Supporting Information

For

MeOTf-induced Carboannulation of Arylnitriles and Aromatic Alkynes: A New Metal-free Strategy to Construct Indenones

Xiaoyu Yan^a, Song Zou^b, Peng Zhao^a and Chanjuan Xi^{*a,c}

^aKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China ^bSchool of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China ^cState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China Email: cjxi@tsinghua.edu.cn

Contents

General Considerations	S2
Experimental Procedures	S2–S14
References	S14
Copies of ¹ H and ¹³ C NMR Spectra	S15-S64

General Considerations

All manipulations were conducted in sealed tubes under an atmosphere of nitrogen. Unless otherwise noted, all starting materials were commercially available and were used without further purification. DCE was dried by 4Å molecule sieves. ¹H NMR and ¹³C NMR spectra were recorded on JOEL 300MHz and 400MHz NMR spectrometer with TMS as internal standard. GC-MS spectra were recorded on Hewlett Packard GC-MS system. Single-crystal X-ray diffraction analysis for **4a** was carried out on a Bruker SMART 1000 CCD diffractometer with graphite monochromated Mo K α radiation (λ = 0.71073 Å). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption.

Experimental Procedures

Typical procedure for reaction of benzonitrile, MeOTf, and alkynes. To a 25 mL tube charged with nitrogen, was added *p*-tolunitrile **1a** (0.75 mmol), MeOTf (1.5 mmol), diphenylacetylene **2a** (0.5 mmol), DCE 2 mL. The tube was sealed and stirred for 12 h at 150 °C. The reaction mixture was quenched with 3M HCl and extracted with ethyl acetate (EA). Removing the solvent of reaction mixture and subsequent purification by column chromatography on silica gel (petroleum ether/ethyl acetate: 10:1) afforded **3aa** in 69% isolated yield.

5-Methyl-2,3-diphenyl-1*H*-inden-1-one (**3aa**)¹

69% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.47 (d, *J* = 7.3 Hz, 1H), 7.43 – 7.35 (m, 5H), 7.27 – 7.22 (m, 6H), 7.07 (d, *J* = 7.3 Hz, 1H), 6.93 (s, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 196.3, 155.1, 145.9, 144.5, 133.1, 133.0, 131.0, 130.1, 129.3, 129.1, 128.9, 128.7, 128.5, 128.2, 127.8, 123.2, 122.7, 22.2. GC-MS: 296.

5-Methyl-2,3-di-p-tolyl-1*H*-inden-1-one (**3ab**)²

70% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.44 (d, J = 7.2 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 7.05 (m, 3H), 6.93 (s, 1H), 2.39 (s, 3H), 2.33 (s, 3H), 2.30 (s, 3H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 196.6, 154.5, 146.0, 144.3, 139.3, 137.5, 132.5, 130.2, 130.0, 129.6, 128.9, 128.8, 128.7, 128.6, 128.2, 123.0, 122.5, 22.2, 21.6, 21.5. GC-MS: 324.

2,3-Bis(4-chlorophenyl)-5-methyl-1*H*-inden-1-one (**3ac**)

67% yield. ¹H NMR (301 MHz, CHLOROFORM-D) δ 7.47 (d, J = 7.2 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.33 – 7.16 (m, 6H), 7.09 (d, J = 7.2 Hz, 1H), 6.90 (s, 1H), 2.35 (s, 3H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 195.6, 154.0, 145.2, 144.8, 135.5, 134.0, 132.0, 131.3, 131.1, 130.0, 129.5, 129.1, 128.6, 128.2, 123.5, 122.6, 22.2. GC-MS: 364. HRMS (ESI mode) calcd for $C_{22}H_{14}Cl_2O+H^+$ 365.0500, found 365.0497.

