Near Infra-Red emission from a *mer*-Ru(II) complex: consequences of strong σ -donation from a neutral, flexible ligand with dual binding modes

Amlan K. Pal,^{*a*} Nelsi Zaccheroni,^{*,*b*} Sebastiano Campagna^{*,*c*} and Garry S. Hanan^{*,*a*}

^aDépartment de Chimie, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3T-1J4, Canada.

Dipartimento di Chimica « G. Ciamician », Università di Bologna, 40126 Bologna, Italia.

Dipartimento di Scienze Chimiche, Università di Messina, 98166 Messina, Italia.

Electronic Supporting Information

• Materials, methods and instrumentation

Nuclear magnetic resonance (NMR) spectra were recorded in CD₃CN at room temperature (r.t.) on a Bruker AV400 (400 MHz) and AV700 (700 MHz) spectrometers (as noted in the experimental) for ¹H NMR and at 100 and 175 MHz (as noted in the experimental) for ¹³C NMR, respectively. Chemical shifts are reported in part per million (ppm) relative to residual solvent protons (1.94 ppm for CD₃CN, 7.26 ppm for CDCl₃) and the carbon resonance (118.69 ppm for CD₃CN, 77.00 ppm for CDCl₃) of the solvent.

Absorption spectra were measured in deaerated acetonitrile at r.t. on a Cary 500i UV-Vis-NIR Spectrophotometer. Corrected fluorescence emission spectra (450 W Xe lamp) in the IR range were obtained with a modular UV-VIS-NIR spectrofluorimeter Edinburgh Instrument, equipped with an Edinburgh Instruments Ge detector (for the 800-1600 nm spectral range). Corrections for instrumental response, inner filter effects and phototube sensitivity were performed. The luminescence quantum yield of 1 was calculated¹ by optical dilution method recording the emission spectra of the degassed solution in acetonitrile and of a solution of cyanine IR-125 in dimethylsulfoxide ($\Phi = 0.23$)² as the reference. Luminescence lifetimes were determined by time-correlated single-photon-counting (TCSPC) with an Edinburgh EPL-405 spectrometer (light pulse: picosecond pulse diode laser, pulse width 500 ps at 405 nm). Electrochemical measurements were carried out in argon-purged purified acetonitrile at room temperature with a BAS CV50W multipurpose equipment. The working electrode was a glassy carbon electrode. The counter electrode was a Pt wire, and the pseudo-reference electrode was a silver wire. The reference was set using an internal 1 mM ferrocene/ferrocinium sample at 395 mV vs. SCE in acetonitrile. The concentration of the compounds was about 1 mM.

Tetrabutylammonium hexafluorophosphate (TBAP) was used as supporting electrolyte and its concentration was 0.10 M. Cyclic voltammograms of L1, 1 and 2 were obtained at scan rates of 100, 50 and 25 mV s⁻¹, respectively. The criteria for reversibility were the separation of 60 mV between cathodic and anodic peaks, the close to unity ratio of the intensities of the cathodic and anodic currents, and the constancy of the peak potential on changing scan rate. Differential pulse voltammetry was conducted with a sweep rate of 20 mV s⁻¹ and a pulse amplitude, width and period of 50 mV, 50 ms and 200 ms, respectively.

Experimental uncertainties are as follows: absorption maxima, ± 2 nm; molar absorption coefficient, 10%; redox potentials, ± 10 mV; emission maxima, ± 4 nm; emission lifetimes, 10%; emission quantum yield, 20%.

1,3,4,6,7,8-Hexahydro-2H-pyrimido $[1,2-\alpha]$ pyrimidine (**H-hpp**), 2,6-dibromopyridine, (±) BINAP, *t*-BuOK were purchased from Aldrich and used as received. Cyanine IR-125 was purchased from Acros Organics. Ph-tpy³ (Ph-tpy = 4'-phenyl-2,2':6',2''-terpyridine), Ru(DMSO)₄Cl₂,⁴ RuCl₃(*i*PrSPh)₂(CH₃OH)⁵ were synthesized using literature procedures.

• Synthetic Details

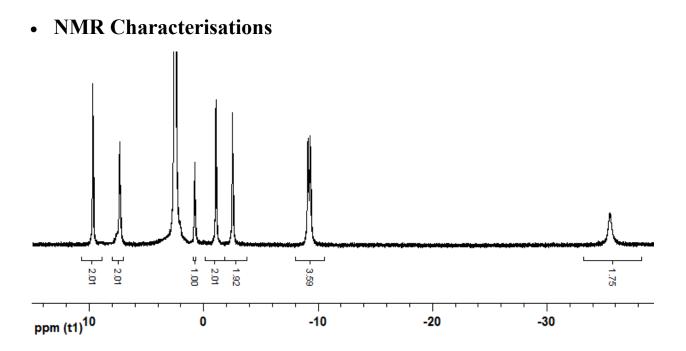
Synthesis of L1:

(±) BINAP (0.06 mmol, 38 mg) was placed in an oven dried round bottomed flask purged with nitrogen which was sealed with a septum. Dry toluene (3 mL) was added via syringe. The resulting suspension was heated at 90 °C for 2 min to dissolve the BINAP. This was cooled to room temperature and Pd(OAc)₂ (0.04 mmol, 9 mg) was added and stirred for 3 min. To the resulting bright yellow solution, 2,6-dibromopyridine (2 mmol, 474 mg) and 1,3,4,6,7,8-

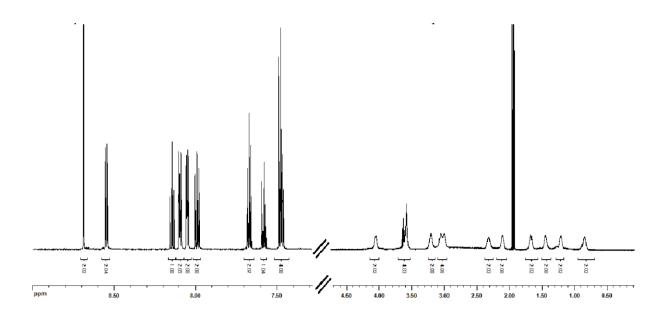
hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidine (4.3 mmol, 600 mg) were added. Stirring for 5 min at ambient temperature resulted in a pale orange slurry to which was added *t*-BuOK (5.6 mmol, 640 mg). The reaction mixture was then stirred at 90 °C for 3.5 h, was cooled to room temperature and diethyl ether (60 mL) was added and the mixture was filtered. Evaporation of the filtrate afforded the ligand (L1) as crystalline pale yellow solid. Single crystals suitable for X-ray crystallography were grown by slow evaporation of a diethyl ether solution of the compound. Yield = 563 mg (80 %). ¹H NMR (CDCl₃, 400 MHz); 7.34 (t, J^t = 8 Hz, 2 H), 7.11 (d, J^d = 8 Hz, 2 H), 3.83 (t, J^t = 6 Hz, 4 H), 3.40 (t, J^t = 6 Hz, 4 H), 3.21 (t, J^t = 6 Hz, 4 H), 3.14 (t, J^t = 6 Hz, 4 H), 1.95 (quint., J^{qt} = 6 Hz, 4 H), 1.86 (quint., J^{qt} = 6 Hz, 4 H) ppm. ¹³C NMR (CDCl₃, 100 MHz); 154.5, 150.2, 136.6, 110.4, 48.8, 48.6, 43.9, 43.6, 23.7, 22.8 ppm. HRMS (ESI), m/z: 117.62399 [M+2H⁺]²⁺ (C₁₉H₂₉N₇ requires 177.62367), 354.24006 [M+H⁺]⁺ (C₁₉H₂₈N₇ requires 354.24007), 376.22216 [M+Na⁺]⁺ (C₁₉H₂₇N₇Na requires 376.22201). Anal. Calc. for C₁₉H₂₇N₇ + 1 H₂O : C, 61.43; H, 7.87; N, 26.39. Found: C, 61.57; H, 7.95; N, 26.53.

