Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Total Synthesis of (+)-Cylindradine A

Makoto Iwata, Kyohei Kanoh, Takuya Imaoka, Kazuo Nagasawa*

*Department of Biotechnology and Life Science, Faculty of Technology Tokyo University of Agriculture and Technology Nakacho 2-24-16, Koganei, Tokyo 184-8588 (Japan) Tel & Fax: (+81) 42-388-7295; E-mail: Knaga@cc.tuat.ac.jp

CONTENTS

1) General

2) Experimental Section for compounds	
27, S1, S2, S3, 28, 29a, 29b, S4, S5, S6, 32c, 32b, 32a, 33c, 37, 1	S3-S11

3) ¹H NMR, ¹³C NMR spectra for compounds

27, **S1**, **S2**, **S3**, **28**, **29a**, **29b**, **S4**, **S5**, **S6**, **32c**, **32b**, **32a**, **33c**, **37**, **1** S11-S43

1) General

Flash chromatography was performed on Silica gel 60 (spherical, particle size 40 ~ 100 μ m; Kanto) or Florisil (particle size 75 ~ 150 μ m; wako) or Sephadex LH-20 (particle size 27 ~ 163 μ m; General Electric Company). ¹H and ¹³C NMR spectra recorded on JNM-ECX 400 and JNM-ECA 500. The spectra are referenced internally according to residual solvent signals of CDCl₃ (¹H NMR; δ = 7.26 ppm, ¹³C NMR; δ = 77.0 ppm). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm) multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broad), integration, coupling constant (Hz). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Infrared (IR) spectra were recorded on a JASCO FT/IR-420 Fourier Transform Infrared Spectrophotometer and were reported in wavenumbers (cm⁻¹). Mass spectra were recorded on a JEOL JMS-T100X spectrometer with ESI-MS mode using methanol as solvent.

2) Experimental Section

Amide 27

To a stirred solution of prolinol 25^{11} (33.5 g, 155.7 mmol) in CH₂Cl₂ (300 mL) at 0 °C was added *N*-Ts-protected pyrrole-3-carboxylic acid 26^{21} (35.9 g, 135.4 mmol), EDCl (31.5 g, 203.1 mmol), DMAP (1.60 g, 13.5 mmol) in one portion. The reaction mixture was stirred at room temperature for 12 h then quenched with H₂O. The mixture was extracted with ethyl acetate (2 times), and the combined organic extracts were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified on silica gel column chromatography (hexane/ethyl acetate = 1:3) to give **27** as colorless oil (57.6 g, 124.6 mmol, 92%). Spectral data for **27**: $[\alpha]_D^{22}$ -60.4 (*c* 1.8, CHCl₃); IR (neat) 2953, 2928, 1615 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.6 Hz, 2H), 7.44 (s, 1H), 7.21 (d, *J* = 8.6 Hz, 2H), 7.03-7.06 (br, 1H), 6.53-6.54 (m, 1H), 4.22 (s, 1H), 3.71-3.74 (m, 2H), 3.56-3.60 (m, 1H), 3.47-3.52 (m, 1H), 2.31 (s, 3H), 1.92-1.97 (m, 2H), 1.85-1.89 (m, 1H), 1.71-1.76 (m, 1H), 0.79 (s, 9H), -0.04 (s, 3H), -0.08 (s, 3H); ¹³C NMR (125 MHz) δ 162.9, 145.3, 135.1, 129.9, 126.8, 124.6, 121.9, 120.0, 113.7, 62.3, 58.9, 49.5, 26.5, 25.6, 24.7, 21.3, 17.9, -5.7; HRMS (ESI, *M*+Na⁺) calcd for C₂₃H₃₄N₂Na₁O₄S₁Si₁ 485.1884, found 485.1906.

