¹H Pure Shift DOSY: a Handy Tool to Evaluate the Aggregation and Solvation of Organolithium Derivatives

G. Hamdoun, M. Sebban, E. Cossoul, A. Harrison-Marchand, J. Maddaluno, H. Oulyadi Normandie Université, COBRA, UMR6014 and FR3038 CNRS; Université de Rouen; INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France.

Supporting Information

Experimental Section	
¹ H PS-DOSY pulse sequence	Figure S1
⁶ Li and 'H spectra of LDA / <i>n</i> -BuLi mixtures	Figure S2
⁶ Li- ¹ H HOESY spectrum of LDA/ <i>n</i> -BuLi mixed aggregates	Figure S3
⁶ Li and 'H spectra of LDA/ <i>n</i> -BuLi/ <i>n</i> -BuOH mixtures	Figure S4
¹ H DOSY spectrum for LDA/ <i>n</i> -BuLi/ <i>n</i> -BuOH mixture	Figure S5
LogD-LogFW analysis of ¹ H DOSY spectrum of LDA/ <i>n</i> -BuLi / <i>n</i> -BuOH	Figure S6
LogD-LogFW analysis of ¹ H PS-DOSY spectrum of LDA/ <i>n</i> -BuLi/ <i>n</i> -BuOH	Figure S7
⁶ Li and 'H spectra of <i>n</i> -BuLi/ <i>n</i> -BuOLi mixtures	Figure S8
⁶ Li and ⁷ Li spectra of <i>n</i> -BuLi/ <i>n</i> -BuOLi mixture	Figure S9
⁷ Li DOSY NMR spectrum of <i>n</i> -BuLi/ <i>n</i> -BuOLi	Figure S10
¹ H DOSY NMR spectrum of <i>n</i> -BuLi/ <i>n</i> -BuOLi mixture	Figure S11
LogD-LogFW analysis of ¹ H DOSY spectrum of <i>n</i> -BuLi/ <i>n</i> -BuOLi mixture	Figure S12
¹ H and ¹ H Pure Shift spectra of <i>n</i> -BuLi/ <i>n</i> -BuOLi mixture	Figure S13
¹ H PS-DOSY spectrum for <i>n</i> -BuLi/ <i>n</i> -BuOLi mixture	Figure S14
LogD-LogFW Analysis of ¹ H PS-DOSY spectrum of <i>n</i> -BuLi/ <i>n</i> -BuOLi mixture	Figure S15
Signal attenuation curves from ¹ H PS-DOSY for internal reference	Figure S16
Signal attenuation curves from ¹ H PS-DOSY for (<i>n</i> -BuLi) _{4-x} (<i>n</i> -BuOLi) _x	Figure S17
Analysis of ¹ H DOSY results for <i>n</i> -BuLi/ <i>n</i> -BuOLi (1 : 0.66)	Table S1
Analysis of ¹ H DOSY results for LDA/ <i>n</i> -BuLi / <i>n</i> -BuOH (1 : 2 : 0.9)	Table S2
Analysis of ¹ H PS-DOSY results for <i>n</i> -BuLi/ <i>n</i> -BuLi (1 : 0.66)	Table S3

Experimental Section

Preparation of the sample

All syntheses and sample preparations of air-sensitive compounds were performed in an argon atmosphere. All solvents were dried over sodium, and degassed in a vacuum system before being used.

Preparation of *n*-Butyllithium Solution in Tetrahydrofuran-*d*₈

A solution of commercial *n*-butyllithium in pentane (1 mL) was syringed in a tube fitted with a septum and flushed under dry argon. The tube was then placed under vacuum (20 mmHg) for 2 h to remove the main part of the pentane. Freshly distilled tetrahydrofuran- d_8 was then added (1 mL) at -78 °C to the resulting concentrated solution, and the resulting solution was titrated¹.