2,3-Bis(4-fluorophenyl)-5-methyl-1*H*-inden-1-one (**3ad**) 56% yield. ¹H NMR (301 MHz, CHLOROFORM-D) δ 7.47 (d, *J* = 7.3 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.27 – 7.20 (m, 2H), 7.17 – 7.06 (m, 3H), 7.00-6.93 (m, 2H), 6.91 (s, 1H), 2.36 (s, 3H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 196.0, 164.5 (d, *J* = 58.0 Hz), 161.2 (d, *J* = 56.2 Hz), 153.8, 145.5, 144.7, 132.0, 131.8 (d, *J* = 8.0 Hz), 130.6 (d, *J* = 8.2 Hz), 129.2, 128.7 (d, *J* = 3.3 Hz), 128.2, 126.8 (d, *J* = 3.4 Hz), 123.3, 122.5, 116.3 (d, *J* = 21.7 Hz), 115.4 (d, *J* = 21.4 Hz), 22.2. GC-MS: 332. HRMS (ESI mode) calcd for C₂₂H₁₄F₂O+H⁺ 333.1091, found 333.1090.

5-Methyl-2,3-di-m-tolyl-1*H*-inden-1-one (**3ae**)

65% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.46 (d, J = 7.2 Hz, 1H), 7.32 – 6.98 (m, 9H), 6.92 (s, 1H), 2.35 (s, 3H), 2.34 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 196.5, 155.1, 146.0, 144.4, 138.5, 137.5, 133.0, 132.9, 130.9, 130.7, 130.0, 129.5, 128.9, 128.7, 128.5, 127.9, 127.1, 125.7, 123.0, 122.6, 22.2, 21.6, 21.6. GC-MS: 324. HRMS (ESI mode) calcd for C₂₄H₂₀O+H⁺ 325.1592, found 325.1589.

3-(4-Methoxyphenyl)-5-methyl-2-phenyl-1*H*-inden-1-one (**3ag**) 31% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.48 (d, *J* = 7.2 Hz, 1H), 7.32 (d, *J* = 6.5 Hz, 2H), 7.29 – 7.22 (m, 5H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.99 (s, 1H), 6.93 (d, *J* = 6.5 Hz, 2H), 3.85 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 196.4, 160.5, 154.9, 145.8, 144.3, 132.2, 132.86, 131.4, 130.3, 130.2, 129.0, 128.8, 128.2, 127.7, 125.1, 123.0, 122.7, 114.3, 55.4, 22.3. GC-MS: 326. HRMS (ESI mode) calcd for C₂₃H₁₈O₂+H⁺ 327.1385, found 327.1387.

2,5-Dimethyl-3-phenyl-1*H*-inden-1-one (**3ah**)

45% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.54 – 7.43 (m, 5H), 7.36 (d, J = 7.2 Hz, 1H), 6.97 (d, J = 7.2 Hz, 1H), 6.85 (s, 1H), 2.30 (s, 3H), 1.90 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 198.1, 154.3, 146.3, 144.1, 132.9, 131.6, 129.7, 129.1, 128.8, 128.2, 128.1, 122.7, 121.9, 22.1, 8.7. GC-MS: 234. HRMS (ESI mode) calcd for C₁₇H₁₄O+H⁺ 235.1123, found 235.1123.

2-Ethyl-5-methyl-3-phenyl-1*H*-inden-1-one (3ai)

50% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.53 – 7.42 (m, 5H), 7.35 (d, J = 7.2 Hz, 1H), 6.97 (d, J = 7.2 Hz, 1H), 6.79 (s, 1H), 2.34 (q, J = 7.5 Hz, 2H), 2.29 (s, 3H), 1.09 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 198.0, 154.3, 146.4, 144.1, 137.2, 133.0, 129.1, 128.8, 128.7, 128.2, 127.9, 122.6, 122.0,

22.1, 16.8, 14.1. GC-MS: 248. HRMS (ESI mode) calcd for $C_{18}H_{16}O+H^+$ 249.1279, found 249.1274.