Aldehyde 28

To a stirred solution of amide 27 (57.6 g, 125 mmol) in MeOH (120 mL) at 0 °C was added KOH (31.8 g, 623 mmol). The reaction mixture was stirred at 0 °C for 1 h then quenched with saturated aqueous NH₄Cl and extracted with ethyl acetate (2 times). The combined organic layer was washed with brine and dried over MgSO₄. The filtrates were concentrated in vacuo to give pyrrole S1 To a stirred solution of crude S1 in CH₂Cl₂ (120 mL) at 0 °C was added Et₃N (105 (colorless oil). mL, 748 mmol) and (Boc)₂O (81.6 g, 374 mmol). The reaction mixture was stirred at room temperature for 12 h then quenched with saturated aqueous NH₄Cl and extracted with CH₂Cl₂. The combined organic layer was washed with brine and dried over MgSO₄. The filtrates were concentrated in vacuo to give Boc protected pyrrole S2 (colorless oil). To a stirred solution of crude S2 in THF (120 mL) was added TBAF (65.2 g, 249 mmol). The reaction mixture was stirred at room temperature for 24 h then quenched with saturated aqueous NH₄Cl and extracted with ethyl acetate. The combined organic layer was washed with brine and dried over MgSO₄. The filtrates were concentrated in vacuo to give alcohol S3 (colorless oil). To a stirred solution of crude S3 in DMSO (120 mL) was added IBX (69.8 g, 249 mmol). The reaction mixture was stirred at 60 °C for 30 min then guenched with saturated aqueous NH₄Cl and 10% aqueous Na₂S₂O₃ and then extracted with ethyl acetate. The combined organic layer was washed with brine and dried over MgSO₄. The filtrates were concentrated in vacuo. The residue was purified on silica gel column chromatography (hexane/ethyl acetate = 2:1) to give 28 as white amorphous (23.7 g, 81.0 mmol, Spectral data for S1: $[\alpha]_D^{26}$ -68.6 (*c* 1.6, CHCl₃); IR (neat) 3208, 2954, 2929, 1579 cm⁻¹; ¹H 65%). NMR (400 MHz, CDCl₃) δ 10.11-10.28 (br, 1H), 7.14 (s, 1H), 6.64-6.68 (br, 1H), 6.45-6.48 (br, 1H), 4.31-4.39 (br, 1H), 3.74-3.85 (m, 2H), 3.59-3.64 (m, 1H), 1.91-2.06 (m, 3H), 1.74-1.85 (m, 1H), 0.87 (s, 9H), 0.03 (s, 3H), 0.01 (s, 3H); 13 C NMR (100 MHz) δ 165.9, 122.1, 119.5, 118.2, 108.9, 62.9, 59.0, 49.8, 26.7, 25.8, 25.0, 18.1, -5.5; HRMS (ESI, M+Na⁺) calcd for C₁₆H₂₈N₂Na₁O₂Si₁ 331.1818, found 331.1868. Spectral data for S2: $[\alpha]_D^{28}$ -58.0 (c 1.1, CHCl₃); IR (neat) 2954, 2930, 1751, 1619 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.15-7.18 (br, 1H), 6.50-6.53 (br, 1H), 4.28-4.35 (br, 1H), 3.76-3.84 (m, 2H), 3.61-3.73 (m, 1H), 3.56-3.62 (m, 1H), 1.92-2.07 (m, 3H),

1.76-1.84 (m, 1H), 1.58 (s, 9H), 0.86 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H); ¹³C NMR (100 MHz) δ 163.9, 148.4, 123.5, 122.1, 119.7, 112.4, 84.5, 62.7, 59.0, 49.7, 27.8, 26.7, 25.8, 25.1, 18.1, -5.5; HRMS (ESI, *M*+Na⁺) calcd for C₂₁H₃₆N₂Na₁O₄Si₁ 431.2342, found 431.2303. Spectral data for **S3**: [α]_D²¹ -66.0 (*c* 1.1, CHCl₃); IR (neat) 3392, 2979, 1750, 1599 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.61 (br, 1H), 7.16 (dd, *J* = 1.7, 3.3 Hz, 1H), 6.50 (dd, *J* = 1.7, 3.3 Hz, 1H), 5.12-5.15 (br, 1H), 4.33-4.38 (m, 1H), 3.78-3.82 (m, 1H), 3.59-3.71 (m, 3H), 2.06 (ddd, *J* = 6.9, 12.6, 12.6, Hz, 1H), 1.90-1.95 (m, 1H), 1.77-1.83 (m, 1H), 1.58-1.63 (m, 1H), 1.55 (s, 9H); ¹³C NMR (100 MHz) δ 166.3, 148.1, 122.5, 119.9, 112.2, 84.7, 67.2, 61.9, 50.0, 28.1, 27.7, 24.9; HRMS (ESI, *M*+Na⁺) calcd for C₁₅H₂₂N₂Na₁O₄ 317.1477, found 317.1440. Spectral data for **28**: [α]_D²¹ -74.1 (*c* 1.2, CHCl₃); IR (neat) 2980, 1749, 1611 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.54 (s, 1H), 7.66 (s, 1H), 7.17 (br, 1H), 6.56 (br, 1H), 4.52 (dd, *J* = 5.8, 6.3 Hz, 1H), 3.78-3.81 (m, 2H), 2.06-2.11 (m, 1H), 1.91-2.01 (m, 3H), 1.55 (s, 3H); ¹³C NMR (125 MHz) δ 199.5, 164.1, 148.1, 122.6, 121.7, 120.0, 112.2, 84.8, 65.6, 48.8, 27.7, 25.8, 25.5; HRMS (ESI, *M*+Na⁺) calcd for C₁₅H₂₀N₂Na₁O₄ 315.1321, found 315.1296.

