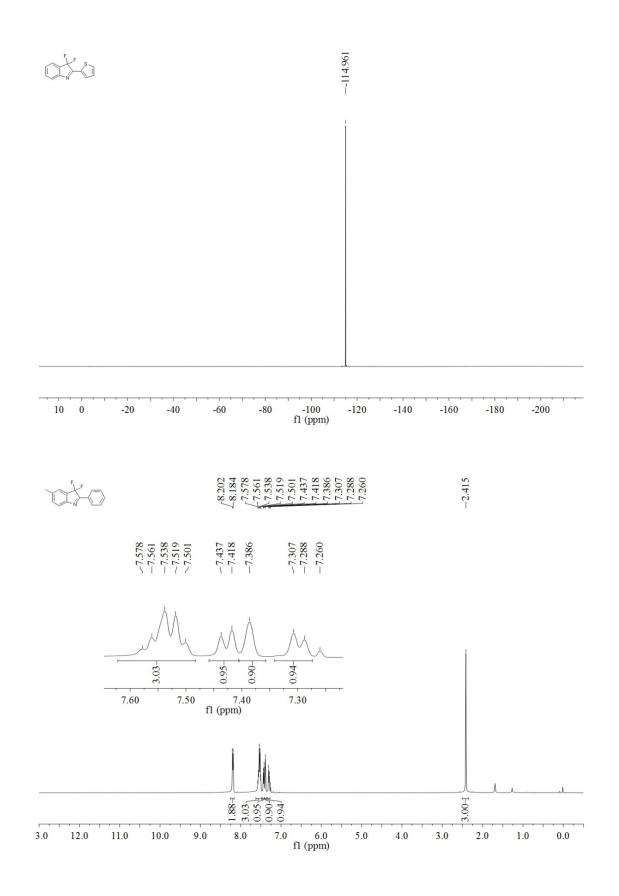


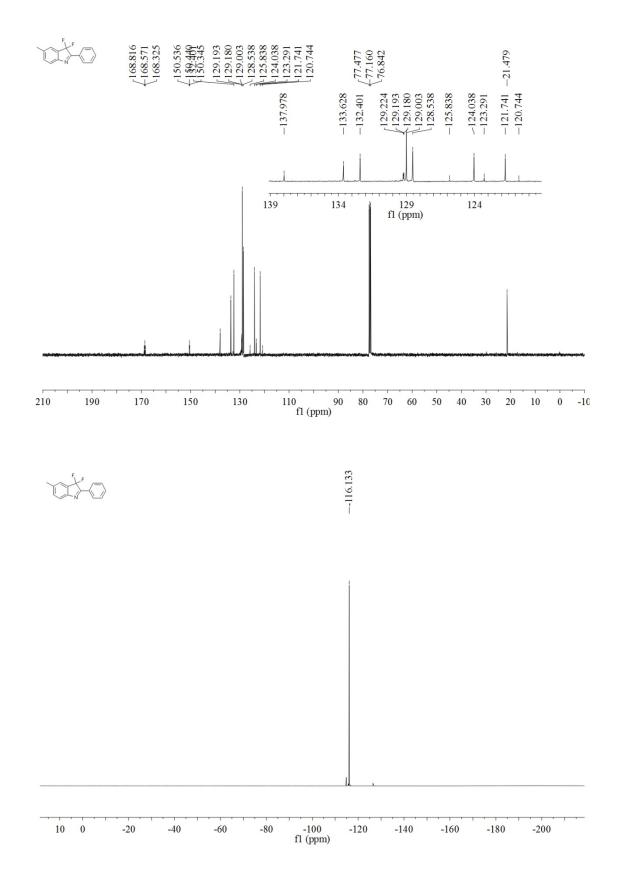


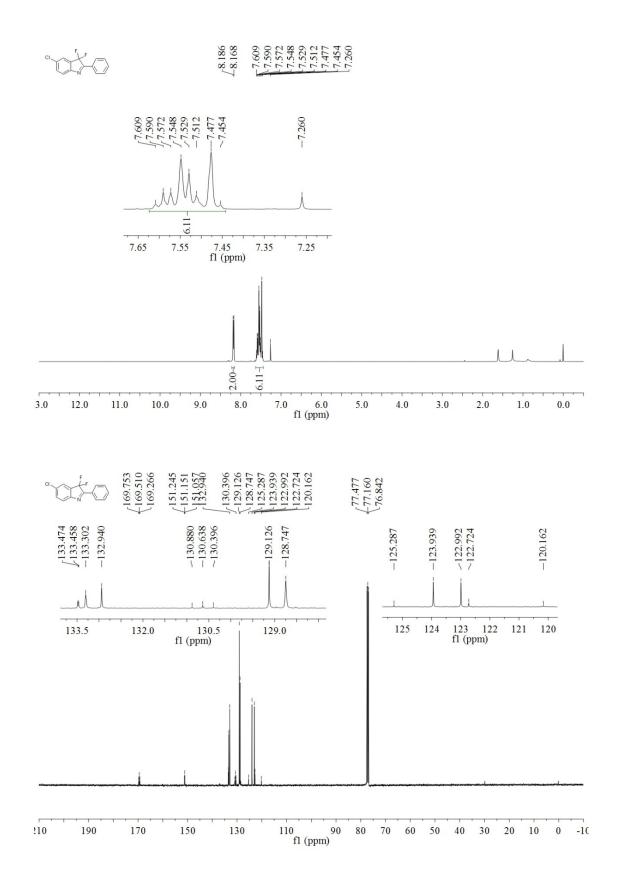

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

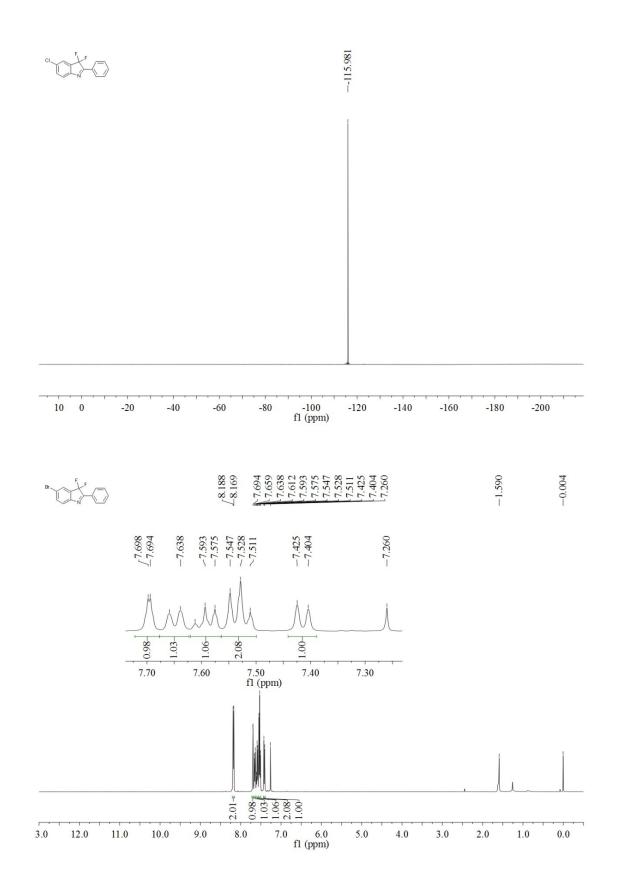