Ru(Ph-tpy)Cl₃

Ph-tpy (100 mg, 0.323 mmol) and RuCl₃(*i*PrSPh)₂(CH₃OH) (185 mg, 0.339 mmol) were refluxed in air for 18 h in CH₃CN (60 mL). After cooling down to r.t., the solvent was evaporated to dryness under vacuum. The dark purple solid obtained was sonicated with EtOH (10 mL) and EtOAc (50 mL) and filtered. The solid product was then washed with EtOH (10 m L) and Et₂O (2 x 30 mL) and dried under vacuum to give the product as brown solid (160 mg, 96%) and used without any further purification. ¹H NMR (DMSO-*d*₆, 400 MHz); 9.69 (s, 2 H), 7.34 (s, 2 H), 0.77 (s, 1 H), -1.07 (s, 2 H), -2.52 (s, 2 H), -9.21 (d, J^d = 80 Hz, 4 H), -35.53 (br, s, 2 H) ppm.


$[Ru(Ph-tpy)(L1)](PF_6)_2(1)$

A mixture of [Ru(Ph-tpy)Cl₃] (100 mg, 0.193 mmol) and 4-ethylmorpholine (10 drops) in nitrogen-degassed n-butanol (60 mL) was heated at 80 °C for half an hour to give a dark brownred suspension. After cooling of the mixture to ambient temperature, to the suspension was added L1 (72 mg, 0.203 mmol) and the resulting mixture was refluxed for 12 h under nitrogen atmosphere. After 12 h, the dark purple mixture was cooled down to ambient temperature and solvent was evaporated to dryness. The resulting solid was purified by chromatography on silica using a mixture of 7/1 (v/v) acetonitrile/saturated aq. KNO₃ to afford the pure complex 2 as a purple solid. The nitrate salt was metathesized to the PF₆ salt by addition of saturated aqueous KPF₆ solution to the aquous solution of the compound. Crystals suitable for X-ray cryatallography were grown by diffusion of diethyl ether into a moderately concentrated solution of the complex in acetone. Yield = 75 mg (37%). ¹H NMR (CD₃CN, 700 MHz); 8.69 (s, 2 H) 8.54 (d, J^d = 8.0 Hz, 2 H), 8.14 (t, J^t = 8.0 Hz, 1 H), 8.09 (dd, J^d = 8.0 Hz, J^d = 1.0 Hz, 2 H), 8.05 (dd, J^d = 6.0 Hz, J^d = 1.0 Hz, 2 H), 7.99 (td, J^t = 8.0 Hz, J^d = 2.0 Hz, 2 H), 7.67 (t, J^t = 7.0 Hz, 2 H), 7.58 (t, $J^{t} = 7.0$ Hz, 1 H), 7.48 (m, 4 H), 4.04 (m, 2 H), 3.58 (m, 4 H), 3.20 (m, 2 H), 3.05 (m, 4 H), 2.32 (m, 2 H), 2.11 (m, 2 H), 1.67 (m, 2 H), 1.45 (m, 2 H), 1.21 (m, 2 H), 0.85 (m, 2 H) ppm. ¹³C NMR (CD₃CN, 175 MHz); 159.8, 158.8, 155.9, 154.0, 153.9, 143.7, 140.8, 138.2, 137.1, 130.5, 130.3, 128.2, 126.9, 123.9, 120.9, 112.8, 49.6, 48.8, 48.4, 43.8, 23.3, 23.1 ppm. HRMS (ESI), m/z: 909.22556 [M-PF₆]⁺ (C₄₀H₄₂N₁₀PF₆Ru requires 909.22737), 382.13215 [M-2PF₆]²⁺ (C₄₀H₄₂N₁₀Ru requires 382.13132). Anal. Calc for C₄₀H₄₂N₁₀RuP₂F₁₂: C, 45.59; H, 4.02; N, 13.29. Found: C, 45.68; H, 4.08; N, 13.03.


$[Ru(L1)_2][(PF_6)_3]$ (2):

A mixture of $Ru(DMSO)_4Cl_2$ (50 mg, 0.103 mmol) and L1 (75 mg, 0.211 mmol) in nitrogen-degassed ethylene glycol (15 mL) was heated at 200 °C for 2x10 minutes in microwave to give a dark brown solution. After cooling down to ambient temperature, solvent was evaporated to dryness. The chloride salt was metathesized to the PF₆ salt by addition of excess of saturated aqueous KPF₆ solution to the aquous solution of the compound. The resulting brown solid was collected by filtration, washed with water (3x20 mL) and dried under vacuum. The product was purified by silica column chromatography using acetonitrile:saturated aq. KNO₃ (5:2, v/v) as eluent. Crystals suitable for X-ray cryatallography were grown by diffusion of diethyl ether into a concentrated solution of 2 in acetone. Yield = 90 mg (80%). ¹H NMR (CD₃CN, 400 MHz); 27.65 (br, s, 2 H), 18.25 (br, s, 2 H), 8.39 (br, d, J^d = 169.6 Hz, 8 H), 7.09 (br, s, 4 H), 4.59 (br, s, 6 H), 2.99 (br, s, 8 H), 1.46 (br, s, 12 H), 0.54 (br, s, 4 H) 0.09 (br, s, 4 H), -1.02 (br, s, 4 H). ¹³C NMR (CD₃CN, 100 MHz); No peaks were observed due to paramagnecity of the complex. HRMS (ESI), m/z: 1098.29753 $[M-PF_6]^+$ (C₃₈H₅₄N₁₄RuP₂F₁₂ requires 1098.29775), 476.66801 [M-2PF₆]²⁺ (C₃₈H₅₄N₁₄RuPF₆ requires 476.66651), 269.45732 $[M-3PF_6]^{3+}$ (C₃₈H₅₄N₁₄Ru requires 269.45610). Anal. Calc for C₃₈H₅₄N₁₄Ru₁P₃F₁₈ ·3C₃H₆O: C, 39.83; H, 5.12; N, 13.84. Found: C, 39.61; H, 4.80; N, 13.51.

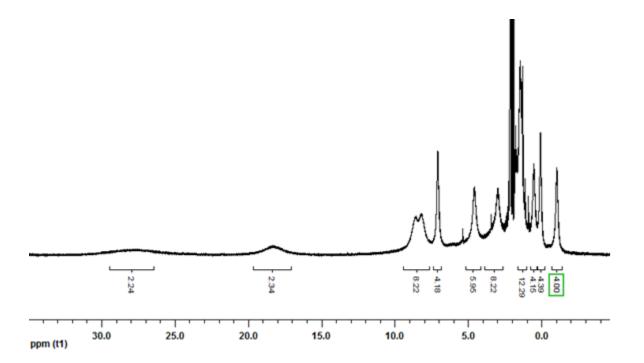

Although after column chromatography and recrystallisation of complex **2**, the thin-layer chromatography dispalyed a single spot, formation of trace amount of homoleptic *mer*-isomer may not be excluded.