Preparation of LDA/*n*-BuLi/*n*-BuOLi with internal references:

Freshly distilled di*iso*propylamine (0.14 mL) dissolved in THF (0.3 mL) was introduced into an NMR tube placed under argon. The solution (0.34M) was treated first with an equimolar amount of *n*-BuLi (c = 1M) in THF at 185K. The quantitative formation of the amide was controlled by 1D ¹H and ⁶Li NMR experiments. Then, two equivalents of *n*-BuLi were added into the solution. A second step consisted of the progressive addition of *n*-BuOH into the LDA/*n*-BuLi mixture until a (1: 2: 0.9) ratio was reached. Then 0.15 mL from a mixture containing SQA (0.1 mL), CDDE (0.1 mL) and TPB (30 mg) preliminarily diluted in THF-*d*₈ (5 mL) was added to the above sample as internal references for the DOSY experiments.

Preparation of *n*-BuLi/*n*-BuOLi with internal references:

Controlled aliquots of *n*-BuOH were added to the solution of pure *n*-BuLi (c = 1 M) until a (1:0.66) ratio was reached. Then 0.15 mL from a mixture containing SQA (0.1 mL), CDDE (0.1 mL) and TPB (30 mg) preliminarily diluted in THF- d_8 (5 mL) was added to the above sample as internal references for the DOSY experiments.

NMR parameters and conditions

NMR spectra were recorded at 185K on a Bruker AVIII 500 spectrometer operating at 500.13 MHz for ¹H, 194.40 MHz for ⁷Li, 125.13 MHz for ¹³C and 73.60 MHz for ⁶Li. Experiments were run under TopSpin (version 2.1, Bruker Biospin, Karlsruhe) with a BBFO {¹H,X} probe and a z gradient coil giving a maximum gradient of 50 G.cm⁻¹.

¹**H DOSY** experiments was acquired with the standard Bruker ledbpgp2s program² using 16 t_1 increments of 32 transients. The acquisition time was 1 s and the relaxation delay was 2.5 s (D1). Diffusion time was between 0,5 and 0.6 s (D20) and rectangular gradient pulse duration was between 1.5 and 2 ms (P30). Gradient recovery delays of 150 µs followed the application of each gradient pulse. Data was accumulated by linearly varying the diffusion encoding gradients over a range from 2 to 95 % for 16 gradient increment values.

⁷Li DOSY experiment was acquired with the standard Bruker dstebpgp3s program³ using double stimulated echo, LED, with bipolar gradient pulses and 3 spoil gradients for 16 t_1 increments of 32 transients. The acquisition time was 2.5 s, and the relaxation delay (D1) was 5 s. Diffusion time was 0.9 s (D20) and rectangular gradient pulse duration was 4 ms (P30). Gradient recovery delays of 150 µs followed the application of each gradient pulse. Data was accumulated by linearly varying the diffusion encoding gradients over a range from 2 to 95 % for 16 gradient increment values.

¹**H PS-DOSY**⁴ experiments were acquired with the sequence of Figure 1 with one stimulated echo using a 20 ms Rsnob selective pulse with 100 Hz bandwidth, with Gz2=1.8 G.cm⁻¹; 16 t₁ increments of 32 transients were acquired with 1/SW = 20 ms in a total time of 5 h. Coherence transfer selection gradient pulses were rectangular with a width of 1 ms and the amplitudes Gz1_a, G z1_b, and G z1_c of 25, -25, and -50 G.cm⁻¹. The delays τ_a and τ_b were 0.0038 s and 0.0029 ms, respectively. Individual rows of the pseudo-2-D diffusion databases for PS-DOSY were phased and baseline corrected. Diffusion time was between 0.25 - 0.4 s and rectangular gradient pulse duration was between 2 - 2.5 ms. Gradient recovery delays were 150 µs followed the application of each gradient pulse. Data was accumulated by linearly varying the diffusion encoding gradients over a range from 2 to 95 % for 16 gradient increment values.

DOSY processing

¹H DOSY experiments were processed using DOSYm® software which is based on Gifa MaxEnt algorithm proposed by Marc-Andre Delsuc⁵.