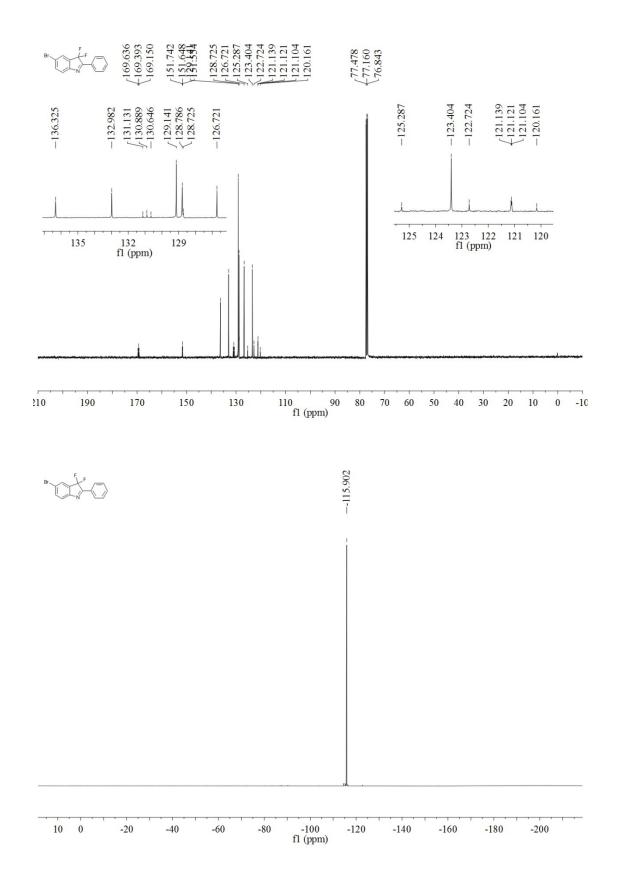


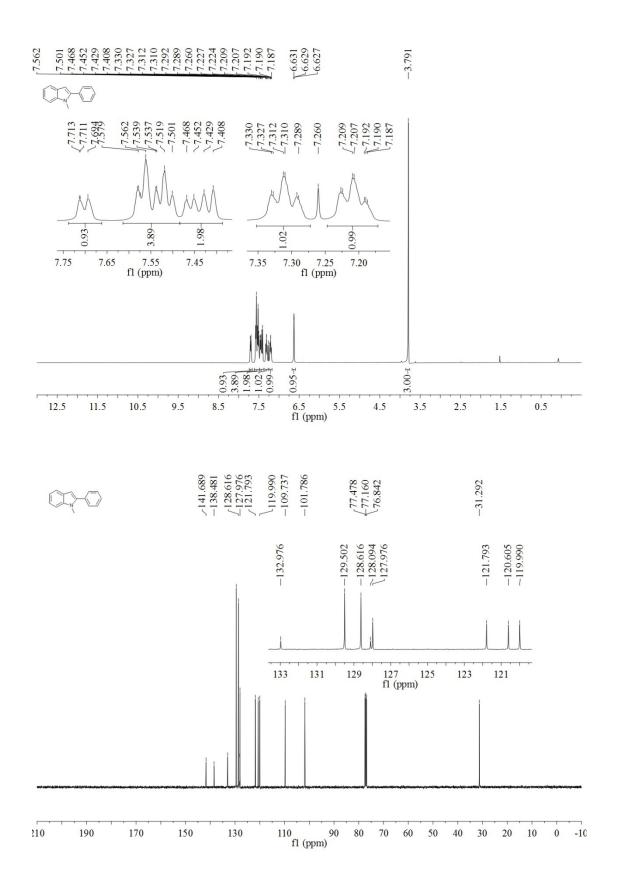


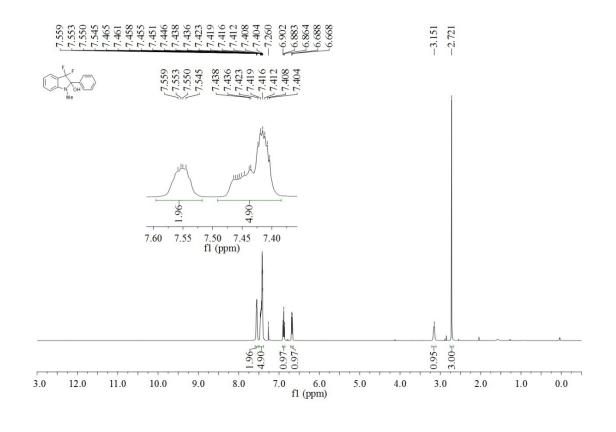


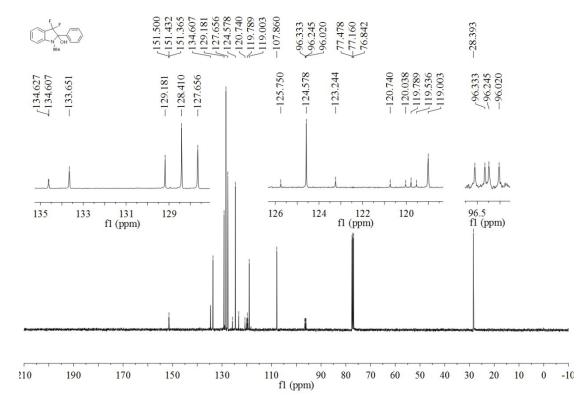


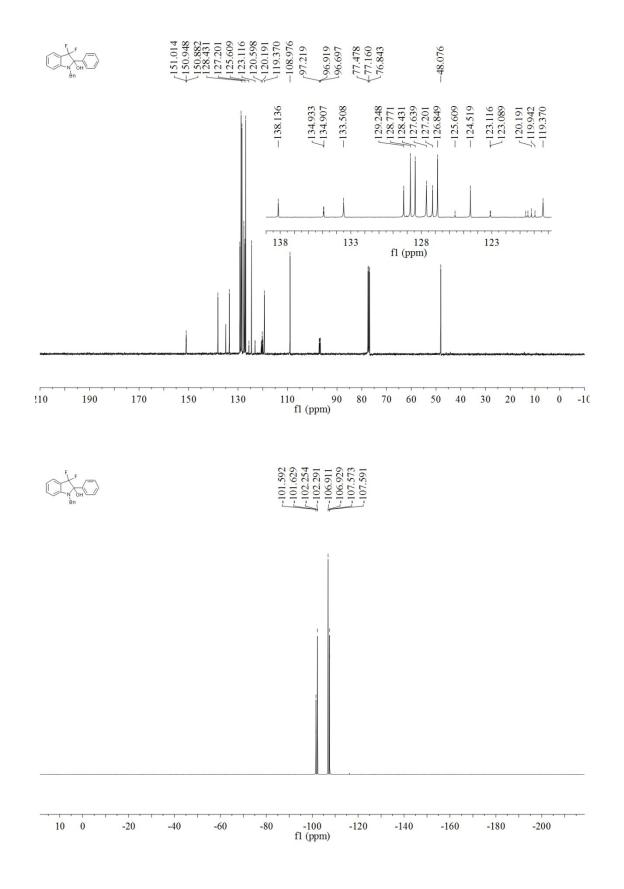


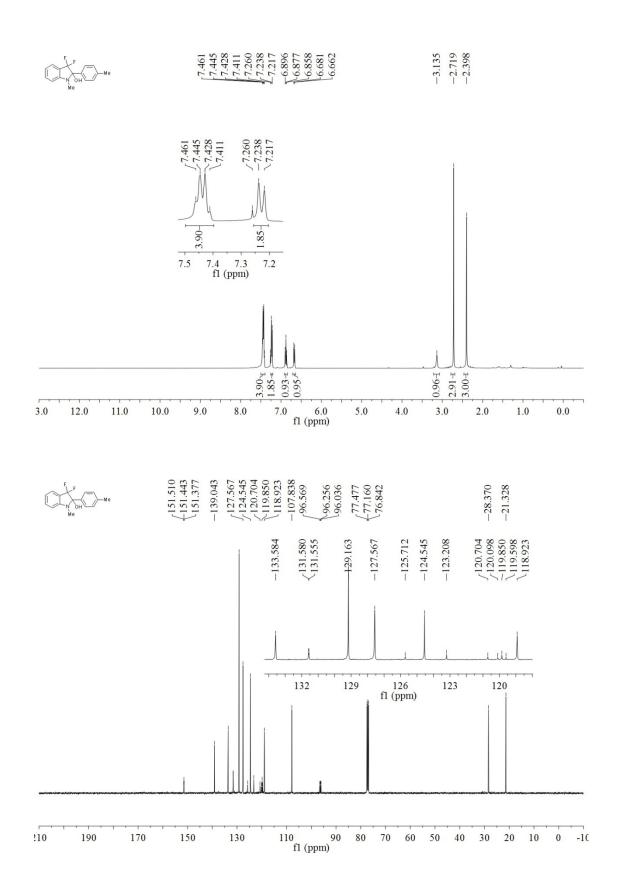