Figure S1. ¹H NMR of $Ru(Ph-tpy)Cl_3$ in DMSO- d_6 at 400 MHz at room temperature. The peak at 2.50 ppm is the residual solvent peak.

Figure S2. ¹H NMR of **1** in CD₃CN at 700 MHz at room temperature. The peak at 1.94 ppm is the residual solvent peak.

Figure S3. ¹H NMR of **2** in CD₃CN at 400 MHz at room temperature. The peak at 1.94 ppm is the residual solvent peak.

• X-ray diffraction studies

Diffraction data were collected on a Bruker SMART 6000 with Montel 200 monochromator, equipped with a rotating anode source for Cu K α radiation. The diffraction quality of the crystals were checked, revealing in some cases poor diffraction with a large amount of diffuse scattering, signaling extensive crystal disorder. Cell refinement and data reduction were done using APEX2.⁶ Absorption corrections were applied using SADABS.⁷ Structures were solved by direct methods using SHELXS97 and refined on F^2 by full-matrix least squares using SHELXL97.⁸ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropic on calculated positions using a riding model. For complex **1**, during the refinement of its structure, electron density peaks were located and were believed to be six severely disordered solvated acetone molecules (by counting the number of electrons suppressed). All the attempts made to model the solvent molecules were not successful and they were removed using the SQUEEZE routine from PLATON,⁹ which resulted in a significant improvement of R1 factor by ~3.5% in the squeezed structure. The highest difference peak is located 1.09 Å from atom F4 and the deepest hole is 0.51 Å from atom F1A. In addition, three peaks of density ~ 2 to 1 e/Å³ were present essentially due to the quality of the crystal employed, which was the best available, and is believed to be due to the frequent discrete positional disorder of the freely rotating PF₆ anions. Several fluorine atoms were found to be positionally disordered, each of which were modelled as two components and refined anisotropically. Some atomic displacement restraints were applied among the disorder components to model the anion positions but not applicable for the cation structure.

For complex **2**, the highest difference peak is located 0.97 Å from atom F12B and the deepest hole is 0.36 Å from the atom F8, which are believed to be due to positional disorder arising from freely rotating PF_6 anions. One PF_6 anion was found with a significant degree of rotational disorder about the central P atom over two positions, with occupancy ratios [44:56] and [38:62] and both of them refined anisotropically. Some equivalent atomic displacement parameter (EADP) restraints were applied for few carbon atoms but not applicable for the entire cationic structure.

Additional discussion about crystallography

The geometry optimized structures by DFT calculations of both **1** and **2** are in reasonable agreement with their respective X-ray structures (for a relative comparison of the bond distances and angles, as measured by X-ray data and DFT calculations for **1** and **2**, see Table S2). The Ru-N bond distance [1.946 (2) Å] to central pyridine ring of Ph-tpy is the shortest and the bond lengths closely resemble those observed in $[Ru(Ph-tpy)_2][PF_6]_2$.¹⁰ As ligand L1 is flexible, the **hpp** moietiesin complex **1** were found to be twisted from each other by 71.0(3)°. The average C-

N-C-N dihedral angle of 52.4(4)° (average of <C40-N6-C22-N7 (49.9(4)° and <C33-N8-C26-N7 (55.0(4)°) indicates a broken π -conjugation between the pyridyl and the hpp units. Unlike the typical meridional heteroleptic Tpy-Ru^{II}-Tpy (where Tpy = substituted tpy) complexes, where the shortest Ru-N distances are (2.037(3)-2.043(3) Å) found between Ru-atom and the central py unit,¹¹ all the Ru-N distances in complex 2 are found to be similar (2.053(3)-2.074(4) Å).

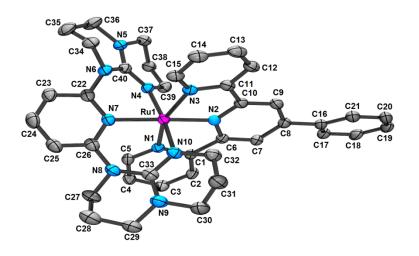
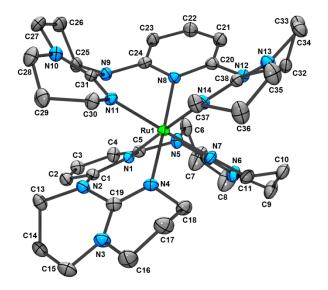

Compound	$1 \cdot [6(C_3H_6O)]$	2 ·[C ₃ H ₆ O]
CCDC Number	978431	922650
Formula	$[C_{40}H_{42}N_{10}Ru][PF_6]_2, [6(C_3H_6O)]$	[C ₃₈ H ₅₄ N ₁₄ Ru][PF ₆] ₃ , [C ₃ H ₆ O]
Mw (g/mol); $d_{calcd.}$ (g/cm ³)	1402.31; 2.028	1301.01; 1.714
<i>T</i> (K); F(000)	100(2); 5808	100(2); 2652
Crystal System	Monoclinic	Orthorhombic
Space Group	C2/c	$P2_{1}2_{1}2_{1}$
Unit Cell:		
<i>a</i> (Å)		12.30660(10)
	40.9186(5)	
b (Å)	12.9990(2)	12.6126(2)
<i>c</i> (Å)	19.2466(2)	32.4825(4)
α (°)	90	90
β (°)	116.184(1)	90
γ (°)	90	90
$V(Å^3); Z$	9186.7(2); 8	5041.88(11); 4
θ range (°); completeness	2.41-70.71; 0.996	2.72-71.15; 0.997
R _{fle} :collec./indep.; R _{int}	177747/8737; 0.0265	67140/9381; 0.0296
μ (mm ⁻¹)	4.533	4.487
$R1(F)$; $wR(F^2)$; $GoF(F^2)^a$	0.0468; 0.1299; 1.038	0.0367; 0.0978; 1.025
Residual electron density	1.914; -0.777	1.196; -1.134

Table S1. Crystallographic data of $1 \cdot [6(C_3H_6O)]$ and $2 \cdot [(C_3H_6O)]$.


^aR1(F) based on observed reflections with I>2 σ (I) for 1·[6(C₃H₆O)] and 2·[C₃H₆O]; wR(F²) and GoF(F²) based on all data for all compounds.