Alcohol 29a and 29b

To a stirred solution of aldehide **28** (5.00 g, 17.0 mmol) in MeCN (170 mL) at 0 °C was added CSA (395 mg, 1.70 mmol). The reaction mixture was stirred at room temperature for 6 h then quenched with saturated aqueous NaHCO₃ and extracted with ethyl acetate (2 times). The combined organic layer was washed with brine and dried over MgSO₄. The filtrates were concentrated *in vacuo*. The residue was purified on silica gel column chromatography (hexane/ethyl acetate = 2:1 to 1:1 to 1:2) to give **29a** (3.60 g, 12.3 mmol, 72%) and diastereomer **29b** as white amorphous (590 mg, 2.00 mmol, 10%). Spectral data for **29a**: $[\alpha]_D^{27}$ +85.2 (*c* 1.1, CHCl₃); IR (neat) 3273, 2977, 1748, 1636 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.00 (d, *J* = 3.5 Hz, 1H), 6.22 (d, *J* = 3.5 Hz, 1H), 5.00 (d, *J* = 3.5 Hz, 1H), 3.80 (ddd, *J* = 3.5, 5.5, 10.0 Hz, 1H), 3.69 (ddd, *J* = 9.0, 10.5, 12.0 Hz, 1H), 3.48 (ddd, *J* = 7.5, 10.5, 11.0 Hz, 1H), 2.37 (dddd, *J* = 7.5, 10.0, 11.5, 12.0 Hz, 1H), 2.08-2.13 (m, 1H), 1.99-2.04 (m 1H), 1.80-1.88 (m, 1H), 1.63 (s, 9H); ¹³C NMR (125 MHz) δ 161.2, 148.5, 137.7, 121.8, 120.6, 107.4, 84.9, 63.0, 60.8, 44.3, 27.9, 26.4, 23.5; HRMS (ESI, *M*+Na⁺) calcd for C₁₅H₂₀N₂Na₁O₄ 315.1321, found 315.1323. Spectral data for **29b**: $[\alpha]_D^{23}$ +54.8 (*c* 2.1, CHCl₃); IR (neat) 3446, 2979, 1723, 1647 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.07 (d, *J* = 3.4 Hz, 1H), 6.49 (d, *J* = 3.4 Hz, 1H), 5.36 (s, 1H), 4.95 (d, *J* = 10.3 Hz, 1H), 3.79 (ddd, *J* = 5.7, 10.0, 10.0 Hz, 1H), 3.64

(ddd, J = 5.7, 8.6, 9.2 Hz, 1H), 3.45 (ddd, J = 8.6, 10.0, 10.0 Hz, 1H), 2.41 (dddd, J = 5.7, 5.9, 5.9, 7.0 Hz, 1H), 1.97-2.03 (m, 1H), 1.74-1.85 (m, 2H), 1.55 (s, 9H); ¹³C NMR (125 MHz) δ 161.1, 150.2, 138.7, 122.5, 120.5, 108.9, 86.3, 69.2, 63.8, 43.8, 31.6, 27.7, 22.9; HRMS (ESI, *M*+Na⁺) calcd for C₁₅H₂₀N₂Na₁O₄ 315.1321, found 315.1308.