6-(4-Methylbenzoyl)dec-5-en-5-yl trifluoromethanesulfonate (**3aj**) 26% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.50 – 2.42 (m, 5H), 2.18 – 2.12 (t, *J* = 7.6 Hz, 2H), 1.53 – 1.16 (m, 8H), 0.88 – 0.78 (m, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 194.9, 148.2, 145.5, 134.1, 133.3, 129.9, 129.7, 118.5 (q, *J* = 313.7 Hz), 32.4, 29.6, 29.5, 28.5, 22.5, 21.9, 21.8, 13.6, 13.6. HRMS (ESI mode) calcd for C₁₉H₂₄F₃O₄S+H⁺ 406.1426, found 406.1423.

2,3-Diphenyl-1H-inden-1-one (**3ba**)¹

64% yield (160 °C). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.58 (d, J = 7.0 Hz, 1H), 7.46 – 7.33 (m, 6H), 7.32 – 7.20 (m, 6H), 7.14 (d, J = 7.2 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 196.6, 155.5, 145.4, 133.6, 132.9, 132.6, 130.9, 130.1, 129.4, 129.1, 128.9, 128.6, 128.2, 127.9, 123.1, 121.4. GC-MS: 282.

3-(4-Methoxyphenyl)-2-phenyl-1*H*-inden-1-one (**3bg**)³ 21% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.55 (d, *J* = 7.2 Hz, 1H), 7.18–7.37 (m, 11 H), 6.92 (d, *J* = 8.7 Hz, 2 H), 3.85 (s, 3 H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ196.7, 160.6, 155.3, 145.3, 133.4, 131.8, 131.2, 130.4, 130.1, 129.0, 128.2, 127.7, 124.9, 123.0, 121.4, 114.3, 55.4. GC-MS: 312.

2-Methyl-3-phenyl-1*H*-inden-1-one (**3bh**)¹

27% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.54 – 7.42 (m, 6H), 7.28 (td, J = 7.7, 1.2 Hz, 1H), 7.18 (t, J = 7.3 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 1.92 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 198.4, 154.8, 145.8, 133.2, 132.8, 131.2, 131.1, 129.3, 128.8, 128.2, 128.1, 122.6, 120.5, 8.7. GC-MS: 220.

2-Ethyl-3-phenyl-1*H*-inden-1-one (3bi)

28% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.53 – 7.42 (m, 6H), 7.28 (t, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.00 (d, *J* = 7.2 Hz, 1H), 2.35 (q, *J* = 7.5 Hz, 2H), 1.10 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 198.4, 154.8, 146.0, 136.8, 133.3, 133.0, 131.2, 129.3, 128.9, 128.3, 127.9, 122.6, 120.7, 16.8, 14.1. GC-MS: 234. HRMS (ESI mode) calcd for C₁₇H₁₄O+H⁺ 235.1123, found 235.1121.

5-Bromo-2,3-diphenyl-1H-inden-1-one (**3ca**)¹

70% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.45 – 7.40 (m, 5H), 7.36 – 7.33 (m, 2H), 7.25 – 7.26 (m, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 195.3, 154.2, 147.4, 133.5, 132.2, 131.7, 130.3, 130.1, 129.7, 129.4, 129.1, 128.5, 128.4, 128.2, 128.2, 124.8, 124.2. GC-MS: 360, 362.

5-Chloro-2,3-diphenyl-1*H*-inden-1-one (**3da**)¹

67% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.50 (d, *J* = 7.5 Hz, 1H), 7.43 - 7.40 (m, 3H), 7.37 - 7.33 (m, 2H), 7.28 - 7.24 (m, 6H), 7.11 (d, *J* = 1.7 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 195.1, 154.1, 147.3, 139.8, 133.6, 132.3, 130.4, 130.1, 129.7, 129.1, 129.0, 128.6, 128.5, 128.2, 128.2, 124.0, 122.1. GC-MS: 316.