Compound		Bond Length			Angle			
$1 \cdot [6(C_3H_6O)]$		Obs. (X-ray)	Calc. (DFT)		Obs. (X-ray)	Calc. (DFT)		
-	N1-Ru1	2.0646 (0.0024)	2.12887	N1-Ru1-N3	159.28 (0.10)	157.256		
-	N2-Ru1	1.9462 (0.0024)	1.98758	N4-Ru1-N10	173.83 (0.10)	172.513		
	N3-Ru1	2.0761 (0.0025)	2.12874					
	N4-Ru1	2.0711 (0.0025)	2.13996					
	N7-Ru1	2.0720 (0.0025)	2.11279					
-	N10-Ru1	2.0919 (0.0026)	2.13997					
-	N4-C40	1.3050 (0.0039)	1.31063					
-	N5-C40	1.3498 (0.0043)	1.36487					
-	N6-C40	1.4072 (0.0040)	1.40913					
-	N10-C33	1.3102 (0.0043)	1.31062					
-	N9-C33	1.3430 (0.0045)	1.36485					
-	N8-C33	1.3998 (0.0043)	1.40917					
$2 \cdot [(C_3H_6O)]$	Ru1-N1	2.066(2)	2.11983	N1-Ru1-N4	83.47(10)	82.462		
-	Ru1-N4	2.053(3)	2.12115	N1-Ru1-N7	84.34(10)	82.526		
-	Ru1-N7	2.067(3)	2.11459	N4-Ru1-N7	92.17(10)	91.774		
-	Ru1-N8	2.062(2)	2.11984	N8-Ru1-N11	84.03(10)	82.525		
-	Ru1-N11	2.074(3)	2.11450	N8-Ru1-N14	82.60(10)	82.461		
-	Ru1-N14	2.071(3)	2.12122	N11-Ru1-N14	92.00(11)	91.772		
-				N1-Ru1-N14	178.14(10)	175.528		
-				N4-Ru1-N8	177.74(10)	175.532		
-				N7-Ru1-N11	171.04(10)	172.724		

Table S2. Selected bond distances and angles of $1 \cdot [6(C_3H_6O)]$ and $2 \cdot [(C_3H_6O)]$.

Figure S4. View of ORTEP diagram of **1** (ellipsoids correspond to a 50% probability level), with complete labeling. Hydrogen atoms, anions and solvent molecules are omitted for clarity.

Figure S5. View of ORTEP diagram of **2** (ellipsoids correspond to a 50% probability level), with complete labeling. Hydrogen atoms, anions and solvent molecules are omitted for clarity.

• Electrochemical data

Compound	$E_{1/2}(\mathbf{ox})^a$		$E_{1/2}(\operatorname{red})^a$		$\Delta E_{1/2}^{b}$
L1	1.11 (308)	0.77 (irr) ^c			
1		0.50 (94)	-1.47 (70)	-2.01 (84)	1.97
2	1.18 (147)		-0.29 (138)		1.47
$[\operatorname{Ru}(\operatorname{tpy})_2][(\operatorname{PF}_6)_2]^d$	1.31 (60)		-1.23 (70)	-1.47 (69)	2.54
$[Ru(Ph-tpy)_2]^{2+e}$	1.29		-1.26		2.55
$[Ru(tpy)(N^C^N)]^{+fg}$		0.51 (62)	-1.55 (63)		2.06

Table S3. Electrochemical data for L1, 1, 2 and some reference compounds.

^{*a*}Potentials are in volts *vs.* SCE for acetonitrile solutions, 0.1 M in [*n*-Bu₄N]PF₆, recorded at 25 ± 1 °C at a sweep rate as mentioned in experimental section. The difference between cathodic and anodic peak potentials (millivolts) is given in parentheses. ^{*b*}Difference between the first oxidation and first reduction potentials (volt). ^{*c*}Irreversible; potential is given for the anodic wave. ^{*d*}From ref. 12. ^{*e*}From ref. 13. ^{*f*}From ref. 14. ^{*g*}N^C^N = 1,3-di(2-pyridyl)benzene.

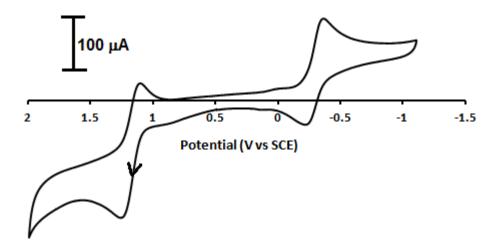
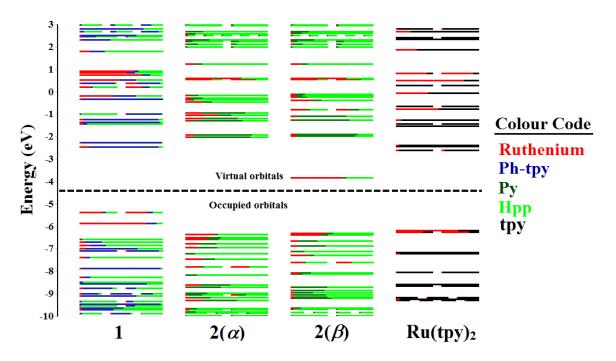
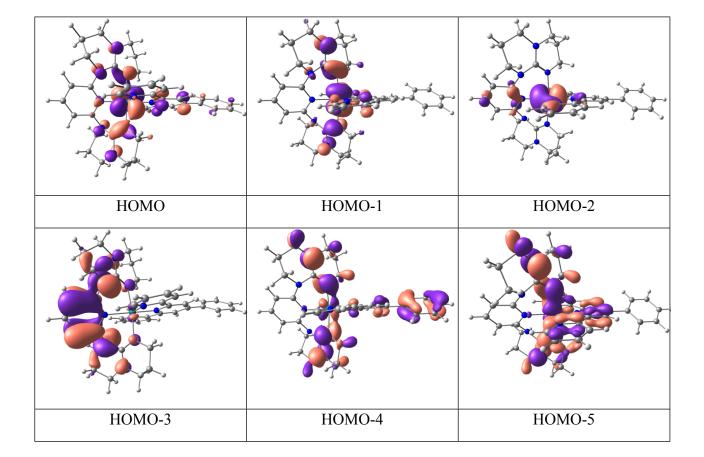
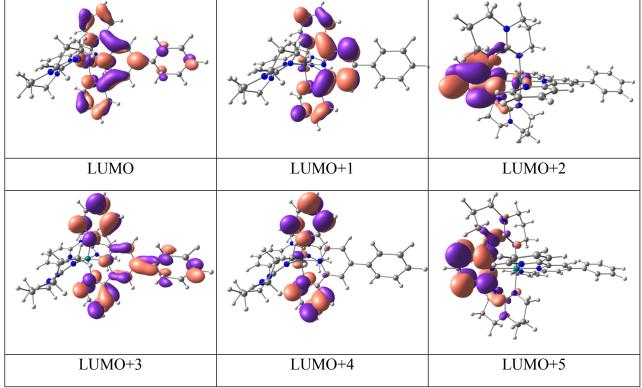


Figure S6. Cyclic voltammogram of 2 in dry, degassed CH_3CN , recorded at a scan rate of 25 mV/s.




Figure S7. Calculated frontier MO energies of all the modeled 1, 2 and $Ru(tpy)_2$ complexes obtained from DFT(b3lyp/LanL2DZ(f))[Ru]6-31G**[NCN] with CPCM(CH₃CN) and 0.05 eV of threshold of degeneracy. Restricted closed shell model was applied for diamagnetic complexes, 1 and $Ru(tpy)_2$, while unrestricted open shell model was applied for paramagnetic complex, 2.