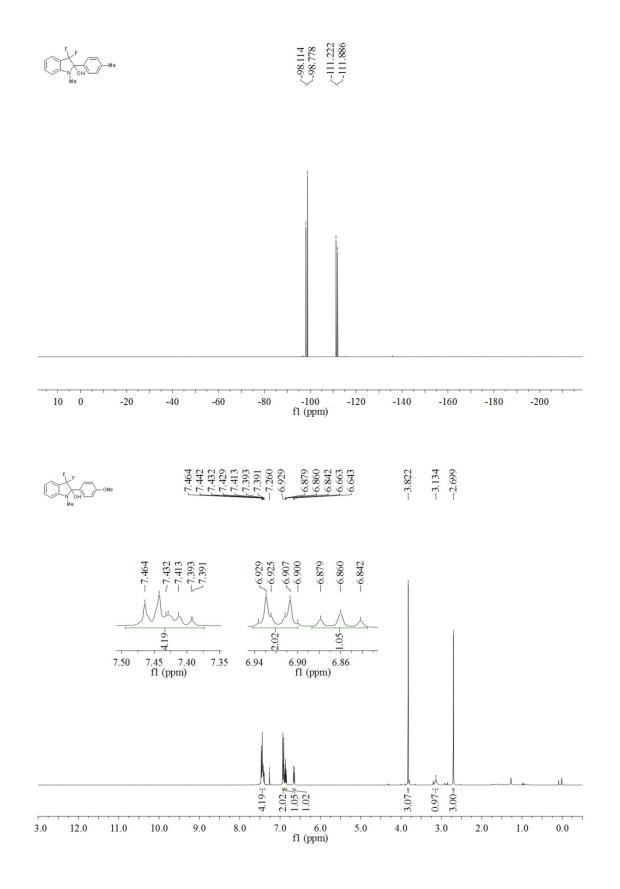


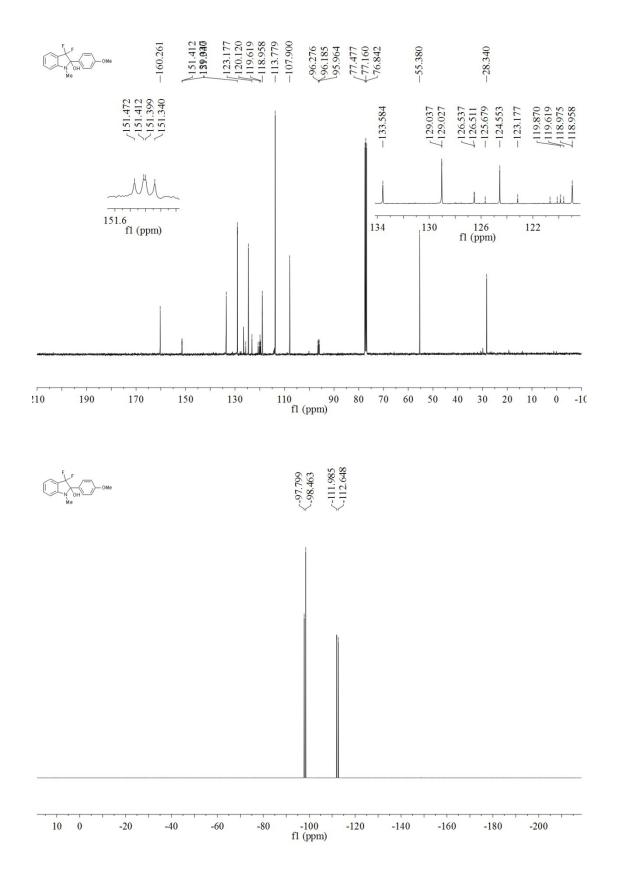

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

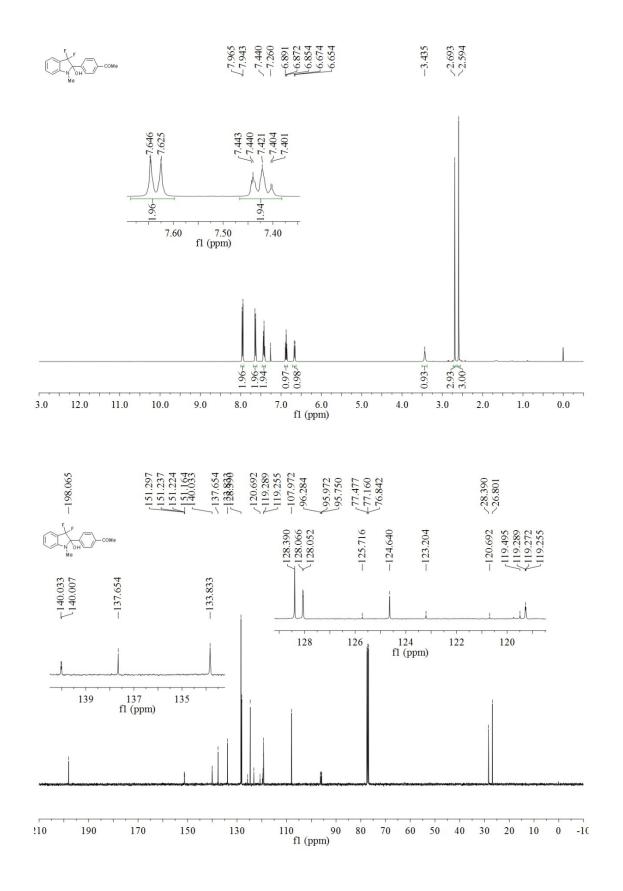


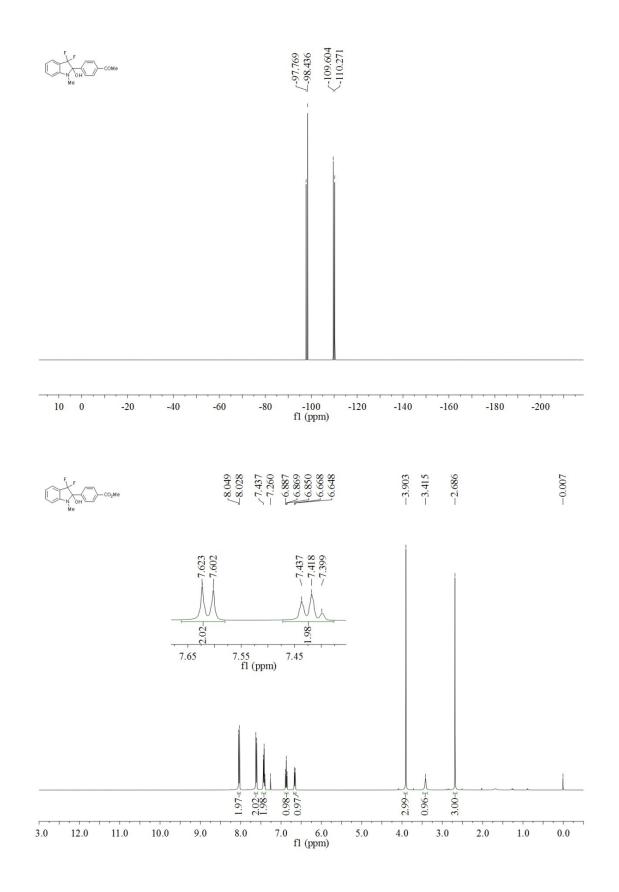


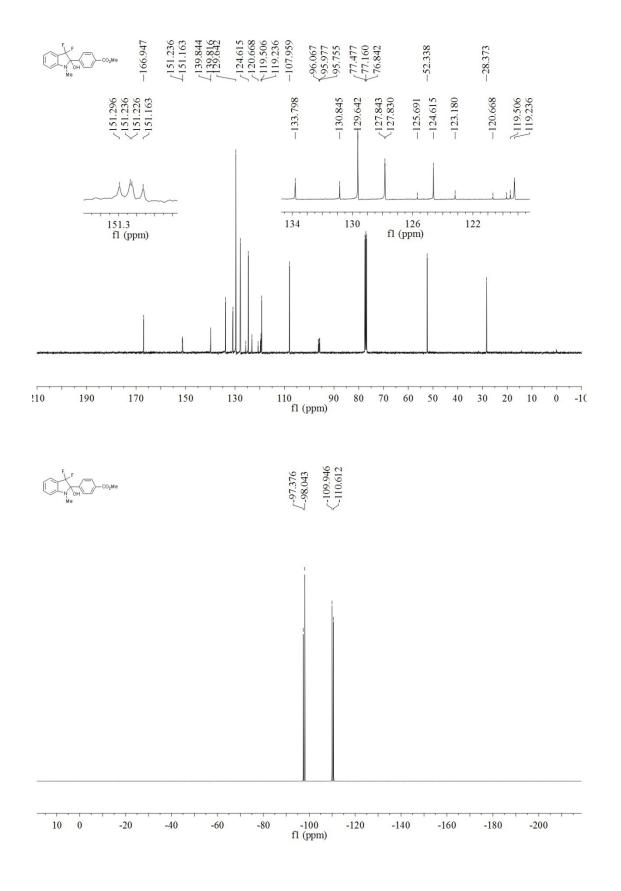


