Supplementary Information: Synthesis of mixed $\mathbf{G a} / \mathbf{C d}$ coordinated pyrogallol[4]arene nano-capsule presents a novel spherical template

Ping Jin, ${ }^{a}$ Harshita Kumari, ${ }^{a}$ Stuart Kennedy, ${ }^{a}$ Charles L. Barnes, ${ }^{a}$ Simon J. Teat, ${ }^{b}$ Scott J. Dalgarno ${ }^{c}$ and Jerry L. Atwood ${ }^{a}$

Information includes:

- Experimental details for synthesis of 1
- ${ }^{1} \mathrm{H}$ NMR Spectral comparison between the PgC_{4} Ga-MONC and 1 .
- Mass Spectrometry
- Elemental analyses: ICP (inductively coupled plasma) analyses

Synthesis of $\mathrm{PgC}_{\mathbf{4}} \mathbf{G a - M O N C : ~ A n ~ a q u e o u s ~ s o l u t i o n ~ o f ~ g a l l i u m ~ n i t r a t e ~ (e x c e s s) ~ w a s ~ a d d e d ~ t o ~ a n ~}$ acetone solution of C-butylpyrogallol[4]arene ($200 \mathrm{mg}, 0.26 \mathrm{mmol}$). Single crystals of the metalorganic nanocapsule that were suitable for synchrotron diffraction study formed upon standing overnight with slow evaporation. The crystalline material was harvested and dried to afford 131 $\mathrm{mg}\left(45 \%\right.$ yield based on $\left.\mathrm{PgC}_{4}\right)$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0 M H z}, \mathbf{C D}_{3} \mathbf{C N}$): $\delta=0.98\left(\mathrm{~m}, 72 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.40(\mathrm{~m}$, $\left.96 \mathrm{H}, \beta-\mathrm{CH}_{2}, \gamma-\mathrm{CH}_{2}\right) ; 2.26\left(\mathrm{~m}, 48 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right.$, encapsulated water/acetone); $4.36(\mathrm{~m}, 24 \mathrm{H},-\mathrm{CH})$; $6.79,6.82,6.91,6.95(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}), 7.38,7.76,8.33$ (brs, partial OH$)$; 1 H NMR of $1\left(\mathrm{CD}_{3} \mathrm{CN}+\right.$ $\mathrm{D}_{2} \mathrm{O}$): the peaks at $\delta=7.38,7.76,8.33 \mathrm{ppm}$ disappear. ${ }^{13} \mathbf{C} \mathbf{N M R}\left(500 \mathbf{M H z}\right.$, [D $\left.\mathbf{D}_{6}\right]$ acetone): $\delta=$ $14.59\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 23.32,23,72\left(\mathrm{~m}, \gamma-\mathrm{CH}_{2}\right) ; 31.29,31.56,32.20,32.85,33.55\left(\mathrm{~m}, \beta-\mathrm{CH}_{2}, \alpha-\mathrm{CH}_{2}\right)$, $34.91,35.87,36.32,38.48$ (m, -CH), 112.96, 114.27 (m, ArH), 123.03, 125.71, 133.67, 138.36, 140.13, 141.35 (m, Ar).

Synthesis of PgC4 Ga/Cd-MONC , 1: Methanol cadmium (II) nitrate (excess) was added to an acetone solution of $\mathrm{PgC}_{4} \mathrm{Ga}-\mathrm{MONC}(100 \mathrm{mg}, 0.015 \mathrm{mmol}$, pre-dried and crystalline). Slow evaporation of the colourless solution afforded single crystals that were suitable for synchrotron diffraction studies ($42 \mathrm{mg}, 46 \%$ yield based on dried 1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{5 0 0 M H z}$, [D $\left.\mathbf{D}_{6}\right]$ acetone): $\delta=$ $0.92\left(\mathrm{~m}, 72 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.32,1.40,1.48\left(\mathrm{~m}, 96 \mathrm{H}, \beta-\mathrm{CH}_{2}, \gamma-\mathrm{CH}_{2}\right) ; 2.35\left(\mathrm{~m}, 48 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right) ; 4.37(\mathrm{~m}$, $24 \mathrm{H},-\mathrm{CH}) ; 6.82,6.94,7.00(\mathrm{~m}, 24 \mathrm{ArH}) ; 7.40,7.92,8.78(\mathrm{~m}, 2 \mathrm{H}$, remaining -OH$) .{ }^{13} \mathbf{C}$ NMR (500MHz, [D \mathbf{D}_{6} acetone): $\delta=14.12\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 23.26,23,30\left(\mathrm{~m}, \gamma-\mathrm{CH}_{2}\right) ; 30.85,31.14,31.72$, $32.99\left(\mathrm{~m}, \beta-\mathrm{CH}_{2}, \alpha-\mathrm{CH}_{2}\right), 34.48,35.00,35.35,35.88(\mathrm{~m},-\mathrm{CH}), 112.94,113.59(\mathrm{~m}, \mathrm{ArH}), 117.65$, $122.85,126.34,133.82,140.96,145.85,145.35$ (m, Ar)

NOTE: ${ }^{13} \mathbf{C}$ NMR spectra for $\mathrm{PgC}_{4} \mathrm{Ga}$ and $\mathrm{PgC}_{4} \mathrm{GaCd}$ differs due to difference in hydroxyl environments around the metal centers. For example,