Table S4. MO composition of $Ru(tpy)_2^{2+}$ in singlet (S=0) ground state (rb3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

MO	Energy (eV)	Approximate Composition (%)		
		Ru	tpy	
LUMO+5	-1.44	1	99	
LUMO+4	-1.53	0	100	
LUMO+3	-2.37	3	97	
LUMO+2	-2.44	0	100	
LUMO+1	-2.60	7	93	
LUMO	-2.60	7	93	
НОМО	-6.18	70	30	
HOMO-1	-6.25	72	28	
HOMO-2	-6.26	72	28	
HOMO-3	-7.16	0	100	
HOMO-4	-7.21	3	97	
HOMO-5	-8.03	2	98	

MO	Energy (eV)		Approximate Composition (%)			
		Ru	Ph-tpy	L1		
LUMO+5	-0.99	1	1	98		
LUMO+4	-1.25	3	95	2		
LUMO+3	-1.36	1	99	0		
LUMO+2	-1.43	4	2	94		
LUMO+1	-2.27	2	98	0		
LUMO	-2.46	9	88	2		
НОМО	-5.37	57	18	25		
HOMO-1	-5.37	61	10	29		
HOMO-2	-5.86	84	10	6		
HOMO-3	-6.56	2	1	97		
HOMO-4	-6.69	5	26	70		
HOMO-5	-6.85	13	22	66		

Table S5. MO composition of 1^{2+} in singlet (S=0) ground state (rb3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

Figure S8. Kohn-Sham electron density sketches in different MOs for 1^{2+} in (*S*=0) ground state

Table S6. UV-vis absorption data of L1, 1, 2 in dry degassed acetonitrile and some reference compounds.

Compound	λ_{max} , nm (ϵx	10^3 , M ⁻¹ cm ⁻¹)					
L1	228 (29.0)	311 (12.8)					
1	225 (26.2)	244 (22.6)	289(26.9)	317 (13.3)	379 (6.1)	541 (5.0)	622 (3.3)
2	234 (35.2)	326 (12.8)	433 (3.9)	564 (1.9)			
$\operatorname{Ru}(\operatorname{tpy})_2^{2+a}$	270(40.9)	307(66.7)	475(15.3)				
Ru(tpy)(N^C^N) ^{+b}	243(49.8)	277(47.0)	315(37.0)	368(sh)	424(9.6)	499(14.4)	

^{*a*}From ref 15. ^{*b*}From ref 14.

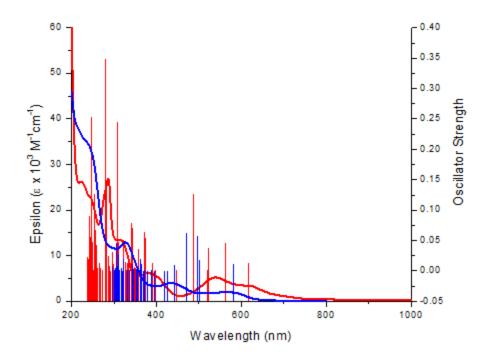
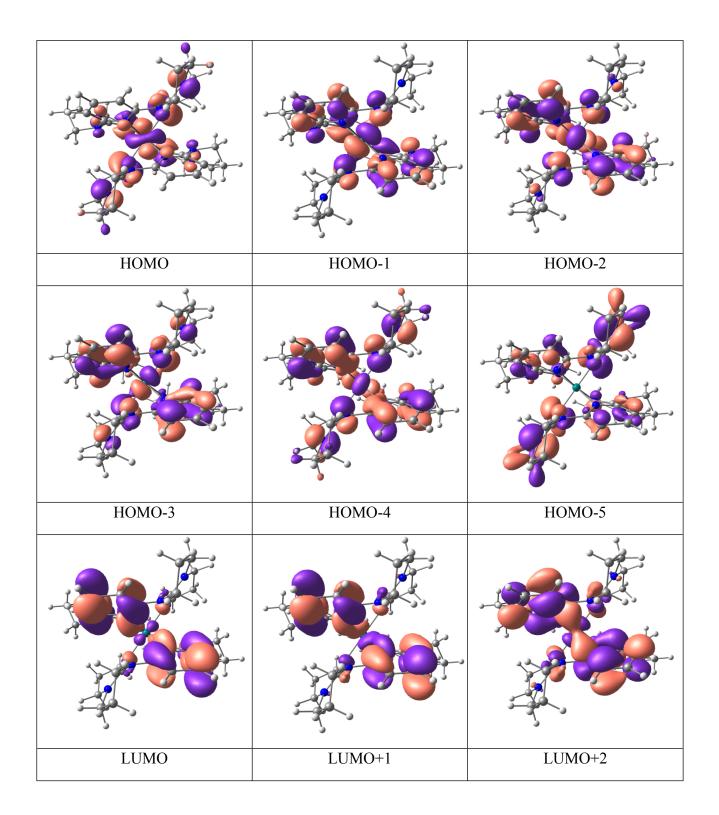


Figure S9. Overlay of experimental (curved lines) absorption spectra and calculated (straight lines) oscillator strengths at different wavelengths of 1 (red) and 2 (blue), at ambient temperature in dry acetonitrile.

Table S7. Selected transitions from TD-DFT calculations of	1 ²⁺ in	the	singlet	ground	state
(rb3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N], CPCM (CH ₃ CN)).					


energy (eV)	λ/nm	$\lambda/nm (\epsilon x 10^3 M^{-1} cm^{-1})$	f	transition	character
5.03	246	[expt.] 244(22.6)	0.2525	H-3->L+5 (68%)	hpp(π) to hpp(π^*) &/or hpp(n) to hpp(π^*)
4.44	279	289(26.9)	0.3477	H-7->L+1 (61%), H-8->L+1 (13%)	tpy(π) to tpy(π^*)
4.02	308	317(13.3)	0.2449	H-7->L (51%)	tpy(π) to tpy(π^*)
3.34	371	379(6.1)	0.0632	H-1->L+3 (92%)	Ru($d\pi$) to tpy(π^*)
2.20	562	541(5.0)	0.0444	H->L (64%), H-1->L+1 (20%), H-2->L (10%)	Ru($d\pi$) to tpy(π^*)
2.01	616	622(3.3)	0.0117	H-1->L (94%)	Ru($d\pi$) to tpy(π^*)

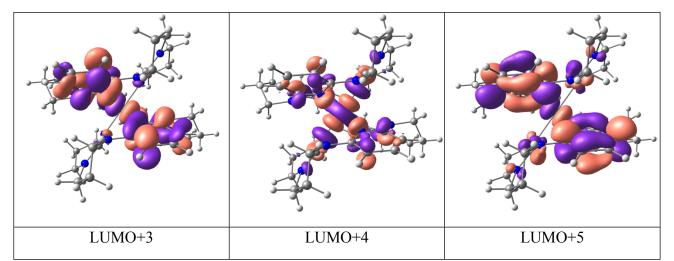
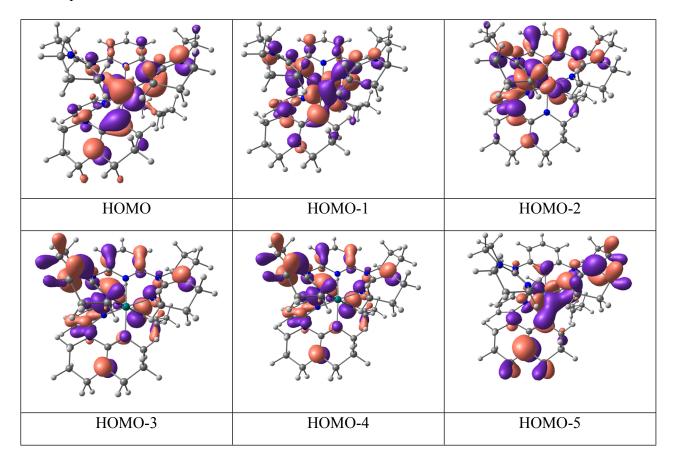

MO	Energy (eV)	Composition		ition
		Ru	Py	hpp
LUMO+5	-0.95	21	58	21
LUMO+4	-1.04	50	17	34
LUMO+3	-1.18	27	46	28
LUMO+2	-1.29	7	74	19
LUMO+1	-1.93	11	76	13
LUMO	-2.02	5	82	13
НОМО	-6.35	31	3	65
HOMO-1	-6.50	26	18	56
HOMO-2	-6.57	20	22	58
HOMO-3	-6.77	14	26	60
HOMO-4	-6.95	11	32	57
HOMO-5	-7.20	1	13	86

Table S8. MO composition of 2^{3+} in (S=1) ground state in α -spin (ub3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).