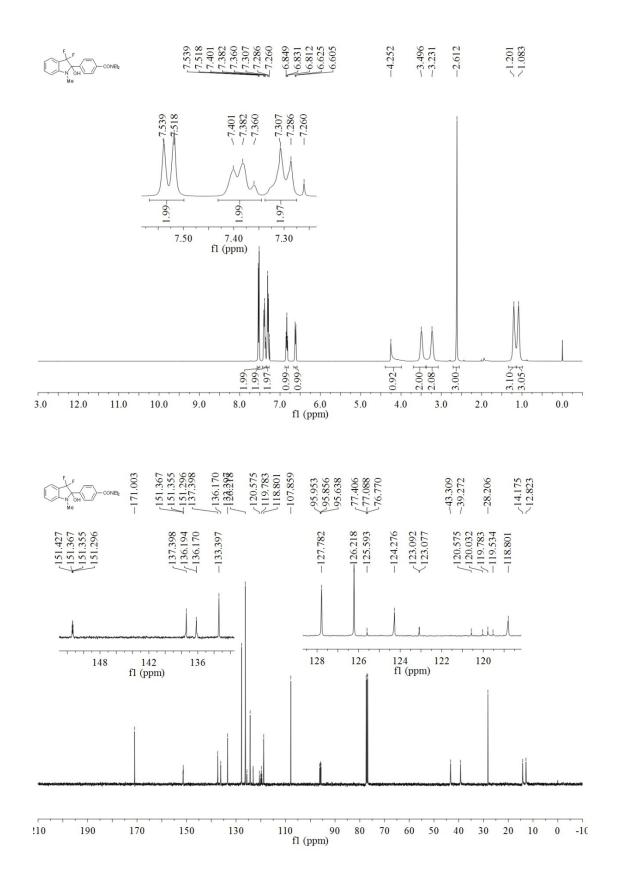


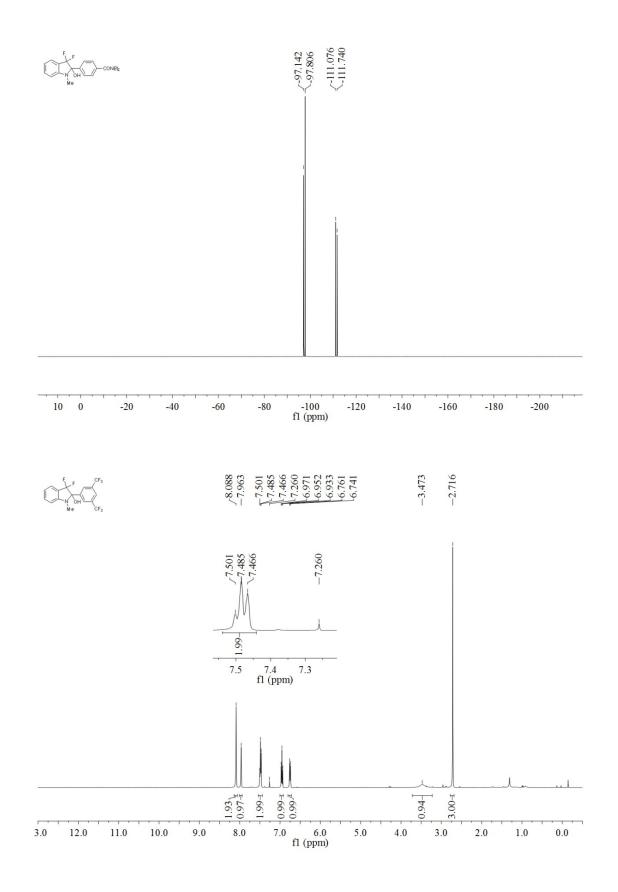


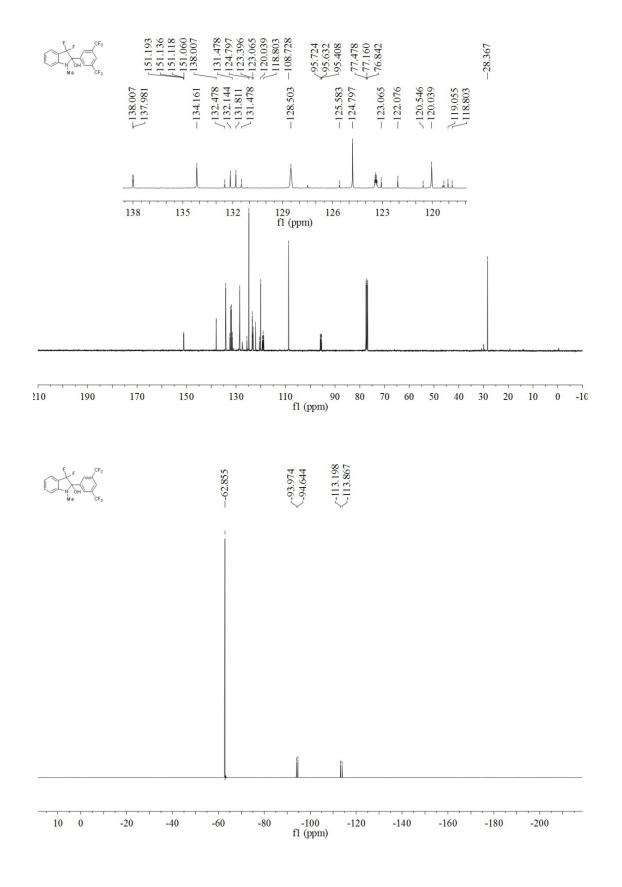


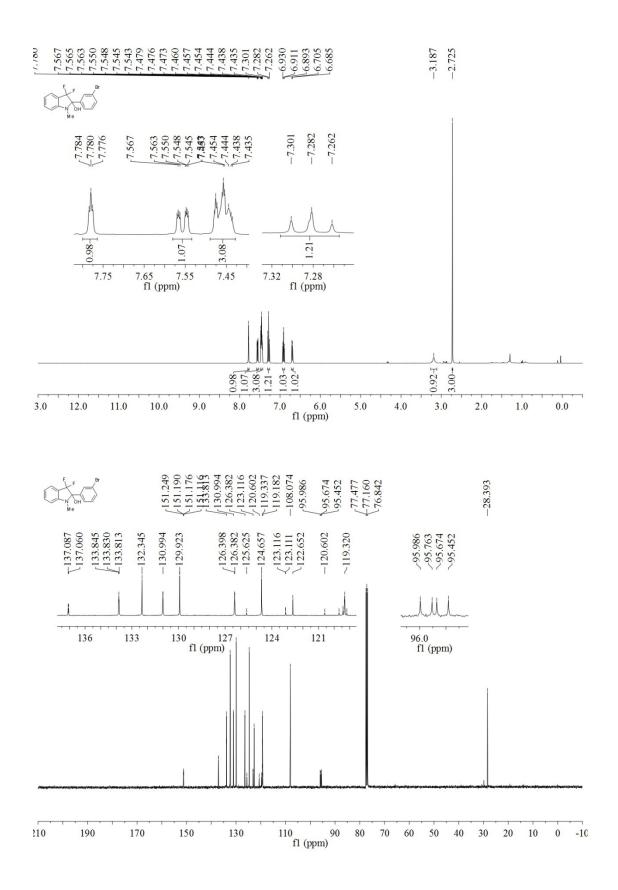

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014