¹H PS-DOSY experiments were processed using dynamic center software (Bruker software). This program allows the use of the pure exponential equation for relevant processing methods:

$$S(g) = I_0 * e^{(-\gamma^2 * g^2 * \delta^2 * (\Delta - \delta/3) * D}$$

The diffusion coefficient was determined by fitting the peak areas to the Stejskal-Tanner equation from T_1/T_2 analysis.

Figure S1. ¹H Pure Shift DOSY sequence

Figure S2. ⁶Li (left) and 'H (right) spectra of LDA/*n*-BuLi mixtures in THF-*d*₈ at 185K: (a) pure LDA (0.34M), b) LDA/*n*-BuLi (1 : 0.66) ; (c) LDA/*n*-BuLi/ (1 : 1.33) d) LDA/*n*-BuLi/ (1 : 2)

Figure S3. 2D ⁶Li-¹H HOESY spectrum (mixing times τ_m =860 ms) for LDA/*n*-BuLi (1 : 2) in THF-*d*₈ at 185K

Figure S4. ⁶Li (left) and 'H (right) spectra of LDA/*n*-BuLi/*n*-BuOH mixtures in THF-*d*₈ at 185K: (a) pure LDA (0.34M), b) LDA/*n*-BuLi (1 : 2) ; (c) LDA/*n*-BuLi/*n*-BuOH (1 : 2 : 0.9)

Figure S5. (a) ¹H DOSY spectrum for LDA/*n*-BuLi/*n*-BuOH (1 : 2 : 0.9) in THF-*d*₈ at 185K with internal references (Butane, Cyclododecene (CDDE), Squalene (SQA), 1,3,5-Triphenylbenzene (TPB). (b) Zoom of alpha methylene region

Figure S6. Log(D)-Log(FW) analysis of ¹H DOSY spectrum for LDA/*n*-BuLi/*n*-BuOH (1 : 2 : 0.9)

Figure S7. Log(D)-Log(FW) analysis of ¹H PS-DOSY spectrum for LDA/*n*-BuLi/*n*-BuOH (1 : 2 : 0.9)

Figure S8. ⁶Li (left) and ¹H (right) spectra of *n*-BuLi/*n*-BuOLi mixtures in THF-*d*₈ at 185K: (a) pure *n*-BuLi; (b) *n*-BuLi/*n*-BuOLi (1 : 0.25) ; (c) *n*-BuLi /*n*-BuOLi (1 : 0.66)

Figure S9. ⁶Li (a) and ⁷Li (b) spectra of *n*-BuLi/*n*-BuOLi mixture (1 : 0.66) in THF-*d*₈ at 185K

Figure S10. ⁷Li DOSY spectrum for *n*-BuLi/*n*-BuOLi (1 : 0.66) in THF-*d*₈ at 185K

Figure S11. ¹H DOSY spectrum for *n*-BuLi/*n*-BuOLi (1 : 0.66) in THF-*d*₈ at 185K with internal references (Butane, Cyclododecene (CDDE), Squalene (SQA), 1,3,5-Triphenylbenzene (TPB)). (b) Zoom for alpha methylene region

Figure S12. Log(D)-Log(FW) analysis of ¹H DOSY spectrum for *n*-BuLi/*n*-BuOLi (1 : 0.66)

Figure S13. ¹H (a) and ¹H PS (b) spectra of *n*-BuLi/*n*-BuOLi mixture (1 : 0.66) in THF- d_8 at 185K

Figure S14. (a) ¹H PS-DOSY spectrum for *n*-BuLi /*n*-BuOLi (1 : 0.66) in THF-*d*₈ with internal references (CDDE, SQA, TPB). (b) Zoom for alpha methylene region

Figure 15. Log(D)-Log(FW) analysis of ¹H PS-DOSY spectrum for *n*-BuLi/*n*-BuOLi (1 : 0.66)

Figure S16. Signal attenuation curves from ¹H PS-DOSY of (a) THF, (b) CDDE, (c) TPB (d) SQA