Azide S4

To a stirred solution of alcohol **29a** (1.93 g, 6.61 mmol) in toluene (6 mL) at 0 °C was added DPPA (4.26 mL, 19.8 mmol) and DBU (3.00 mL, 19.8 mmol). The reaction mixture was stirred at room temperature for 30 min then concentrated *in vacuo*. The residue was purified on silica gel column chromatography (hexane/ethyl acetate = 4:1 to 3:2) to give **S4** as brown amorphous (608 mg, 1.92 mmol, 29%). Spectral data for **S4**: $[\alpha]_D^{27}$ +15.8 (*c* 1.6, CHCl₃); IR (neat) 2977, 2110, 1750, 1652 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.15 (d, *J* = 2.0 Hz, 1H), 6.54 (d, *J* = 2.0 Hz, 1H), 4.88 (d, *J* = 9.5 Hz, 1H), 3.85 (ddd, *J* = 5.6, 9.5, 10.4, Hz, 1H), 3.66-3.71 (m, 1H), 3.53-3.58 (m, 1H), 2.42-2.47 (m, 1H), 2.06-2.12 (m, 1H), 1.81-1.94 (m, 2H), 1.61 (s, 9H); ¹³C NMR (125 MHz) δ 161.4, 148.1, 133.0, 123.6, 121.4, 108.4, 85.6, 64.2, 61.3, 43.7, 31.5, 27.7, 22.8; HRMS (ESI, *M*+Na⁺) calcd for C₁₅H₁₉N₅Na₁O₃ 340.1386, found 340.1388.

Tces protected thiopseudo urea S5

To a stirred solution of azide S4 (572 mg, 1.80 mmol) in toluene (18 mL) at 0 °C was added PMe₃ (1.0 M in toluene, 3.61 mL, 3.61 mmol). The reaction mixture was stirred at 0 °C for 50 min and then added H₂O (1.8 mL). After 10 min, the reaction mixture was concentrated *in vacuo* to give amine **30**. To a stirred solution of crude **30** in CH₂Cl₂ (18 mL) at 0 °C was added Et₃N (759 µL, 5.40 mmol) and *S*-methyl *N*-(2,2,2-trichloroethoxysulfonyl)carbonchloroimidothioate **31c** (578 mg, 1.80 mmol). The reaction mixture was stirred at 0 °C for 1 h. The volatiles were removed under vacuum and the residue was purified on silica gel column chromatography (hexane/ethyl acetate = 1:2) to give S5 as white amorphous (577 mg, 1.08 mmol, 60%). Spectral data for S5: $[\alpha]_D^{21}$ +106.3

(*c* 1.8, CHCl₃); IR (neat) 3284, 2981, 1750, 1647, 1507 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 9.2 Hz, 1H), 7.16 (d, J = 3.2 Hz, 1H), 6.56 (d, J = 3.2 Hz, 1H), 5.39 (dd, J = 9.5, 9.8 Hz, 1H), 4.67 (s, 2H), 3.85 (m, 1H), 3.68-3.74 (m, 1H), 3.49-3.74 (m, 1H), 2.53 (s, 3H), 2.31-2.36 (m, 1H), 2.05-2.13 (m, 1H), 1.91-2.02 (m, 1H), 1.81-1.89 (m, 1H) , 1.58 (s, 9H); ¹³C NMR (100 MHz) δ 171.9, 161.2, 147.5, 131.7, 124.3, 122.3, 108.7, 93.7, 85.8, 78.6, 64.8, 55.4, 43.8, 31.9, 27.8, 22.8, 14.9; HRMS (ESI, *M*+Na⁺) calcd for C₁₉H₂₅³⁵Cl₃N₄Na₁O₆S₂ 597.0179, found 597.0134. Tces: 2,2,2-trichloroethoxysulfonyl.