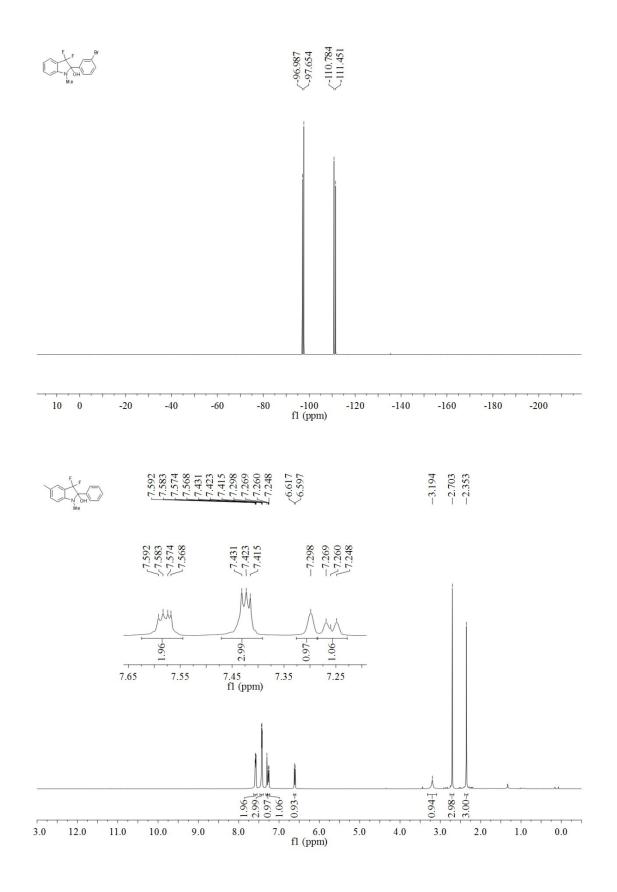


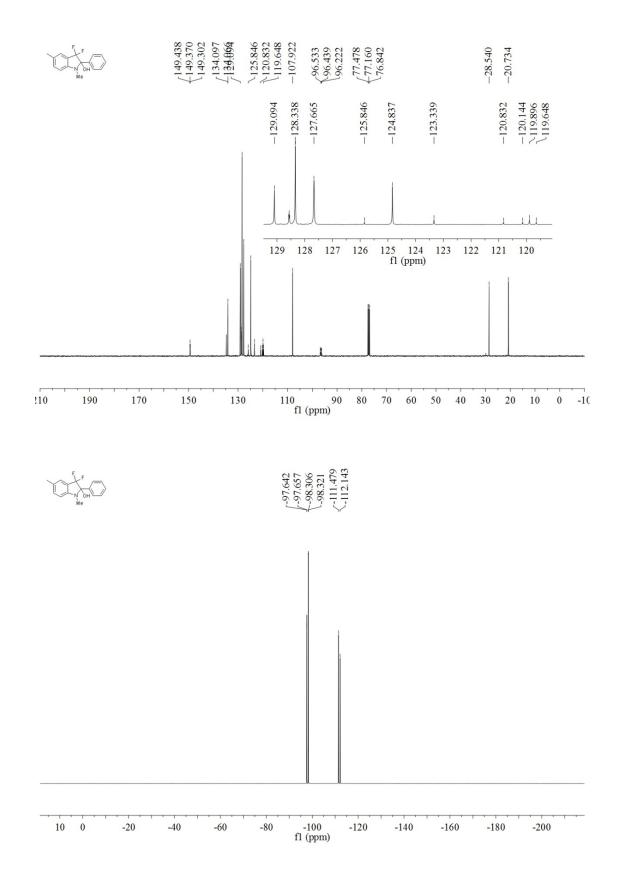


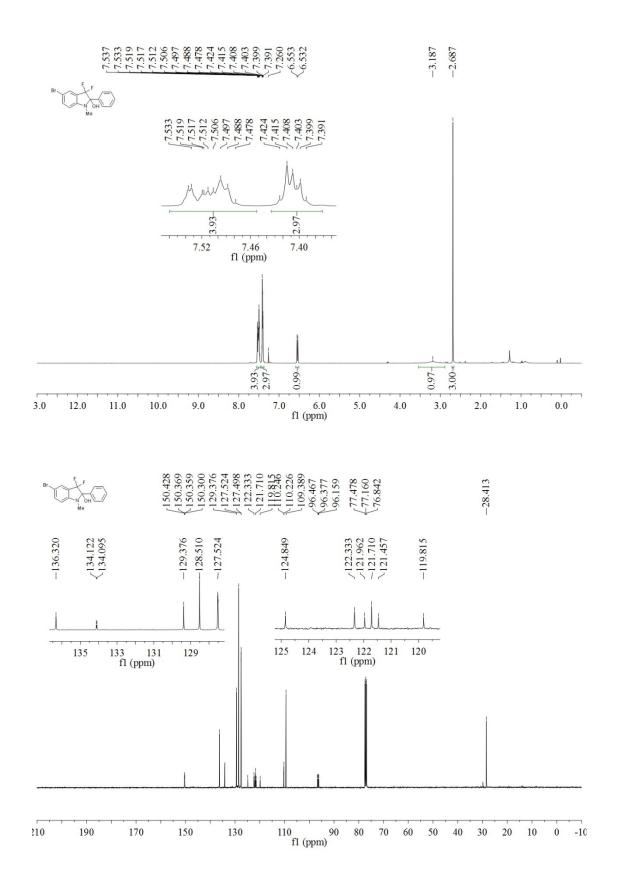


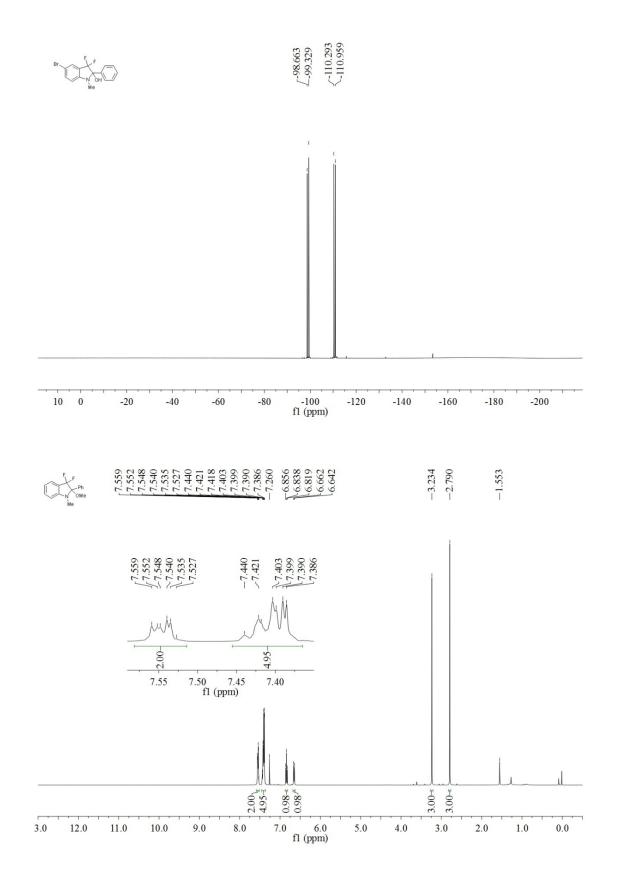


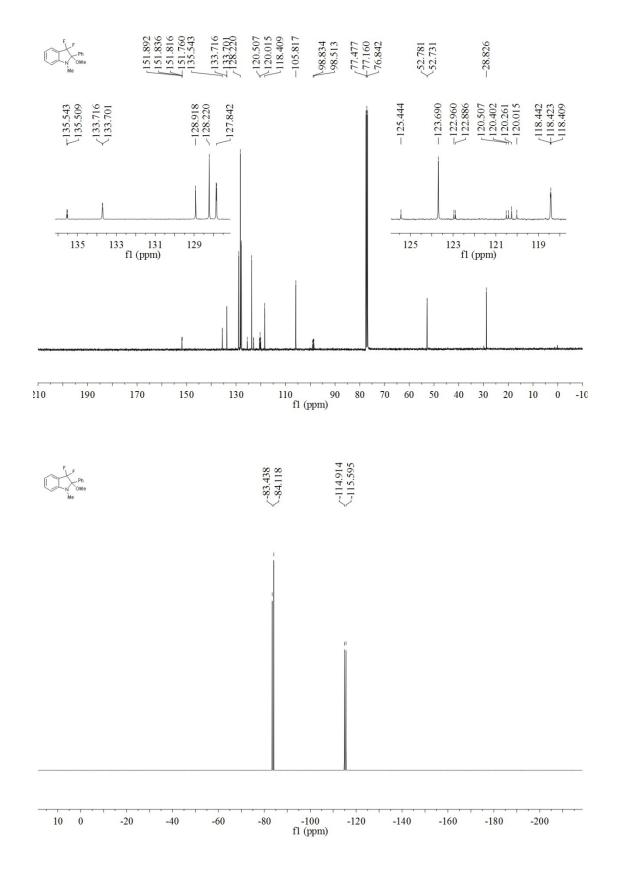


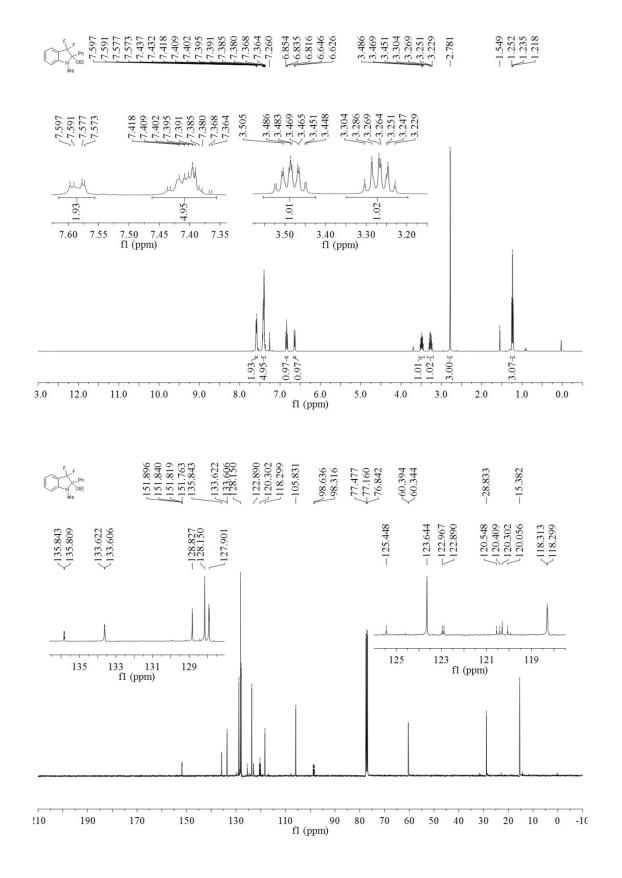