Table S9. MO composition of 2^{3+} in (S=1) ground state in β -spin (ub3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

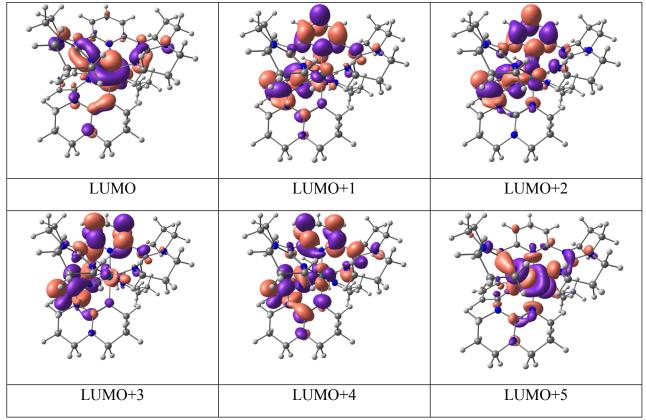

MO	Energy (eV)	Composition		ition
		Ru	Py	hpp
LUMO+5	-0.82	56	9	34
LUMO+4	-1.09	9	68	24
LUMO+3	-1.27	2	80	18
LUMO+2	-1.89	8	80	12
LUMO+1	-1.97	6	81	14
LUMO	-3.84	65	5	29
НОМО	-6.30	41	10	49
HOMO-1	-6.39	33	13	55
HOMO-2	-6.66	8	28	64
HOMO-3	-6.87	8	40	52
HOMO-4	-7.11	1	18	81
HOMO-5	-7.28	20	8	72
HOMO-6	-7.59	38	2	60
HOMO-7	-7.61	32	10	58
HOMO-8	-8.07	13	11	75
HOMO-9	-8.12	1	15	84
HOMO-10	-8.70	0	51	49

Figure S10. Kohn-Sham electron density sketches of different MOs for 2^{3+} in (*S*=*1*) ground state in α -spin

Figure S11. Kohn-Sham electron density sketches of different MOs for 2^{3+} in (*S*=*I*) ground state in β -spin

Table S10. Selected transitions from TD-DFT calculations of 2^{3+} in the ground state (ub3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N], CPCM (CH₃CN)).

Energy (eV)	λ/nm	λ/nm ($\epsilon x 10^3$ M ⁻¹ cm ⁻¹) [expt.]	f	Major transition(s)	character
3.84	323	326 (12.8)	0.0116	H-10(β) -> L(β) (61%)	Py/hpp(n/ π)toRu(d π) (major) +Py/hpp(n/ π)toPy/hpp(π *)
2.64	469	433 (3.9)	0.0623	H-6(β) -> L(β) (81%)	hpp(n/ π)toRu(d π) (major) +Ru(d π)tohpp(π *) (minor)
2.13	581	564 (1.9)	0.0111	H-3(β) -> L(β) (59%), H-1(β) -> L(β) (23%), H-5(β) -> L(β) (12%)	Py/hpp(n/ π)toRu(d π) (major) +Ru(d π)tohpp(π *) (minor)

Compound	Excited at	Luminescence at	Luminescence at 298 K			
	λ_{max}, nm	λ_{max}, nm	τ, ns	Φ (x 10 ⁻⁶)		
L1	228, 311	360				
1	622, 541	901	129	1000		
2	564, 433					
$\operatorname{Ru}(\operatorname{tpy})_2^{2+a}$	475	629	0.25	< 5		
$Ru(Ph-tpy)_2^{2+a}$	488	715	1.0	40		
$Ru(tpy)(N^C^N)^{+b}$	499	781		9.4		

Table S11. Emission data of L1 and 1, 2 in dry degassed acetonitrile and some reference compounds.

^{*a*}From ref 13 (using Ru(bpy)₃(PF₆)₂ ($\Phi = 0.028$) as standard). ^{*b*}From ref 14 (using Ru(bpy)₃(PF₆)₂ ($\Phi = 0.062$) as standard).

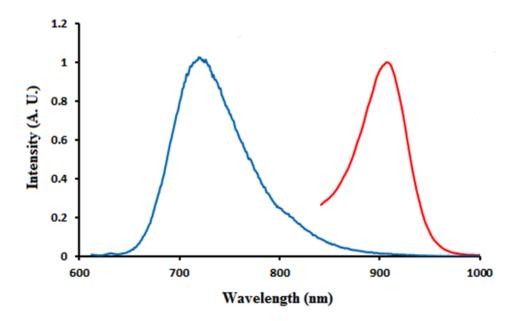


Figure S12. Emission spectra of complexes $[Ru(Ph-tpy)_2][(PF_6)_2]$ (blue) and 1 (red), corrected for photomultiplier response.

• Additional DFT data

Computational details:

All calculations were performed with the Gaussian03¹⁶ employing the DFT method, the Becke three-parameter hybrid functional,¹⁷ and Lee-Yang-Parr's gradient-corrected correlation functional (B3LYP).¹⁸ Singlet ground state geometry optimizations for 1^{2+} and 2^{3+} were carried out at the (R)B3LYP and (U)B3LYP levels, respectively, in the gas phase, using their respective crystallographic structures as starting points. All elements except Ru were assigned the 6-31G(d,f) basis set.¹⁹ The double- ζ quality LANL2DZ ECP basis set²⁰ with an effective core potential and one additional f-type polarization was employed for the Ru atom. Vertical electronic excitations based on (R)B3LYP and (U)B3LYP-optimized geometries were computed for 1^{2+} and 2^{3+} using the TD-DFT formalism, $2^{1a,b}$ respectively, in acetonitrile using conductorlike polarizable continuum model (CPCM).^{22a-c} Vibrational frequency calculations were performed to ensure that the optimized geometries represent the local minima and there are only positive eigenvalues. The electronic distribution and localization of the singlet excited states were visualized using the electron density difference maps (ED-DMs).²³ Gausssum 2.2 and Chemissian were employed to visualize the absorption spectra (simulated with Gaussian distribution with a full-width at half maximum (fwhm) set to 3000 cm-1) and to calculate the fractional contributions of various groups to each molecular orbital. All calculated structures and Kohn-Sham orbitals were visualized with ChemCraft.²⁴