2,3,5-Triphenyl-1*H*-inden-1-one (**3ea**) 1

72% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.66 (d, J = 7.4 Hz, 1H), 7.58 – 7.56 (m, 2H), 7.50 (dd, J = 7.5, 1.3 Hz, 1H), 7.47 – 7.37 (m, 8H), 7.36 (d, J = 1.0 Hz, 1H), 7.33 – 7.23 (m, 5H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 196.1, 154.9, 146.8, 146.2, 140.4, 133.3, 132.8, 130.9, 130.1, 129.6, 129.4, 129.0, 128.6, 128.4, 128.2, 127.9, 127.6, 127.3, 123.5, 120.6. GC-MS: 358.

5-Methoxy-2,3-diphenyl-1*H*-inden-1-one (**3ha**)¹

22% yield . ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.54 (d, J = 7.8 Hz, 1H), 7.46 – 7.32 (m, 5H), 7.26 – 7.23 (m, 5H), 6.69 (d, J = 1.8 Hz, 1H), 6.66 (dd, J = 7.9, 2.1 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 195.2, 164.6, 153.3, 148.1, 134.0, 132.8, 131.0, 130.1, 129.3, 128.9, 128.7, 128.2, 127.9, 125.0, 123.6, 110.6, 110.4, 55.9. GC-MS: 312.

6-Methoxy-2,3-diphenyl-1*H*-inden-1-one (**3ka**) ⁴ 10% yield from *p*-MeO-C₆H₄-CN and 31% yield from *m*-MeO-C₆H₄-CN. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.42 – 7.34 (m, 5H), 7.27 – 7.20 (m, 5H), 7.19 (d, *J* = 2.4 Hz, 1H), 7.03 (d, *J* = 8.1 Hz, 1H), 6.78 (dd, *J* = 8.0, 2.5 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 196.2, 161.2, 156.5, 137.0, 133.0, 131.5, 131.1, 129.9, 129.4, 128.8, 128.5, 128.1, 127.7, 127.6, 122.3, 116.4, 110.7, 55.9. GC-MS: 312.

Plausible mechanism of reaction of *p*-MeO-C₆H₄-CN with diphenylacetylene

4-Methyl-2,3-diphenyl-1H-inden-1-one

(**3ia**)

and

6-methyl-2,3-diphenyl-1*H*-inden-1-one (**3ia'**) $(3:1)^{1}$

65% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.45 – 7.37 (m), 7.33 – 7.11 (m), 7.08 (d, J = 7.8 Hz, 0.3H), 7.02 (d, J = 7.4 Hz, 1H), 2.37 (s, 3H), 1.79 (s, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 196.8, 158.3, 155.7, 142.5, 142.1,

139.4, 137.9, 136.1, 133.4, 133.1, 133.0, 131.9, 131.2, 131.0, 130.8, 130.0, 129.9, 129.3, 129.0, 128.8, 128.6, 128.5, 128.1, 127.9, 127.9, 127.7, 127.6, 124.2, 121.2, 121.0, 21.5, 19.6. GC-MS: 296.

4-Bromo-2,3-diphenyl-1*H*-inden-1-one (**3ja**) and 6-bromo-2,3-diphenyl-1*H*-inden-1-one (**3ja'**) (1:1.5) ¹ 63% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.67 (d, *J* = 1.7 Hz, 1H), 7.53 (d, *J* = 7.0 Hz, 1.5H), 7.49 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1.5H), 7.43 – 7.37 (m), 7.33 (ddd, *J* = 9.6, 5.9, 2.3 Hz, 6H), 7.25 (s), 7.20 (s), 7.13 – 7.07 (t, *J* = 7.6 Hz, 1.5H), 7.01 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 195.3, 195.2, 157.3, 155.2, 143.9, 142.4, 139.9, 135.8, 135.1, 133.4, 132.9, 132.5, 132.4, 132.3, 130.4, 130.2, 130.0, 129.7, 129.0, 128.8, 128.8, 128.6, 128.5, 128.3, 128.1, 128.0, 126.4, 123.0, 122.7, 122.0, 116.8. GC-MS: 360, 362.