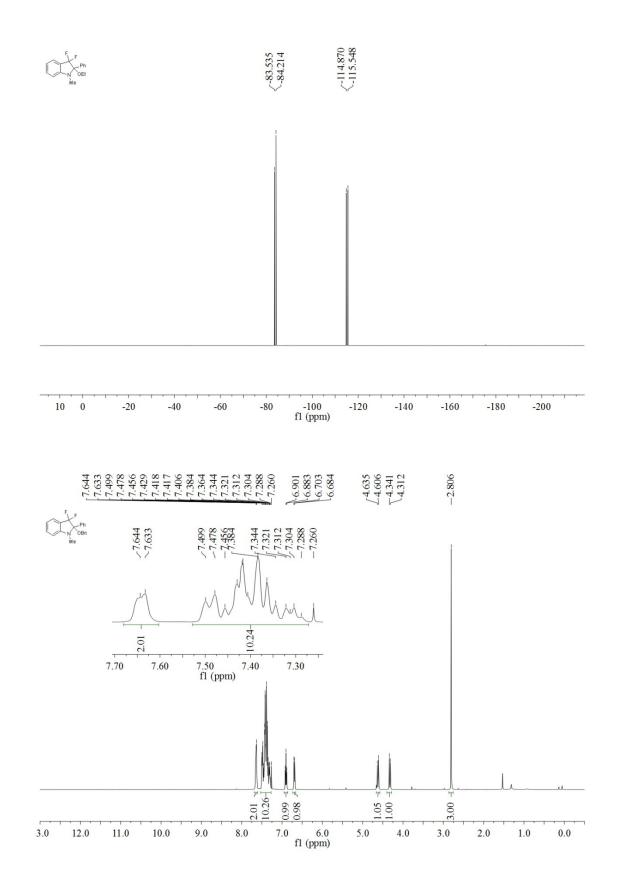


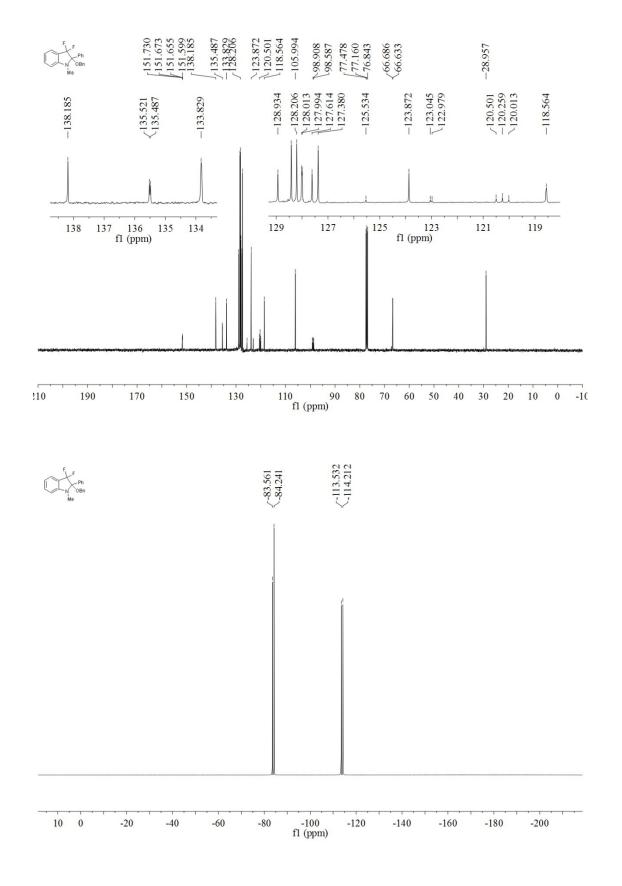


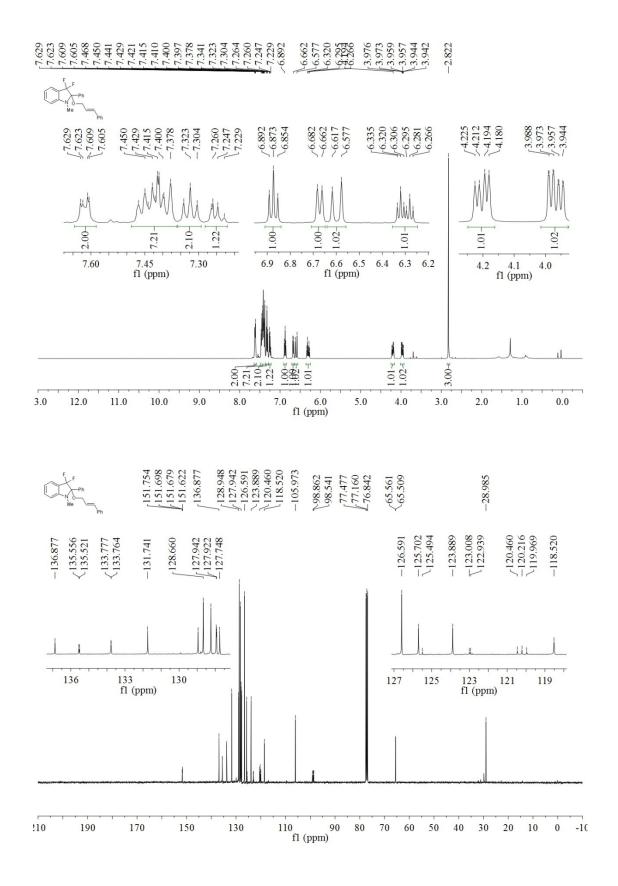


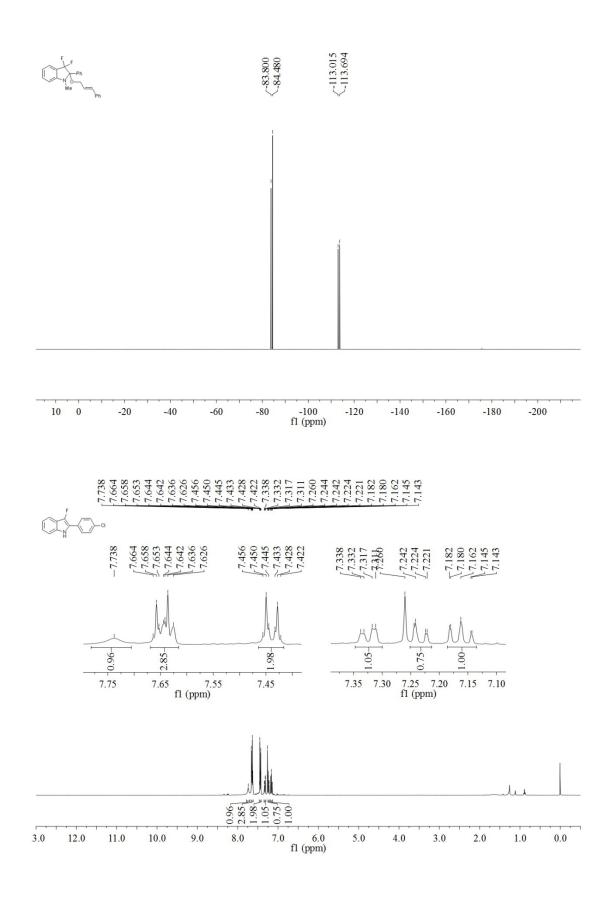


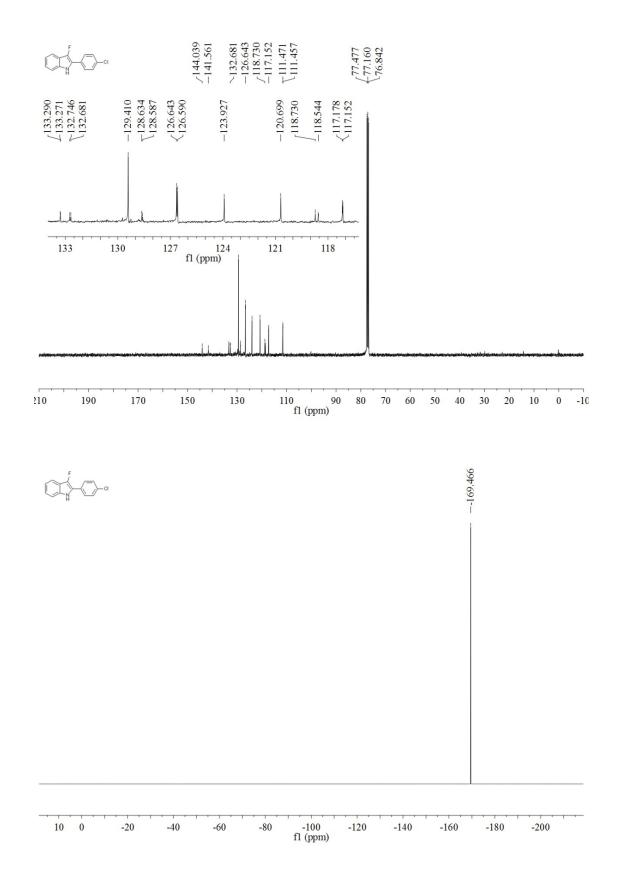