- difference in linker carbon environment: 38.5 ppm for PgC_{4} Ga versus 35 ppm for $\mathrm{PgC}_{4} \mathrm{GaCd}$
- difference in aromatic carbon environment: 141 ppm for PgC_{4} Ga versus 145 ppm for $\mathrm{PgC}_{4} \mathrm{GaCd}$
${ }^{1} \mathrm{H}$ NMR - spectral comparison
A: Crystals of $\mathrm{PgC}_{4} \mathrm{Ga} / \mathrm{Cd}$ MONCs in [D D_{6}]acetone
B: Crystals of $\mathrm{PgC}_{4} \mathbf{G a} / \mathbf{Z n}$ MONCs in $\mathrm{CD}_{3} \mathbf{C N}$

NOTE: For both $\mathrm{PgC}_{4} \mathrm{GaCd}$ and $\mathrm{PgC}_{4} \mathrm{GaZn}$, multiple aromatic (at about 7 ppm) and CH (at about 4.3 ppm) protons of linker carbon are observed, which indicates that these protons are experiencing multiple environments. (Phenolic -OH at 6 ppm)

The ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PgC}_{4} \mathrm{GaZn}$ shows following signals that are different from that of $\mathrm{PgC}_{4} \mathrm{GaCd}$:

- Proton of encapsulated molecule at 0 and -1.7 ppm (could be acetone or ethanol).
- There are no peaks below 0 ppm in the spectrum of the $\mathrm{PgC}_{4} \mathrm{Ga} / \mathrm{Cd}$ MONCs while the spectrum of the $\mathrm{PgC}_{4} \mathrm{Ga} / \mathrm{Zn}$ MONCs contain two peaks below 0 ppm representing two solvent molecules encapsulated permanently inside the capsule.
- Ethanol signal at 1.1 and 3.6 ppm (ethanol was present in the sample preparation).
- Because of the difference in solvents employed, at 4 ppm we see broader peak for $\mathrm{PgC}_{4} \mathrm{GaCd}$. This is due to the linker carbon environment which is affected by the aromatic rings.
- 7 ppm : not symmetrical aromatic region for both hexamers.

Theoretical Molecular Masses:
Basic skeleton ($6 \mathrm{PgC} 4+16 \mathrm{Ga}+4 \mathrm{Cd}$): $6161 \mathrm{~g} \mathrm{~mol}^{-1}$
Basic skeleton ($6 \mathrm{PgC} 4+18 \mathrm{Ga}+2 \mathrm{Cd}$): $6078 \mathrm{~g} \mathrm{~mol}^{-1}$
Basic skeleton +40 aquo ligands ($6 \mathrm{PgC} 4+16 \mathrm{Ga}+4 \mathrm{Cd}$): $6881 \mathrm{~g} \mathrm{~mol}^{-1}$
Basic skeleton +40 aquo ligands ($6 \mathrm{PgC} 4+18 \mathrm{Ga}+2 \mathrm{Cd}$): $6798 \mathrm{~g} \mathrm{~mol}^{-1}$

Experimental Molecular Mass:

MALDI-TOF MS spectra shows mass in a range of 5900~6200 Da

Elemental Analyses: Inductively coupled plasma / ICP elemental analysis is reported below. The atomic percentage of $\mathrm{C}, \mathrm{O}, \mathrm{Ga}, \mathrm{Cd}$ is calculated from this analyses to deduce the $\mathrm{Ga} / \mathrm{Cd}$ ratios per nanocapsule.

Live Time: 90.0 sec .
Mon Mar 02 12:11:36 2009
Filter Fit Chi Squared:6.450
Errors: +/- 1 Sigma
Correction Method: Proza (Phi-Rho-Z)
Acc.Voltage: 20.0 kV Take Off Angle: 38.2 deg.
Detector: Pioneer
Quantitative Results for: gacd(5)

Element Line	Net Counts	Net Counts Error	K-Ratio	Weight \%	Weight \% Error	Atom \%	Atom \% Error	
$\boldsymbol{C} \boldsymbol{K}$	51489	$+/-$	294	0.91	78.97	$+/-0.45$	85.61	$+/-0.49$
$\boldsymbol{O} \boldsymbol{K}$	2695	$+/-$	80	0.04	16.77	$+/-0.50$	13.65	$+/-0.41$
$\boldsymbol{G a} \boldsymbol{K}$	1279	+-	112	0.04	3.44	$+/-0.30$	0.64	$+/-0.06$
$\boldsymbol{C d} \boldsymbol{L}$	1100	+-	166	0.01	0.82	$+/-0.12$	0.10	$+/-0.01$
Total					100.00		100.00	

Full scale counts: 911

Live Time: 90.0 sec .
Mon Mar 02 12:13:33 2009
Filter Fit Chi Squared:4.856
Errors: +/- 1 Sigma
Correction Method: Proza (Phi-Rho-Z)
Acc.Voltage: 20.0 kV Take Off Angle: 38.2 deg.
Detector: Pioneer
Quantitative Results for: $\operatorname{gacd}(6)$

Element Line	Net Counts	Net Counts Error	K-Ratio	Weight \%	Weight \% Error	Atom \%	Atom \% Error	
$\boldsymbol{C} \boldsymbol{K}$	34961	$+/-$	220	0.87	76.69	$+/-0.48$	84.91	$+/-0.53$
$\boldsymbol{O} \boldsymbol{K}$	2112	$+/-$	70	0.04	16.76	$+/-0.56$	13.93	$+/-0.46$
$\boldsymbol{G a} \boldsymbol{K}$	1513	$+/-$	119	0.07	5.25	$+/-0.41$	1.00	$+/-0.08$
$\boldsymbol{C d} \boldsymbol{L}$	1328	$+/-165$	0.02	1.29	$+/-0.16$	0.15	$+/-0.02$	
Total					100.00		100.00	