4,6-Dimethyl-2,3-diphenyl-1*H*-inden-1-one (3la)

68% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.44 – 7.35 (m, 3H), 7.31 – 7.26 (m, 3H), 7.21 – 7.15 (m, 5H), 6.89 (s, 1H), 2.31 (s, 3H), 1.76 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 197.2, 158.6, 139.4, 139.2, 137.8, 136.2, 133.1, 132.9, 131.4, 131.0, 129.9, 128.9, 128.5, 127.9, 127.4, 122.2, 21.2, 19.4. GC-MS: 310. HRMS (ESI mode) calcd for $C_{23}H_{18}O+H^+$ 311.1436, found 311.1433.

1,2-Diphenyl-3*H*-cyclopenta[a]naphthalen-3-one (**3ma**) 46% yield. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.79 (d, *J* = 7.7 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.46 (m, 3H), 7.44 – 7.35 (m, 3H), 7.25 – 7.18 (m, 6H), 7.17 – 7.11 (m, 1H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 197.8, 156.9, 143.2, 138.4, 135.9, 132.5, 130.7, 130.1, 129.9, 129.4, 128.9, 128.9, 128.6, 128.0, 127.9, 127.6, 127.5, 127.0, 126.8, 125.0, 119.2. GC-MS: 332. HRMS (ESI mode) calcd for C₂₅H₁₆O+H⁺ 333.1279, found 333.1272.

(*E*)-*N*-((7-Chloro-11-phenyl-5*H*-indeno[1,2-*c*]isoquinolin-6(11*H*)-yl)(2-chlorophenyl) methylene)methanamine (**4a**)

46% yield based on nitrile. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.77 (dd, J = 7.3, 1.3 Hz, 1H), 7.56 – 7.41 (m, 3H), 7.29 – 7.16 (m, 6H), 7.15 – 6.99 (m, 6H), 5.20 (s, 1H), 4.36 (d, J = 15.2 Hz, 1H), 4.32 (d, J = 15.2 Hz, 1H), 2.84 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 157.0, 150.6, 142.2, 139.8, 137.5, 135.2, 133.7, 133.1, 131.3, 130.6, 129.6, 129.5, 128.9, 128.1, 127.6, 127.1, 126.8, 126.5, 125.5, 123.4, 123.0, 52.0, 50.9, 38.5. HRMS (ESI mode) calcd for C₃₀H₂₂Cl₂N₂+H⁺ 481.1238, found 481.1235.

(*E*)-*N*-((7-Bromo-11-phenyl-5*H*-indeno[1,2-*c*]isoquinolin-6(11*H*)-yl)(2-bromophenyl) methylene)methanamine (**4b**)

39% yield based on nitrile. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.86 (d, J = 7.4 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.3 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.29 – 6.92 (m, 11H), 5.21 (s, 1H), 4.37 (d, J = 15.2 Hz, 1H), 4.31 (d, J = 15.3 Hz, 1H), 2.87 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 158.5, 150.8, 139.6, 135.0, 133.0, 132.3, 131.7, 130.8, 130.5, 129.6, 129.0, 128.2, 127.6, 127.2, 127.1, 127.0, 125.7, 123.6, 123.5, 123.2, 114.8, 52.1, 51.1, 38.5. HRMS (ESI mode) calcd for C₃₀H₂₂Br₂N₂+H⁺ 571.0208, found 571.0210.