Mbs protected thiopseudo urea S6

According to the procedure for **S5**, Mbs protected thiopseudo urea **S6** was synthesized from **30**. Spectral data for **S6**: $[\alpha]_D^{24}$ +88.7 (*c* 1.9, CHCl₃); IR (neat) 3275, 3011, 2979, 1755, 1645 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 9.2 Hz, 1H), 7.80 (d, *J* = 9.2 Hz, 2H), 7.15 (d, *J* = 3.2 Hz, 1H), 6.92 (d, *J* = 9.2 Hz, 2H), 6.55 (d, *J* = 3.2 Hz, 1H), 5.32 (t, *J* = 9.6 Hz, 1H), 3.84 (s, 3H), 3.77 (ddd, *J* = 5.6, 10.0, 10.0 Hz, 1H), 3.65-3.70 (m, 1H), 3.48-3.55 (m, 1H), 2.43 (s, 3H), 2.13-2.20 (m, 1H), 2.00-2.06 (m, 1H), 1.84-1.94 (m, 1H), 1.74-1.82 (m, 1H), 1.54 (s, 9H); ¹³C NMR (100 MHz) δ 169.2, 162.4, 161.4, 147.4, 134.3, 132.4, 128.2, 124.1, 122.1, 113.8, 108.5, 85.6, 65.2, 55.5, 54.7, 43.8, 31.6, 27.8, 22.7, 14.7; HRMS (ESI, *M*+Na⁺) calcd for C₂₄H₃₀N₄Na₁O₆S₂ 557.1504 found 557.1471.

Tces protected guanidine 32c

To a stirred solution of Tces protected thiopseudo urea **S5** (255 mg, 443 µmol) in MeCN (5 mL) at 0 °C was added NH₃·MeOH (2.0 M, 2.22 mL, 4.43 mmol) and HgCl₂ (240 mg, 886 µmol). After being stirred for 18 h at room temperature, the reaction mixture was filtered to remove solid residue. The filtrate was concentrated *in vacuo* and purified by silica gel column chromatography (CHCl₃/ethyl acetate = 2:1 to 1:1) to give Tces protected guanidine **32c** as white amorphous (232 mg, 0.425 mmol, 96%). Spectral data for **32c**: $[\alpha]_D^{21}$ +18.3 (*c* 0.76, CHCl₃); IR (neat) 3435, 3333, 2980, 1750, 1633, 1565 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.06 (d, *J* = 3.5 Hz, 1H), 6.64 (br, 1H), 6.26

(br, 1H), 4.82 (s,1H), 4.69 (d, J = 11.0 Hz, 1H), 4.65 (d, J = 11.0 Hz, 1H), 3.69-3.73 (m, 1H), 3.39-3.46 (m, 2H), 2.34-2.37 (m, 1H), 1.92-2.04 (s, 2H), 1.76-1.79 (m, 1H), 1.56 (s, 9H); ¹³C NMR (125 MHz) δ 162.1, 157.4, 147.6, 134.3, 123.6, 120.7, 107.9, 94.3, 93.2, 86.0, 80.5, 78.0, 65.6, 53.9, 43.9, 31.2, 27.8, 22.7; HRMS (ESI, M+Na⁺) calcd for C₁₈H₂₄³⁵Cl₃N₅Na₁O₆S₁ 566.0411, found 566.0396.

Mbs protected guanidine 32b

According to the procedure for **32c**, Mbs protected guanidine **32b** was obtained from **30**. Spectral data for **32b**: $[\alpha]_D^{25}$ +11.3 (*c* 1.2, CHCl₃); IR (neat) 3438, 3326, 2979, 1758, 1636, 1538 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 9.2 Hz, 2H), 6.92 (d, *J* = 3.6 Hz, 1H), 6.83 (d, *J* = 9.2 Hz, 2H), 6.60-6.65 (br, 1H), 6.20 (d, *J* = 3.6 Hz, 1H), 5.34 (t, *J* = 8.8 Hz, 1H), 3.80 (s, 3H), 3.55-3.61 (m, 1H), 3.34-3.41 (m, 1H), 3.26-3.33 (m, 1H), 2.04-2.13 (m, 1H), 1.77-1.94 (m, 2H), 1.55-1.67 (m, 1H), 1.38 (s, 9H); ¹³C NMR (100 MHz) δ 161.9, 161.8, 156.6, 147.3, 135.4, 134.7, 128.0, 123.3, 120.6, 113.4, 107.6, 85.2, 65.4, 55.4, 50.6, 43.7, 31.2, 27.5, 22.7; HRMS (ESI, *M*+Na⁺) calcd for C₂₃H₂₉N₅Na₁O₆S₁ 526.1736 found 526.1758.

