Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Supporting Information

A pillared-layered zincoborate with an anionic network containing unprecedented zinc oxide chains

Pei Zhao,^a Zhi-En Lin^{*b} Qi Wei,^a Lin Cheng,^a and Guo-Yu Yang^{*a}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. Fax: +86 591-8371-0051; E-mail: ygy@fjirsm.ac.cn ^bCollege of Chemistry, Sichuan University, Chengdu 610064, China. E-mail: zhienlin@scu.edu.cn

Experimental Section

Materials and physical measurements. All chemicals and solvents in this study were commercially purchased and used without further purification. Elemental analyses of C, H and N were carried out with a Vario EL IIICHNOS elemental analyzer. IR spectra (KBr pellets) were recorded on an ABB Bomen MB₁₀₂ spectrometer over a range 400-4000 cm⁻¹. Thermal analyses were performed in air atmosphere with a heating rate of 10 °C/min from 30 to 1000 °C using a Mettler Toledo TGA/SDTA 851° thermal analyzer. X-ray diffraction data were collected on an Agilent SuperNova Dual diffractometer with graphite-monochromated CuK α ($\lambda = 1.54178$ Å) radiation at room temperature. The program SADABS was used for the absorption correction. The structures were solved by the direct method and refined on F² by full-matrix least-squares methods using the SHELX97 program package. Powder XRD patterns were obtained using a Philips X'Pert-MPD diffractometer with CuK_a radiation ($\lambda = 1.54056$ Å). Diffuse-reflectance UV/Vis spectrum was recorded at room temperature on a PE Lambda 950 UV/Vis spectrophotometer in the wavelength range of 200-800 nm. BaSO₄ powder was used as 100% reflectance reference. The reflectance data were converted to absorbance using the Kubelka-Munk function: $\alpha/S = (1-R)^2/2R$, where *a* is the absorption coefficient, *S* is the scattering coefficient, and *R* is the reflectance.

X-Ray data collection and structure refinement

Non-hydrogen atoms were refined anisotropically, and all hydrogen atoms bonded to C were generated geometrically. Crystallographic data and structural refinements for them are summarized in **Table S1**.

Table S1 Crystal and structure refinement data for 1.	
Empirical formula	$C_6H_{24}B_5N_2O_{15.5}Zn_4$
Formula weight	687.80
Crystal system	Monoclinic
space group	C2/c
T/K	293
λ/Å	<mark>1.54178</mark>
a/Å	<mark>26.8486(6)</mark>
$b/\text{\AA}$	<mark>9.8558(2)</mark>
$c/{ m \AA}$	17.0824(4)
$\beta/^{\circ}$	107.816(2)
<i>V</i> / Å ³	<mark>4303.48(16)</mark>
Ζ	8

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

$D_{\rm c}/{\rm g~cm^{-3}}$	2.123
μ/mm^{-1}	<u>5.759</u>
F(000)	2744
GOF	1.220
Reflections collected	13628
Unique reflections (R _{int})	3855 (0.0205)
Observed reflections[$I > 2\sigma(I)$]	3732
Refined parameters	341
$R_1/wR_2 \left[I > 2\sigma(I)\right]$	0.0740/0.2290
R_1/wR_2 (all data)	0.0749/0.2295

Supporting figures:

As shown in **Fig. S1**, the absorption band between $3514-2861 \text{ cm}^{-1}$ are assigned as the asymmetric and symmetric stretching vibrations of C-N, C-C, N-H, C-H, The vibrations in the region of $1633-1361\text{ cm}^{-1}$ are corresponding to the bending vibrations of the N-H, C-H. The vibration absorption at 1255 cm^{-1} is due to the B-O asymmetric bond of BO₃ units, whereas that of BO₄ units appears at 1046 and 1005 cm^{-1} .

Fig. S2 The zigzag Zn-O chain constructed from the heart-like Zn_6O_8 clusters and Zn_2O_4 dimers in the structure of 1.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Fig. S3 TG curve of 1.

As shown in **Fig. S3**, TG curve of **1** shows a total weight loss of 23.43%, corresponding to the removal of water molecules, dah molecules and the successive release of the dehydration of the hydroxyls.