(*E*)-*N*-((7-Iodo-11-phenyl-5*H*-indeno[1,2-*c*]isoquinolin-6(11*H*)-yl)(2-iodophenyl)met hylene)methanamine (**4c**)

43% yield based on nitrile. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.95 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 7.7 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.25 – 7.15 (m, 7H), 7.11 – 7.07 (m, 3H), 7.03 – 6.96 (m, 1H), 6.80 (t, J = 7.6 Hz, 1H), 5.18 (s, 1H), 4.34 (d, J = 15.4 Hz, 1H), 4.27 (d, J = 15.2 Hz, 1H), 2.88 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 160.9, 150.4, 139.7, 139.6, 139.1, 132.4, 130.6, 130.5, 129.2, 128.9, 128.6, 128.2, 127.6, 127.1, 127.0, 126.0, 124.3, 123.6, 97.7, 86.7, 52.0, 51.2, 38.5. HRMS (ESI mode) calcd for C₃₀H₂₂I₂N₂+H⁺ 664.9951, found 664.9952.

When *p*-tolunitrile was employed as substrate, the reaction yielded a mixture of indenones and indeno[1,2-c] isoquinoline. The normal product indenone **3na** and rearranged indenone **3ia'** were isolated in 36% combined yield and indeno[1,2-c] isoquinoline **5d** was observed in about 10% NMR yield.

4-Methyl-2,3-diphenyl-1*H*-inden-1-one (**3na**) and 7-methyl-2,3-diphenyl-1*H*-inden-1-one (**3ia'**) (1:1.2) ⁵ ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.47 – 7.33 (m), 7.32 – 7.12 (m), 7.08 (d, J = 7.8 Hz, 1.2H), 7.05 (d, J = 7.9 Hz, 1H), 6.96 (d, J = 7.2 Hz, 1H), 2.62 (s, 3H), 1.79 (s, 3.6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 197.7, 196.9, 158.3, 154.4, 145.8, 142.1, 138.1, 137.9, 136.0, 133.7, 133.1, 133.0, 132.7, 132.5, 132.3, 131.0, 130.9, 130.8, 130.1, 129.9, 129.2, 128.9, 128.8, 128.7, 128.5, 128.1, 127.9, 127.7, 127.6, 121.0, 119.3, 19.6, 17.5. GC-MS: 296.

Plausible mechanism of for the formation of 3na and 3ia'

References

- 1. B. Li, H. Wang, Q. Zhu and Z. Shi, Angew. Chem. Int. Ed. 2012, 51, 3948.
- 2. Y. Kuninobu, T. Matsuki and K. Takai, Org. Lett. 2010, 12, 2948.
- 3. B. Chen, X. Xie, J. Lu, Q. Wang, J. Zhang, S. Tang, X. She and X. Pan, *Synlett*, 2006, 259.

4. L. Artok, M. Kus, O. Aksin-Artok, F. N. Dege and F. Y. Ozkilinc, *Tetrahedron*, 2009, **65**, 9125.

5. S. Chen, J. Yu, Y. Jiang, F. Chen and J. Cheng, Org. Lett. 2013, 15, 4754.

Copies of ¹H and ¹³C NMR Spectra

¹³C NMR for compound **3aa**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

¹³C NMR for compound **3ab**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

¹³C NMR for compound **3ac**

¹³C NMR for compound **3ad**

¹³C NMR for compound **3ae**

¹³C NMR for compound **3ag**

¹³C NMR for compound **3ah**

¹³C NMR for compound **3ai**

¹³C NMR for compound **3aj**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

¹³C NMR for compound **3ba**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2014

¹³C NMR for compound **3bh**

¹³C NMR for compound **3bi**

¹³C NMR for compound **3ca**

¹³C NMR for compound **3da**

¹³C NMR for compound **3ea**

¹³C NMR for compound **3ha**

¹³C NMR for compound **3ka**

¹H NMR for compound **3ia** and **3ia'**

¹³C NMR for compound **3ja** and **3ja'**

¹³C NMR for compound **3la**

¹H NMR for compound **3ma**

¹³C NMR for compound **3ma**

¹H NMR for compound **3na** and **3ia'**

¹³C NMR for compound **3na** and **3ia'**

¹H NMR for compound **4a**

¹³C NMR for compound **4a**

¹H NMR for compound **4b**

¹H NMR for compound **4**c

¹³C NMR for compound **4c**