bis-Boc protected guanidine 32a

To a stirred solution of crude **30** (23.0 mg) in MeCN (1 mL) at 0 °C was added Et₃N (44 µL, 316 µmol), bis-Boc-protected pseudo thiourea **31a** (30.0 mg, 103 µmol) and AgOTf (26.0 mg, 103 µmol). After being stirred for 1 h at 0 °C, the reaction mixture was filtered to remove solid residue. The filtrate was concentrated *in vacuo* and purified by florisil column chromatography (hexane/ethyl acetate = 2:1) to give **32a** as colorless oil (25.0 mg, 47.3 µmol, 60%). Spectral data for **32a**: $[\alpha]_D^{21}$ +54.1 (*c* 1.0, CHCl₃); IR (neat) 3314, 2373, 2980, 2934, 1758, 1719, 1636 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 11.6 (s, 1H), 8.55 (d, *J* = 8.4 Hz, 1H), 7.14 (d, *J* = 3.2 Hz, 1H), 6.56 (d, *J* = 3.2 Hz, 1H), 5.83 (dd, *J* = 8.4, 8.8 Hz, 1H), 3.76 (ddd, *J* = 5.6, 10.4, 10.4 Hz, 1H), 3.62-3.71 (m, 1H), 3.50-3.58 (m, 1H), 2.21-2.29 (m, 1H), 2.01-2.17 (m, 2H), 1.73-1.83 (m, 1H), 1.51 (s, 9H), 1.49 (s, 9H), 1.46 (s, 9H); ¹³C NMR (100 MHz) δ 163.7, 161.7, 156.3, 153.2, 147.5, 134.3, 129.7, 123.6, 121.8, 108.5,

84.7, 83.2, 79.2, 65.5, 50.4, 43.9, 31.2, 28.3, 28.0, 27.7, 22.9; HRMS (ESI, $M + K^+$) calcd for C₂₆H₃₉K₁N₅O₇ 572.2487, found 572.2452.

Tetracyclic guanidine 33c

To a stirred solution of Tces protected guanidine **32c** (20.0 mg, 36.7 µmol) in MeCN (0.4 mL) at room temperature was added MgO (12.0 mg, 293 µmol) and PhI(OAc)₂ (47.0 mg, 147 µmol). After being stirred for 10 min at 65 °C, the reaction mixture was filtered to remove solid residue. The filtrate was concentrated *in vacuo* and purified by florisil column chromatography (hexane/ethyl acetate = 1:1) to give **33c** as white amorphous (12.0 mg, 22.0 µmol, 60%). Spectral data for **33c**: $[\alpha]_D^{20}$ +74.6 (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.38 (s, 1H), 7.18 (d, *J* = 3.6 Hz, 1H), 6.56 (d, *J* = 3.6 Hz, 1H), 5.26 (s, 1H), 4.51 (d, *J* = 11.0 Hz, 1H), 4.42 (d, *J* = 11.0 Hz, 1H), 3.85-3.89 (m, 1H), 3.52-3.59 (m, 1H), 2.48-2.53 (m, 1H), 2.09-2.17 (m, 2H), 1.62 (s, 9H); ¹³C NMR (100 MHz) δ 159.9, 157.1, 148.9, 131.1, 123.5, 119.3, 108.9, 93.9, 87.2, 82.3, 78.0, 56.2, 44.5, 40.7, 27.8, 19.9; HRMS (ESI, *M* + K⁺) calcd for C₁₈H₂₂³⁵Cl₃K₁N₅O₆S₁ 579.9993, found 579.9998.

bis-Boc cylindradine A (37)

To a solution of tetracyclic guanidine **33c** (151 mg, 278 μ mol) in MeOH (8 mL) and ethyl acetate (8 mL) was added 20% Pd(OH)₂/C (15.1 mg) and the reaction mixture was stirred at room temperature under an atmosphere of hydrogen gas (balloon). After 4 h, the reaction mixture filtered through a