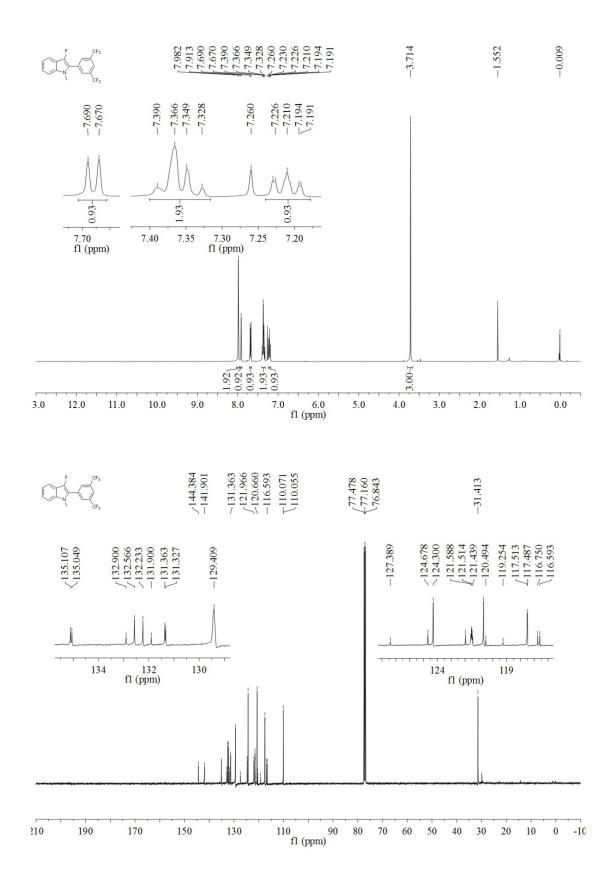


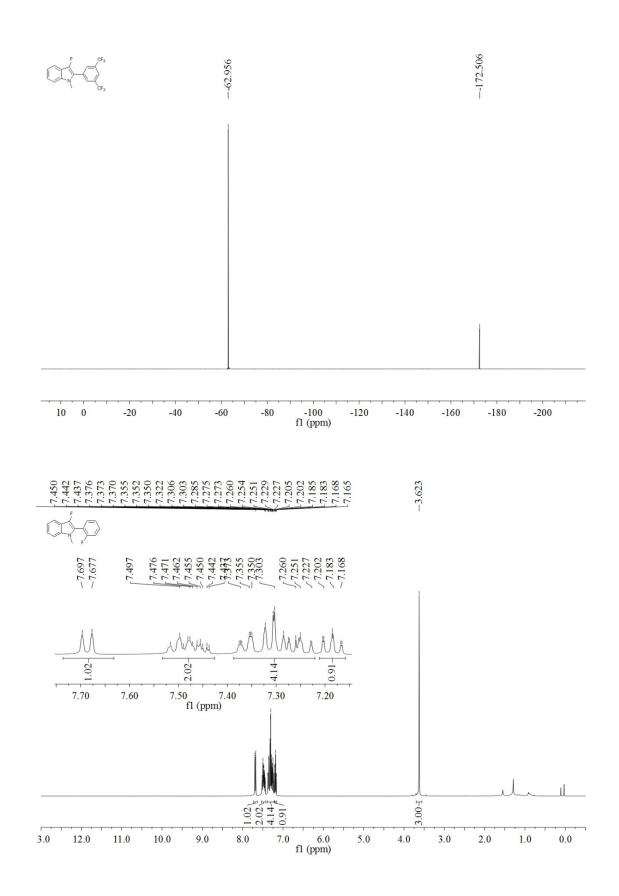


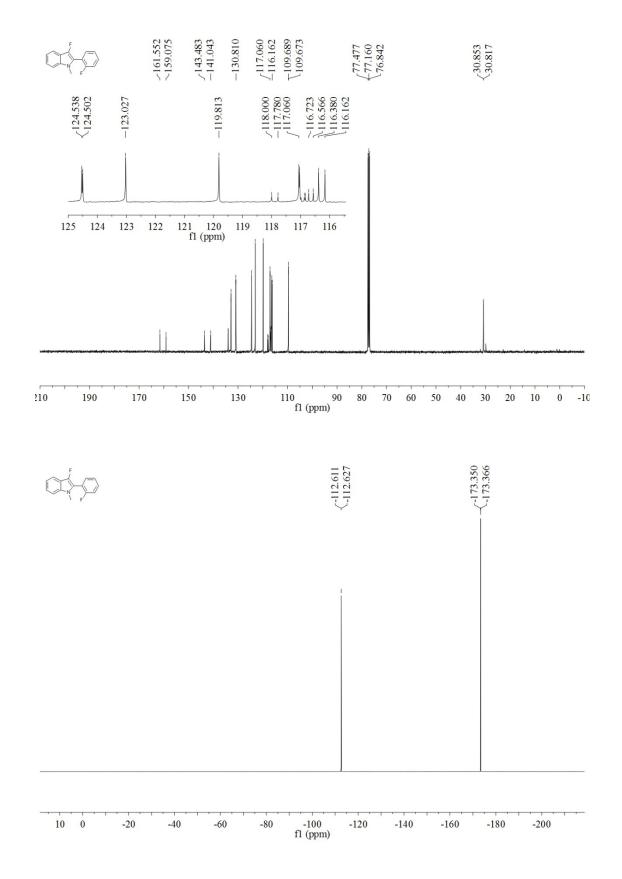


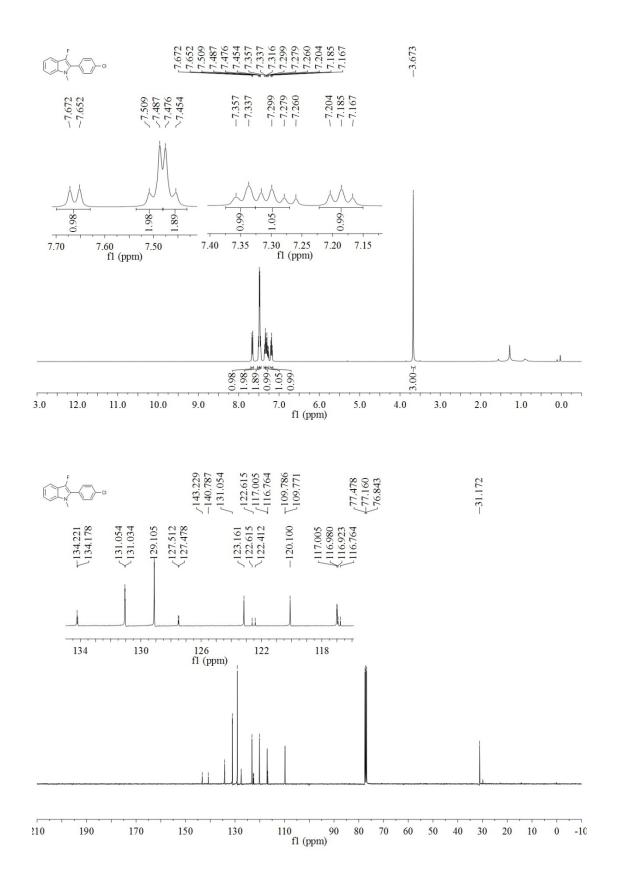


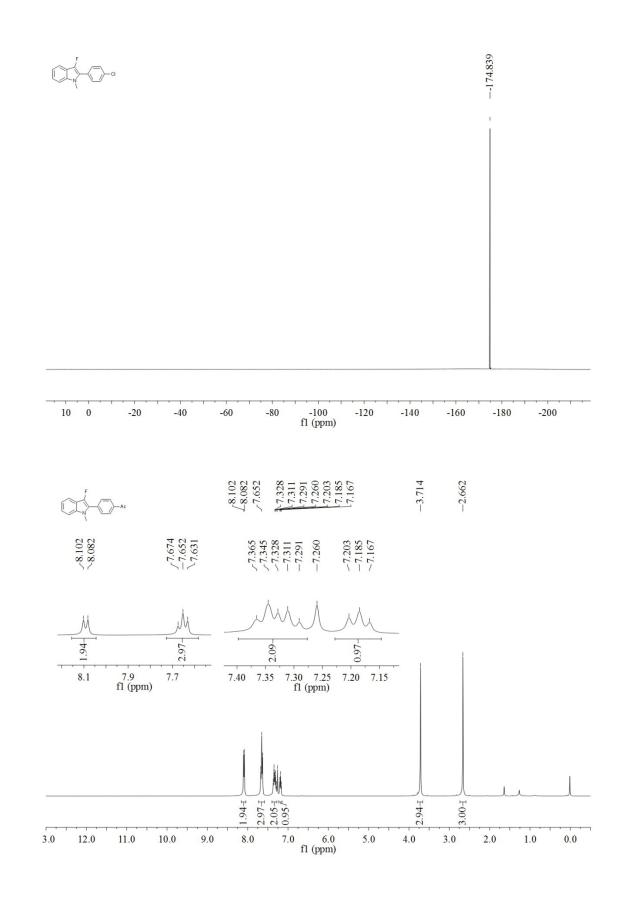


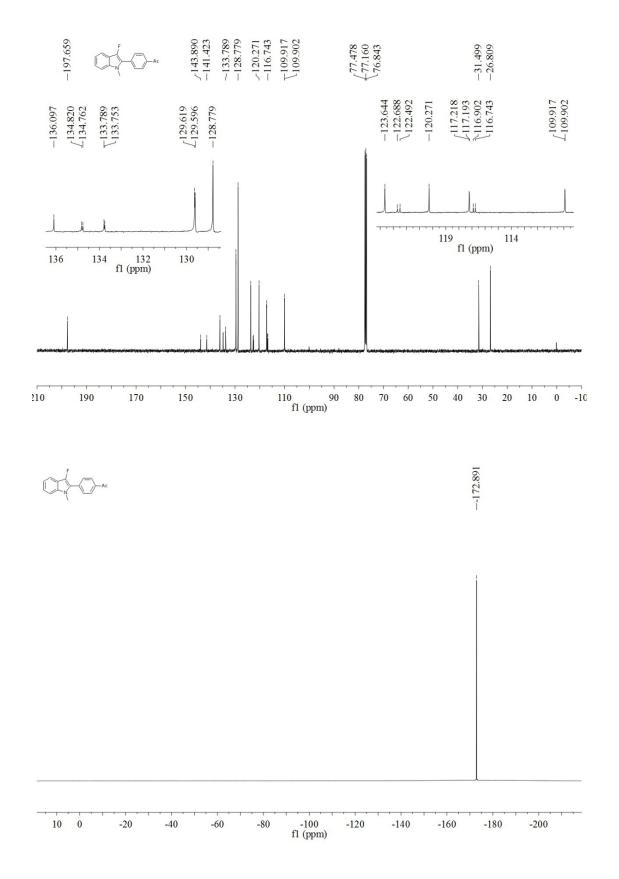