Table S12. Optimized Atomic coordinates obtained from DFT for 1²⁺ in singlet ground state (rb3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	44	0	-0.545664	0.000015	0.000029
2	7	0	-0.125997	-0.992801	-1.835809
3	7	0	1.441919	-0.000293	0.000095
4	7	0	-0.125823	0.992635	1.835781
5	7	0	-0.685039	1.879629	-1.013404
6	7	0	-1.557872	4.078253	-1.035268
7	7	0	-2.632296	2.381660	0.198591
8	7	0	-2.658451	0.000291	-0.000208
9	7	0	-2.632879	-2.381065	-0.198906
10	7	0	-1.559575	-4.077736	1.035804
11	7	0	-0.685736	-1.879521	1.013545
12	6	0	1.215531	-1.205606	-2.029274
13	6	0	1.683070	-1.874469	-3.164219
14	1	0	2.745061	-2.044867	-3.295426
15	6	0	0.783095	-2.310952	-4.132485
16	1	0	1.137914	-2.829022	-5.017247
17	6	0	-0.575421	-2.054084	-3.949415
18	1	0	-1.311835	-2.352853	-4.687259
19	6	0	-0.981762	-1.397838	-2.791368
20	1	0	-2.026384	-1.177505	-2.609378
21	6	0	2.107587	-0.628445	-1.001251
22	6	0	3.500601	-0.648214	-1.013787
23	1	0	4.033544	-1.176265	-1.794746
24	6	0	4.232029	-0.000458	0.000019
25	6	0	3.500739	0.647372	1.013878
26	1	0	4.033778	1.175389	1.794796
27	6	0	2.107723	0.627761	1.001416
28	6	0	1.215752	1.205071	2.029420
29	6	0	1.683342	1.873669	3.164492
30	1	0	2.745375	2.043705	3.295850
31	6	0	0.783382	2.310310	4.132703
32	1	0	1.138248	2.828196	5.017553
33	6	0	-0.575185	2.053844	3.949446
34	1	0	-1.311602	2.352737	4.687237
35	6	0	-0.981583	1.397818	2.791295
36	1	0	-2.026237	1.177782	2.609166
37	6	0	5.710344	-0.000517	-0.000054
38	6	0	6.427415	0.049301	-1.209224
39	1	0	5.896264	0.124435	-2.153750
40	6	0	7.820229	0.052787	-1.207627
41	1	0	8.359749	0.105880	-2.147907
42	6	0	8.520394	-0.000641	-0.000197
43	1	0	9.605732	-0.000690	-0.000255
44	6	0	7.820349	-0.054003	1.207305

4 5	1	0	0 0 0 0 0 0 0 0	0 1 0 7 1 4 0	0 1 48501
45	1	0	8.359957	-0.107143	2.147531
46	6	0	6.427534	-0.050395	1.209041
47	1	0	5.896471	-0.125471	2.153621
48	6	0	-3.348245	1.170337	0.050467
49	6	0	-4.747245	1.198068	0.013790
50	1	0	-5.279232	2.138914	-0.009551
51	6	0	-5.449020	0.000742	-0.001062
52	1	0	-6.534046	0.000896	-0.001430
53	6	0	-4.747612	-1.196815	-0.015457
54	1	0	-5.279963	-2.137458	0.007572
55	6	0	-3.348583	-1.169566	-0.051243
56	6	0	-3.271660	-3.476228	-0.959430
57	1	0	-2.518399	-3.898114	-1.636251
58	1	0	-4.058349	-3.050662	-1.581165
59	6	0	-3.784006	-4.545603	-0.004833
60	1	0	-4.512594	-4.112064	0.687692
61	1	0	-4.283864	-5.355724	-0.543260
62	6	0	-2.583733	-5.099862	0.752223
63	1	0	-2.893187	-5.553467	1.700507
64	1	0	-2.102096	-5.888222	0.159208
65	6	0	-0.391239	-4.570924	1.779657
66	1	0	0.423413	-4.814073	1.083522
67	1	0	-0.683072	-5.496891	2.279690
68	6	0	0.040204	-3.511660	2.781920
69	1	0	-0.760307	-3.359666	3.514395
70	1	0	0.930867	-3.833960	3.328886
71	6	0	0.331589	-2.222815	2.021853
72	1	0	0.414511	-1.386817	2.720554
73	1	0	1.299327	-2.306988	1.512104
74	6	0	-1.584556	-2.765697	0.660654
75	6	0	-3.271059	3.476777	0.959209
76	1	0	-2.518006	3.898102	1.636619
77	1	0	-4.058266	3.051268	1.580322
78	6	0	-3.782431	4.546739	0.004756
79	1	0	-4.282251	5.356848	0.543233
80	1	0	-4.510812	4.113789	-0.688361
81	6	0	-2.581520	5.100802	-0.751417
82	1	0	-2.890331	5.555206	-1.699527
83	1	0	-2.099683	5.888518	-0.157691
84	6	0	-0.389181	4.571063	-1.778811
85	1	0	0.425486	4.813658	-1.082502
86	1	0	-0.680501	5.497293	-2.278662
87	6	0	0.041902	3.511833	-2.781274
88	1	0	-0.758605	3.360364	-3.513858
89	1	0	0.932764	3.833862	-3.328076
89 90	1 6	0	0.332619	2.222704	-2.021441
91	1	0	0.415327	1.386798	-2.720289
92	1	0	1.300305	2.306385	-1.511509
93	6	0	-1.583561	2.766106	-0.660472

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms) X Y Z		
1	44	0	-0.002715	0.399660	-0.013711
2	7	0	-1.165717	-0.946667	1.036428
3	7	0	-3.082467	0.407767	0.752916
4	7	0	-3.289103	2.537075	1.656897
5	7	0	-1.185491	1.791633	0.923749
6	7	0	0.796241	-2.046974	1.675821
7	7	0	2.195813	-1.132409	3.279170
8	7	0	1.263223	0.262285	1.615081
9	7	0	1.153897	-0.974733	-1.026198
10	7	0	-0.815465	-2.093801	-1.621427
11	7	0	-2.276328	-1.245576	-3.216340
12	7	0	-1.267483	0.211105	-1.646255
13	7	0	3.070494	0.361534	-0.730656
14	7	0	3.340513	2.458310	-1.710168
15	7	0	1.203213	1.753173	-1.015055
16	6	0	-2.516779	-0.839736	1.061246
17	6	0	-3.316456	-1.939703	1.361833
18	1	0	-4.264419	-1.867831	1.355937
19	6	0	-2.701879	-3.141409	1.667354
20	1	0	-3.229716	-3.921205	1.800350
21	6	0	-1.327468	-3.216602	1.780275
22	1	0	-0.901398	-4.026477	2.037635
23	6	0	-0.588628	-2.075913	1.505784
24	6	0	1.524776	-3.305370	1.904047
25	1	0	2.424070	-3.249982	1.494837
26	1	0	1.037064	-4.055978	1.478595
27	6	0	1.656483	-3.561228	3.398871
28	1	0	0.767064	-3.762067	3.784968
29	1	0	2.247748	-4.340574	3.556216
30	6	0	2.215613	-2.378151	4.040125
31	1	0	3.156566	-2.576442	4.277198
32	1	0	1.724240	-2.228530	4.886123
33	6	0	3.044080	-0.083264	3.849462
34	1	0	3.898192	-0.474942	4.160925
35	1	0	2.590236	0.329362	4.626629
36	6	0	3.315998	0.969188	2.793226
37	1	0	3.893958	0.596321	2.080421
38	1	0	3.777293	1.746145	3.196033
39	6	0	1.977787	1.396277	2.212356
40	1	0	1.421333	1.794211	2.927535
40 41	1	0	2.126525	2.090804	1.521756
41 42	6	0	1.423934	-0.904340	2.206707
42 43	6	0	-4.547032	0.490401	0.624124
43 44	6 1	0	-4.914279	-0.382783	0.334854
44 45	1	0	-4.914279		
45 46	1 6	0		1.173291	-0.049778
			-5.107487	0.871754	1.985420
47	1	0	-4.789041	0.242874	2.680633

Table S13. Optimized Atomic coordinates obtained from DFT for **2**³⁺ in ground state (ub3lyp/LanL2DZ(f)[Ru]6-31G**[C,H,N]).