pad of celite and eluted with MeOH. The filtrate concentrated in vacuo to give guanidine S7. To a stirred solution of crude S7 in H₂O (1.5 mL) and CH₂Cl₂ (1.5 mL) at 0 °C was added Et₃N (78.1 µL, 556 µmol) and Boc-ON (68.5 mg, 278 µmol). After being stirred for 2 h at room temperature, the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with CH₂Cl₂. The combined organic layer was washed with brine and dried over MgSO₄. The filtrates were concentrated *in vacuo* to give **36**. To a stirred solution of crude **36** in CH₂Cl₂ (3 mL) at 0 °C was added NaHCO₃ (187 mg, 2.22 mmol) and Br₂ (57.0 µL, 1.11 mmol). After being stirred for 3 h at room temperature, the reaction mixture was quenched with 10% aqueous Na₂S₂O₃ and extracted with CH₂Cl₂. The combined organic layer was washed with brine and dried over MgSO₄. The filtrates were concentrated *in vacuo* and purified by florisil column chromatography (hexane/ethyl acetate = 1:5) to give **37** as white amorphous (37.7 mg, 63.9 μ mol, 23%). Spectral data for **37**: $[\alpha]_{D}^{24}$ +108.2 (c 2.3, CHCl₃); IR (neat) 2977, 2927, 1710, 1648, 1592 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.15 (s. 1H), 3.75-3.83 (m, 1H), 3.57-3.64 (m, 1H), 2.42-2.45 (m, 1H), 2.09-2.12 (m, 3H), 1.66 (s, 9H), 1.44 (s, 9H); ¹³C NMR (100 MHz) δ 159.5, 157.7, 147.8, 134.6, 116.0, 107.2, 104.8, 89.1, 82.0, 79.7, 55.8, 44.2, 40.8, 28.1, 27.6, 19.8; HRMS (ESI, $M + H^+$) calcd for $C_{21}H_{28}^{79}Br_1^{81}Br_1N_5O_5$ 590.0437, found 590.0478.

(+)-Cylindradine A (1)

To a stirred solution of bis-Boc cylindradine A (**37**) (125 mg, 212 μ mol) in CH₂Cl₂ (2 mL) at 0 °C was added TFA (100 μ L). After being stirred for 12 h at room temperature, to the reaction mixture was added toluene (500 mL).* The azeotropic mixture was concentrated *in vacuo*.** To the residue was added CH₂Cl₂,*** and the insoluble material was directly transferred to purify by Sephadex LH-20 chromatography (0.1% TFA-MeOH).**** With this purification, cylindradine A-containing fractions were collected. To the combined fractions were added water (10 mL), and the resultant was concentrated *in vacuo* with rotary evaporator to remove methanol.**** The resulting cylindradine A containing solution was freeze-dried***** to give (+)-cylindradine A (**1**) (40.0 mg, 82.7 μ mol, 39%) as a white powder.

*We stopped the reaction when the decomposition of **1** was started to observe on TLC. At this stage, the starting material of **37** was still left ca. over 50% from TLC.

**With this evaporation process, further decomposition of the cylindradine A (1) was observed on TLC.

***The starting **37** was recovered at this stage as soluble material in dichloromethane (40.8 mg, 69.2 μ mol, 33%). A cylindradine A (1) and its decomposed compounds were insoluble with dichloromethane.

****The insoluble residue was dissolved with small amount of methanol, and it was subjected to the LH-20 column chromatography.

*****Addition of the water is very important to avoid the decomposition of cylindradine A (1) by acid. In the evaporation of methanol, it helps to keep the low concentration of acid (TFA).

*****In the freeze-dry operation, water and acid (TFA) were removed at the same time. Therefore, decomposition of **1** was minimally suppressed. In our case, unfortunately, small amount of decomposed compounds from **1** were observed by ¹H NMR. Please see spectra data (¹H and ¹³C NMR) of **1**. Spectral data for **1**: $[\alpha]_D^{23}$ +34.4 (*c* 1.5, MeOH); IR (neat) 3160, 2949, 1678 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 5.25 (s, 1H), 3.70-3.75 (m, 1H), 3.54-3.62 (m, 1H), 2.37-2.42 (m, 1H), 2.24-2.32 (m, 1H), 2.10-2.15 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 161.6, 159.4, 134.6, 113.9, 107.1, 98.2, 85.8, 56.3, 46.5, 41.5, 21.2; HRMS (ESI, *M* + H⁺) calcd for C₁₁H₁₂⁷⁹Br₁⁸¹Br₁N₅O₁ 389.9388, found 389.9354.

Reference

1) J. Marik, R. Tykva, M. Budesinsky, J. Hlavacek, B. Bennettova, J. Peptide Res., 2001, 57, 401-408.

2) B. P. J. de Lacy Costello, P. Evans, N. Guernion, N. M. Ratcliffe, P. S. Sivanand, G.C. Teare, *Synthetic Metals*, 2000, **114**, 181-188.