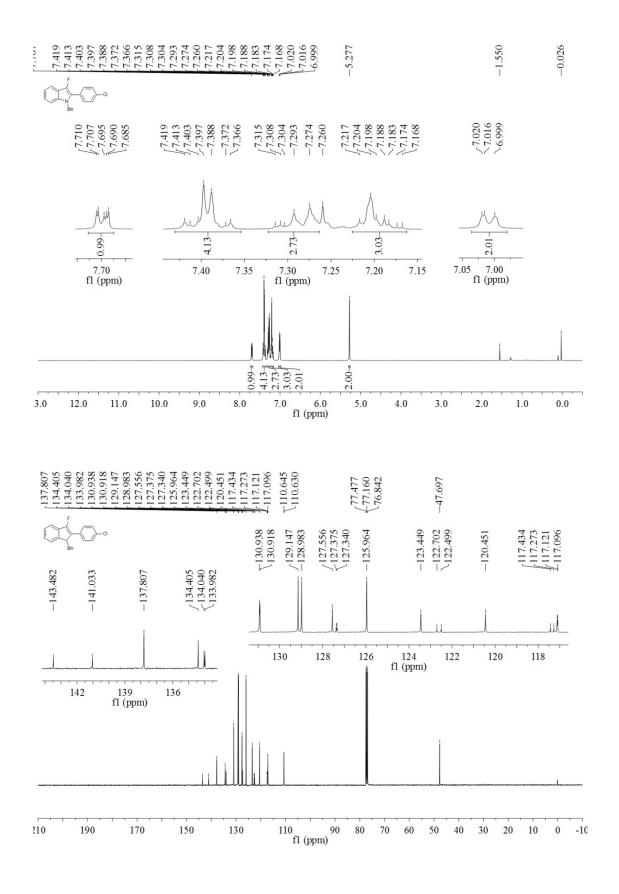


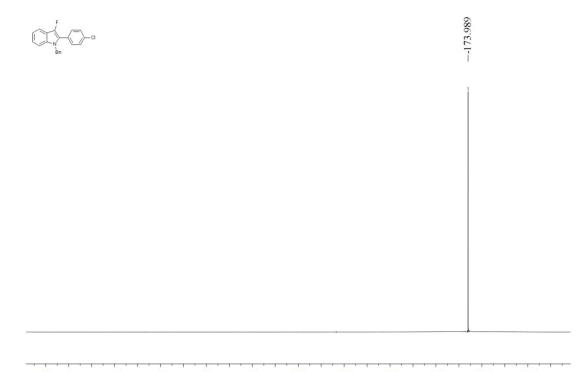







Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2014





10 0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	
fl (ppm)											
					di /						