48	1	0	-6.097954	0.852975	1.971540
49	6	0	-4.600932	2.280609	2.260501
50	1	0	-5.253102	2.933702	1.904878
51	1	0	-4.537787	2.417516	3.239671
52	6	0	-2.887439	3.946965	1.807329
53	1	0	-2.790902	4.163369	2.767894
54	1	0	-3.588480	4.533355	1.427234
55	6	0	-1.587827	4.196080	1.104187
56	1	0	-1.199763	5.059268	1.400576
57	1	0	-1.732120	4.237630	0.125379
58	6	0	-0.640683	3.050758	1.445224
59	1	0	0.248271	3.221592	1.046055
60	1	0	-0.532396	2.987725	2.427683
	6		-2.472199	1.604164	
61		0			1.146744
62	6	0	2.511618	-0.883604	-1.025443
63	6	0	3.301219	-1.987160	-1.289542
64	1	0	4.249684	-1.920889	-1.265425
65	6	0	2.694820	-3.181678	-1.585813
66	ů 1	0	3.223883	-3.962722	-1.696489
67	6	0	1.320976	-3.260216	-1.725680
68	1	0	0.900355	-4.069021	-1.986946
69	6	0	0.579040	-2.114429	-1.469318
70	6	0	-1.500820	-3.386315	-1.853270
71	1	0	-2.422367	-3.352244	-1.491903
72					
	1	0	-1.012821	-4.115695	-1.394616
73	6	0	-1.537823	-3.643851	-3.345046
74	1	0	-1.966092	-4.517194	-3.533862
75	1	0	-0.619036	-3.657579	-3.713578
76	6	0	-2.345825	-2.508958	-3.972492
77	1	0	-2.012563	-2.349457	-4.891269
		-			
78	1	0	-3.292554	-2.788594	-4.038583
79	6	0	-3.147589	-0.204924	-3.784509
80	1	0	-4.020212	-0.602929	-4.032619
81	1	0	-2.732654	0.162765	-4.604386
82	6	0	-3.363629	0.898087	-2.792837
83	ů 1	0	-3.932721	0.578885	-2.048945
84	1	0	-3.817822	1.661615	-3.229683
85	6	0	-2.003079	1.336148	-2.258490
86	1	0	-1.467002	1.712771	-3.000805
87	1	0	-2.131348	2.048102	-1.583691
88	6	0	-1.468029	-0.979148	-2.180709
89	6	0	4.535934	0.451683	-0.535131
90	1	0	4.886105	-0.409380	-0.190113
91	1	0	4.747233	1.161766	0.122062
92	6	0	5.172698	0.773138	-1.871302
93	1	0	4.893993	0.113872	-2.554450
94	1	0	6.159466	0.756284	-1.797309
95	6	0	4.692533	2.161621	
					-2.247531
96	1	0	5.332862	2.832925	-1.901601
97	1	0	4.673129	2.240418	-3.235302
98	6	0	2.951583	3.844781	-1.954897
99	1	0	2.904109	4.006091	-2.930414
100	1	0	3.638186	4.451727	-1.576796
100	6	0	1.613615	4.150265	-1.328231
TOT	U	U	T.013013	4.130203	-1.320231

102	1	0	1.242465	4.984657	-1.708109
103	1	0	1.715327	4.269646	-0.350380
104	6	0	0.683750	2.990582	-1.616799
105	1	0	-0.214191	3.185233	-1.249838
106	1	0	0.596465	2.871061	-2.596302
107	6	0	2.498457	1.555243	-1.183595

References:

- (a) C. A. Parker, W. T. Rees, *Analyst*, 1960, **85**, 587, (b) G. A. Crosby, J. N. Demas, *J. Phys. Chem.*, 1971, **75**, 991.
- C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, *Nat. Protocol*, 2013, 8, 1535.
- 3. J. Wang, G. S. Hanan, Synlett, 2005, 8, 1251.
- 4. Y. Sun, M. L. Machala, F. N. Castellano, Inorg. Chim. Acta, 2010, 363, 283.
- 5. M.-P. Santoni, A. K. Pal, G. S. Hanan, A. Proust, B. Hasenknopf, *Inorg. Chem. Commun.*, 2011, **14**, 399.
- APEX2 (2007) version 2.4-0; Bruker Molecular Analysis Research Tool. Bruker AXS Inc., Madison, WI 53719-1173.
- G. M. Sheldrick (1996). SADABS, Bruker Area Detector Absorption Corrections. Bruker AXS Inc., Madison, WI 53719-1173.
- SHELXTL (2001) version 6.12; Bruker Analytical X-ray Systems Inc., Madison, WI 53719-1173.
- 9. A. L. Spek, (2008). PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.
- E. C. Constable, C. E. Housecroft, E. A. Medlycott, M. Neuburger, F. Reinders, S. Reymann, S. Schaffner, *Inorg. Chem. Commun.*, 2008, **11**, 805.
- M. Jäger, R. J. Kumar, H. Görls, J. Bergquist, O. Johansson, *Inorg. Chem.*, 2009, 48, 3228.

- 12. A. Harriman, A. Mayeux, A. D. Nicola, R. Ziessel, Phys. Chem. Chem. Phys., 2002, 4, 2229.
- M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. C. Thompson, *Inorg. Chem.*, 1995, 34, 2759.
- 14. S. H. Wadman, M. Lutz, D. M. Tooke, A. L. Spek, F. Hart, R. W. A. Havenith, G. P. M. van Klink, G. van Koten, *Inorg. Chem.*, 2009, **48**, 1887.
- U. Siemeling, J. V. der Bruggen, U. Vorfeld, B. Neumann, A. Stammler, H.-G. Stammler, A. Brockhinke, R. Plessow, P. Zanello, F. Laschi, F. F. de Biani, M. Fontani, S. Steenken, M. Stapper, G. Gurzadyan, *Chem. Eur. J.*, 2003, 9, 2819.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. J. Vreven, K. N. Kudin, J. C. Burant, J. M. S. Millam, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Startmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, J. M. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Cliffors, J. B. Cioslowski, G. Liu, A. Liashenko, I. Piskorz, L. M. R. Komaromi, D. J. Fox, T. Keith, M. A. Al–Laham, C. Y. Peng, A. Manayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 2003, Revision C.02; Gaussian Inc.:Pittsburgh PA, 2003.*
- 17. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

- 18. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter, 1988, 37, 785.
- 19. A. D. McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.
- 20. P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
- 21. (a) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, *J. Chem. Phys.*, 1998, 108, 4439. (b) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, *J. Chem. Phys.*, 1998, 109, 8218.
- 22. (a) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem., 2003, 24, 669. (b) M. Cossi, V. Barone, J. Chem. Phys., 2001, 115, 4708. (c) V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.
- W. R. Browne, N. M. O'Boyle, J. J. McGarvey, J. G. Vos, *Chem. Soc. Rev.*, 2005, 34, 641.
- 24. D. A. Zhurko, G. A. Zhurko, *ChemCraft 1.5*; Plimus: San Diego, CA. Available at http://www.chemcraftprog.com.