Figure S17. Signal attenuation curves from ¹H PS-DOSY of (a) (*n*-BuLi)₄, (b) (*n*-BuLi)₃(*n*-BuOLi)₁, (c) (*n*-BuLi)₂, (d) (*n*-BuLi)₂(*n*-BuOLi)₂

	¹ H DOSY				
Compounds	FW (gmol ⁻¹)	Log(D) m ² s ⁻¹	N*THF	FW* (gmol ⁻¹)	Error %
ТНЕ	64	3 5330		72	
Squalene (SOA)	411	3.4959		411	
Triphenylbenzene (TPB)	306	3.5011		306	
Cyclododecene (CDDE)	166	3.5140		166	
$(n-\mathrm{BuLi})_4 \bullet (\mathrm{THF})_4$	477.4	3.4925	~ 4	544	6,5%
$(n-BuLi)_3/(n-BuOLi)_1 \bullet (THF)_4$	440.1	3.4941	~ 3	560	12%
(<i>n</i> -BuLi) ₂ /(<i>n</i> -BuOLi)2 •(THF) ₄	425.9	3.4948	~ 2	576	15%

Table S1. Analysis of ¹ H DOSY results for <i>n</i> -BuLi / <i>n</i> -BuOLi (1 : 0.66) in THF- <i>d</i> ₈ (FW [*]
Theoretical mass of solvated specie)

¹ H DOSY					
Compounds	FW (g.mol ⁻¹)	$Log(D) m^2.s^{-1}$	N*THF	FW* (g.mol-1)	Error %
Butane		3.3910			
THF	72	3.3706		72	
Cyclododecene (CDDE)	166	3.3331		411	
Triphenylbenzene (TPB)	306	3.3003		306	
Squalene (SQA)	411	3.2930		166	
$(LDA)_2 \bullet (THF)_2$	304	3.3040	2	358	4.5%
(LDA)(<i>n</i> -BuLi)●(THF) ₂	309	3.3031	2	315	1%
(<i>n</i> -BuLi)₄●(THF)₄	507	3.2780	4	544	3.5%

 Table S2. Analysis of ¹H DOSY results for LDA/n-BuLi/n-BuOH (1 : 2 : 0.9) (FW*: Theoretical mass of solvated specie

	-DOSY				
Compounds	FW (gmol ⁻¹)	Log(D) m ² s ⁻¹	N*THF	FW* (gmol ⁻¹)	Error %
Squalene (SOA)	411	-11 16		411	
Triphenylbenzene (TPB)	306	-11.09		306	
Cyclododecene (CDDE)	166	-11.00		166	
THF	72	-10.76			
(<i>n</i> -BuLi)₄ ●(THF)₄	566	-11.24	~4	544	2%
$(n-BuLi)_3/(n-BuOLi)_1 \bullet (THF)_4$	579	-11.25	~4	560	1.7%
$(n-BuLi)_2 \bullet (THF)_4$	490	-11.21	~4	416	8.2%
(<i>n</i> -BuLi) ₂ /(<i>n</i> -BuOLi) ₂ ●(THF) ₄	612	-11.26	~	576	3%

Table S3. Analysis of ¹H PS-DOSY results for *n*-BuLi /*n*-BuOLi (1 : 0.66) in THF-*d*₈ (FW*Theoretical mass of solvated specie)

References

- 1. L. Duhamel, J.-C. Plaquevent, J. Organomet. Chem. 1993, 448, 1.
- 2. D. Wu, A. Chen and C.S. Johnson Jr., J. Magn. Reson. A 1995, 115, 260.

3. (a) A. Jerschow and N. Mueller, *J. Magn. Reson. A* 1996,**123**, 222; (b) A. Jerschow and N. Mueller, *J. Magn. Reson. A* 1997, **125**, 372.

- 4. J. A. Aguilar, S. Faulkner, M. Nilsson, and G. A. Morris, Angew. Chem. Int. Ed. 2010, 49, 3901.
- 5. J. L. Pons, T. E. Malliavin and M. A. Delsuc, J. Biomol. NMR 1996, 8, 445.